

DP8307A 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting)

General Description

The DP8307A is a high speed Schottky 8-bit TRI-STATE bidirectional transceiver designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. It is capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (V_{OH}) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, it features glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.

DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/ \overline{R}) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 is featured with Transmit (\overline{T}) and Receive (\overline{R}) control inputs.

Features

- 8-bit bidirectional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high votlage interfaces with TTL, MOS, and CMOS

Dual-In-Line Package

Top View Order Number DP8307AN See NS Package Number N20A

20 VCC

19 80

1<u>7</u> B2

<u>16</u> B3

1<u>5</u> B4

- B5

<u>13</u> B6

12 B7

1<u>1</u> 8

14

BPORT

TL/F/8794-2

19

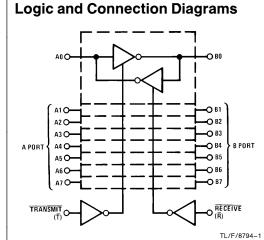
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Independent T and R controls for versatility
- Compact 20-pin dual-in-line package
- Bus port glitch free power up/down

AO

A1-

A2 -

Α3


Δ4-

Α5

A6

GND -----

A PORT

Logic Table

Control Inputs		Resulting Conditions			
Transmit	Receive	A Port	B Port		
1	0	OUT	IN		
0	1	IN	OUT		
1	1	TRI-STATE	TRI-STATE		
0	0	Both Active*			

*This is not an intended logic condition and may cause oscillations.

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1996 National Semiconductor Corporation TL/F/8794

RRD-B30M36/Printed in U. S. A.

http://www.national.com

DP8307A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting)

February 1996

	olute Maximum Ra	•					
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Lead Temperatu Storage Tempera	,	260°C −65°C to +150°C			
Supply	•	7V	Recomme	nded Op	erating		
Input Vo	•	5.5V	Condition	•	er a unig		
Output	Voltage	5.5V		С Мі	in Max		Units
	m Power Dissipation* at 25°C		Supply Voltage (-	V
	y Package ed Package	1667 mW 1832 mW	Temperature (T _A	00,	70		°C
*Derate o 14.7 mW/	cavity package 11.1 mW/°C above 25 /°C above 25°C.	5°C; derate molded package					
DC E Symbol	Iectrical Characte	Cond	Min	Тур	Max	Units	
A PORT					• 76	max	
V _{IH}	Logical "1" Input Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$	2.0			V	
VIL	Logical "0" Input Voltage	$\overline{T} = V_{II}, \overline{R} = 2.0V$			0.7	V	
V _{OH}	Logical "1" Output Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$ $V_{IL} = 0.5V$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	$V_{\rm CC} - 0.7$		V
			$I_{OH} = -3 \text{ mA}$	2.7	3.95		V
V _{OL}	Logical "0" Output Voltage 1	$\overline{T} = 2.0V,$	$I_{OL} = 16 \text{ mA}$		0.35	0.5	V
		$\overline{R} = V_{IL}$	$I_{OL} = 8 \text{ mA}$		0.3	0.4	V
I _{OS}	Output Short Circuit Current	$\overline{T} = 2.0V, \overline{R} = V_{IL}, V_O = 0V,$ $V_{CC} = Max, (Note 4)$		-10	-38	-75	mA
l _{IH}	Logical "1" Input Current	$\overline{T} = V_{IL}, \overline{R} = 2.0V, V_{II}$	_H = 2.7V		0.1	80	μΑ
lı	Input Current at Maximum Input Voltage	$\overline{R} = \overline{T} = 2.0V, V_{CC} = Max, V_{IH} = 5.25V$				1	mA
Ι _{ΙL}	Logical "0" Input Current	$\overline{T} = V_{IL}, \overline{R} = 2.0V, V_{II}$	_N = 0.4V		-70	-200	μΑ
V _{CLAMP}	Input Clamp Voltage	$\overline{T} = \overline{R} = 2.0V$, $I_{IN} = -12 \text{ mA}$			-0.7	-1.5	V
I _{OD}	Output/Input	$\overline{T} = \overline{R} = 2.0V$	$V_{IN} = 0.4V$			-200	μA
	TRI-STATE Current		$V_{IN} = 4.0V$			80	μA
B PORT	(B0-B7)						
V_{IH}	Logical "1" Input Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$		2.0			V
V_{IL}	Logical "0" Input Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$				0.7	V
V _{OH}	Logical "1" Output Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	$V_{\text{CC}} - 0.8$		V
		$V_{IL} = 0.5V$	$I_{OH} = -5 \text{ mA}$	2.7	3.9		V
	1	1					I –

Downloaded from Elcodis.com electronic components distributor

Logical "0" Output Voltage

Logical "1" Input Current

Input Current at Maximum

Logical "0" Input Current

Input Clamp Voltage

TRI-STATE Current

Output Short Circuit

Current

Input Voltage

Output/Input

 V_{OL}

los

 I_{IH}

I_I

 I_{IL}

IOD

V_{CLAMP}

http://www.national.com

2

 $I_{\text{OH}}=\,-\,10\;\text{mA}$

 $I_{OL} = 20 \text{ mA}$

 $I_{OL} = 48 \text{ mA}$

 $V_{IN} = 0.4V$

 $V_{IN} = 4.0V$

 $\overline{T}=V_{\text{IL}},\overline{R}=2.0V$

 $\overline{T} = \overline{R} = 2.0V$

 $\overline{T} = V_{IL}, \overline{R} = 2.0V, V_O = 0V,$ $V_{CC} = Max, (Note 4)$

 $\overline{T}=2.0V,\overline{R}=V_{IL},V_{IH}=2.7V$

 $\overline{T}=\,2.0V,\,\overline{R}\,=\,V_{IL},\,V_{IN}\,=\,0.4V$

 $\overline{T} = \overline{R} = 2.0V$, $I_{IN} = -12$ mA

 $\overline{T} = \overline{R} = 2.0V$, $V_{CC} = Max$, $V_{IH} = 5.25V$

2.4

-25

3.6

0.3

0.4

-50

0.1

-70

-0.7

٧

٧

۷

mΑ

μΑ

mA

μΑ

٧

μΑ

μΑ

0.4

0.5

-150

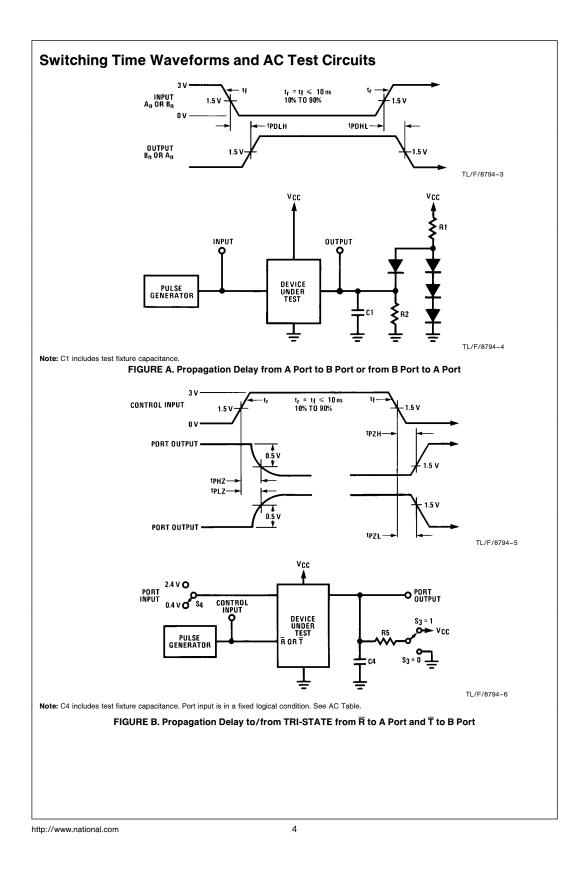
80

1

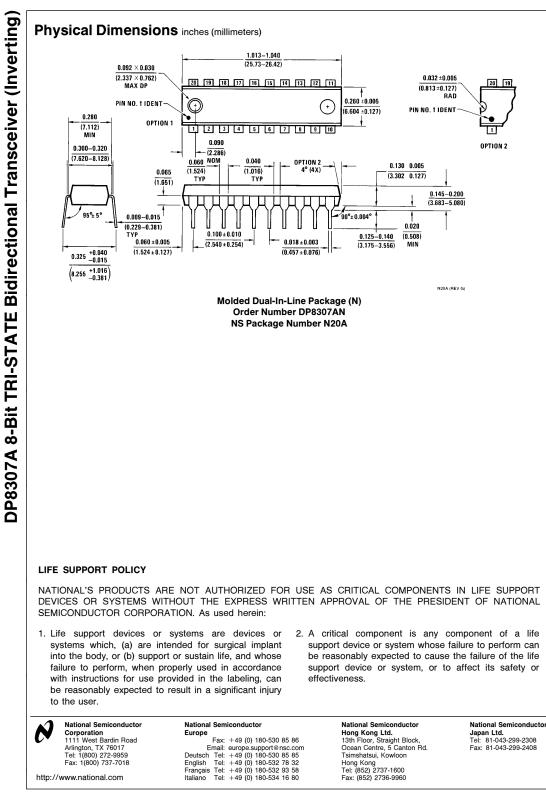
-200

-1.5

-200


+200

Symbol	Parameter		Conditions Min		Min	Тур		Max	
CONTRO	L INPUTS T, R						-		
VIH	Logical "1" Input Voltage				2.0				V
VIL	Logical "0" Input Voltage							0.7	V
IIH	Logical "1" Input Current	V _{IH} = 2.7V	/			0.	.5	20	μA
lj	Maximum Input Current	V _{CC} = Max	x, V _{IH} = 5	5.25V				1.0	mA
Ι _Ι	Logical "0" Input Current V _{IL} = 0.4V		,	R		-(D.1	-0.25	mA
				Ŧ		-0	.25	-0.5	mA
V _{CLAMP}	Input Clamp Voltage	$I_{\rm IN} = -12 \rm mA$			-(0.8	-1.5	V	
						1			
Icc	Power Supply Current	$\overline{T} = \overline{R} = 2$.0V, V _{IN} =	= 2.0V, V _{CC} = Max		7	0	100	mA
				= 2V, V _{CC} $=$ Max		10	00	150	mA
	a atui a al Oh ana atau						I		
	ectrical Character		: = 5V, T _A				-		
Symbol	Parameter			Conditions		Min	Тур	Max	Unit
	DATA/MODE SPECIFICATIONS Propagation Delay to a Logical "0" from B Port to A Port			$\overline{T} = 2.4V, \overline{R} = 0.4V$ (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF			8	12	ns
t _{PDLHA}	Propagation Delay to a Logic B Port to A Port	cal "1" from	T = 2.4	$1V, \overline{R} = 0.4V (Figure A)$ k, R2 = 5k, C1 = 30 pF			11	16	ns
t _{PLZA}	Propagation Delay from a LC TRI-STATE from \overline{R} to A Port		B0 to B		2.4V, $\overline{T} = 2.4V$ (Figure B)			15	ns
t _{PHZA}	Propagation Delay from a Lo TRI-STATE from \overline{R} to A Port		B0 to B	$7 = 0.4V, \overline{T} = 2.4V$ (Figure), R5 = 1k, C4 = 15 pF		8	15	ns	
t _{PZLA}	Propagation Delay from TRI a Logical "0" from \overline{R} to A Po		B0 to B7 = 2.4V, \overline{T} = 2.4V (<i>Figure B</i>) S3 = 1, R5 = 1k, C4 = 30 pF				25	35	ns
t _{PZHA}	Propagation Delay from TRI-STATE to a Logical "1" from $\overline{\mathbf{R}}$ to A Port		B0 to B7 = 0.4V, \overline{T} = 2.4V (Figure B) S3 = 0, R5 = 5k, C4 = 30 pF				24	35	ns
B PORT D	DATA/MODE SPECIFICATION	IS	-				_	-	
^t PDHLB	Propagation Delay to a Logical "0" from A Port to B Port		$ \overline{T} = 0.4V, \overline{R} = 2.4V (Figure A) R1 = 100\Omega, R2 = 1k, C1 = 300 pF R1 = 667\Omega, R2 = 5k, C1 = 45 pF $				12 8	18 12	ns ns
^t PDLHB	Propagation Delay to a Logical "1" from A Port to B Port		$\overline{T} = 0.4V, \overline{R} = 2.4V (Figure A)$ R1 = 100 Ω , R2 = 1k, C1 = 300 pF R1 = 667 Ω , R2 = 5k, C1 = 45 pF				15 9	23 14	ns ns
t _{PLZB}	Propagation Delay from a Logical "0" to TRI-STATE from \overline{T} to B Port		A0 to A7 = 2.4V, \overline{R} = 2.4V (Figure B) S3 = 1, R5 = 1k, C4 = 15 pF				13	18	ns
t _{PHZB}	Propagation Delay from a Lo TRI-STATE from \overline{T} to B Port			$7 = 0.4V, \overline{R} = 2.4V$ (Fig. , R5 = 1k, C4 = 15 pF		8	15	ns	
t _{PZLB}	Propagation Delay from TRI a Logical "0" from \overline{T} to B Po	cal "0" from T to B Port		A0 to A7 = 2.4V, \overline{R} = 2.4V (Figure B) S3 = 1, R5 = 100 Ω , C4 = 300 pF S3 = 1, R5 = 667 Ω , C4 = 45 pF			32 18	40 25	ns ns
t _{PZHB}	Propagation Delay from TRI-STATE to a Logical "1" from \overline{T} to B Port		A0 to A7 = $0.4V$, $\overline{R} = 2.4V$ (<i>Figure B</i>) S3 = 0, R5 = 1k, C4 = 300 pF S3 = 0, R5 = 5k, C4 = 45 pF				25	35	ns


Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 4: Only one output at a time should be shorted.

http://www.national.com

http://www.national.com

