National Semiconductor

DP7304B/DP8304B 8-Bit TRI-STATE® ${ }^{\circledR}$ Bidirectional Transceiver (Non-Inverting)

General Description

The DP73048B/DP8304B are high speed Schottky 8-bit TRI-STATE bidirectional transceivers designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.
DP7304B/DP8304B are featured with Transmit//̄eceive (T/ \bar{R}) and Chip Disable (CD) inputs to simplify control logic.

Features

- 8-bit bidirectional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loadirig
- Output high voltage interfaces with TTL, MOS, and CMOS
- $48 \mathrm{~mA} / 300 \mathrm{pF}$ bus drive capability
- Pinouts simplify system interconnections
- Transmit//̄eceive and chip disable simplify control logic
- Compact 20 -pin dual-in-line package
- Bus port glitch free power up/down

Logic and Connection Diagrams

Logic Table

Inputs		Resulting Conditions	
Chip Disable	Transmit/Recelve	A Port	B Port
0	0	OUT	IN
0	1	\mathbb{N}	OUT
1	\times	TRI-STATE	TRI-STATE

X = Don't Care

Absolute Maximum Ratings（Note 1）	Recommended Operating			
If Milltary／Aerospace specified devices are required， please contact the National Semiconductor Sales Otfice／Distributors for availability and specifications．	Conditions	Min	Max	Units
Supply Voltage 7V	Supply Voltage（VCC） DP7304B	4.5	5.5	V
Input Voltage 5.5 V	DP8304B	4.75	5.25	V
Output Voltage 5.5 V	Temperature（ T_{A} ）			
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DP7304B	－55	125	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation＊at $25^{\circ} \mathrm{C}$ Cavity Package 1667 mW Molded Package 1832 mW	DP8304B	0	70	${ }^{\circ} \mathrm{C}$
Lead Temperature（soldering， 4 sec．） $260^{\circ} \mathrm{C}$				
＊Derate cavity package $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ；derate molded package $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ．				

DC Electrical Characteristics （Notes 2 and 3）

Symbol	Parameter	Conditions		Min	Typ	Max	Units
A PORT（A0－A7）							
$V_{\text {IH }}$	Logical＂1＂Input Voltage	$C D=V_{1 L}, T / \bar{R}=2.0 \mathrm{~V}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical＂0＂Input Voltage	$C D=V_{1 L}, T / \bar{R}=2.0 \mathrm{~V}$	DP8304B			0.8	V
			DP7304B			0.7	V
V_{OH}	Logical＂1＂Output Voltage	$C D=V_{\text {IL }}, T / \bar{R}=V_{\text {IL }}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$V_{C C}-0.7$		V
			$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.7	3.95		V
V_{OL}	Logical＂0＂Output Voltage	$C D=T / \bar{R}=V_{l L}$	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}(8304 \mathrm{~B})$		0.35	0.5	V
			$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$（both）		0.3	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{\mathrm{IL}}, T / \bar{R}=V_{\mathrm{IL}}, V_{\mathrm{O}}=O V, \\ & V_{C C}=\operatorname{Max}(\text { Note 4) } \end{aligned}$		－10	－38	－75	mA
${ }_{1 / \mathrm{H}}$	Logical＇1＂Input Current	$C D=V_{\text {IL }}, T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$				1	mA
IIL	Logical＂0＇Input Current	$C D=V_{\text {IL }}, T / \bar{R}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			－70	－200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{f}_{\mathrm{N}}=-12 \mathrm{~mA}$			－0．7	－1．5	V
100	Output／Input TRI－STATE Current	$C D=2.0 \mathrm{~V}$	$V_{\text {IN }}=0.4 \mathrm{~V}$			－200	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$
B PORT（B0－B7）							
$\mathrm{V}_{\text {IH }}$	Logical＂1＂Input Voltage	$C D=V_{\mathrm{IL}}, T / \bar{R}=V_{\mathrm{IL}}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical＂ 0 ＂Input Voltage	$C D=V_{\mathrm{IL}}, T / \bar{R}=V_{\mathrm{IL}}$	DP8304B			0.8	V
			DP7304B			0.7	V
V_{OH}	Logical＂1＂Output Voltage	$C D=V_{L L}, T / \bar{R}=2.0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$V_{C C}-1.15$	$V_{C C}-0.8$		V
			$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		\checkmark
			$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.6		V
V_{OL}	Logical＂ 0 ＂Output Voltage	$C D=V_{I L}, T / \bar{R}=2 . C V$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	V
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{I L}, T / \bar{R}=2.0 \mathrm{~V}, V_{O}=0 V \\ & V_{C C}=\operatorname{Max}(\text { Note } 4) \end{aligned}$		－25	－50	－150	mA

DC Electrical Characteristics (Notes 2 and 3) (Continued)

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A PORT DATA/MODE SPECIFICATIONS						
tpDHLA	Propagation Delay to a Logical " 0 " from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		14	18	ns
tpDLHA	Propagation Delay to a Logical "1" from B Port to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=30 \mathrm{pF} \end{aligned}$		13	18	ns
${ }_{\text {t PLZA }}$	Propagation Delay from a Logical " 0 " to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		11	15	ns
$t_{\text {PHZA }}$	Propagation Delay from a Logical " 1 " to TRI-STATE from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{CR}=15 \mathrm{pF} \end{aligned}$		8	15	ns
tpZLA	Propagation Delay from TRI-STATE to a Logical " 0 " from CD to A Port	$\begin{aligned} & \mathrm{B} 0 \text { to } \mathrm{B} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		27	35	ns
tpZHA	Propagation Delay from TRI-STATE to a Logical " 1 " from CD to A Port	$\begin{aligned} & \mathrm{BO} \text { to } \mathrm{B7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{A}}=0.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=30 \mathrm{pF} \end{aligned}$		19	25	ns
B PORT DATA/MODE SPECIFICATIONS						
$t_{\text {tPDHLB }}$	Propagation Delay to a Logical " 0 " from A Port to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 18 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPDLHB	Propagation Delay to a Logical "1" from A Port to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } A) \\ & \mathrm{R} 1=100 \Omega, \mathrm{R} 2=1 \mathrm{k}, \mathrm{C} 1=300 \mathrm{pF} \\ & \mathrm{R} 1=667 \Omega, \mathrm{R} 2=5 \mathrm{k}, \mathrm{C} 1=45 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Continued）						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
B PORT DATA／MODE SPECIFICATIONS（Continued）						
tplzb	Propagation Delay from a Logical＂ 0 ＂to TRI－STATE from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } C) \\ & \mathrm{S} 3=1, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		13	18	ns
$t_{\text {PHzB }}$	Propagation Delay from a Logical＂ 1 ＂to TRI－STATE from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{A}}=2.4 \mathrm{~V}(\text { Figure } C) \\ & \mathrm{S} 3=0, \mathrm{R} 5=1 \mathrm{k}, \mathrm{C} 4=15 \mathrm{pF} \end{aligned}$		8	15	ns
tpzL8	Propagation Delay from TRI－STATE to a Logical＂ 0 ＂from CD to B Port	$\begin{gathered} \mathrm{A} 0 \text { to } \mathrm{A} 7=0.4 \mathrm{~V}, \mathrm{~T} / \mathrm{A}=2.4 \mathrm{~V} \text { (Figure C) } \\ \mathrm{S} 3=1, \mathrm{RS}=100 \Omega, \mathrm{C} 4=300 \mathrm{pF} \\ \mathrm{~S} 3=1, \mathrm{R} 5=667 \Omega, \mathrm{C} 4=45 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{array}{r} 32 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 22 \end{aligned}$	$\begin{array}{r} \mathrm{ns} \\ \mathrm{~ns} \\ \hline \end{array}$
tPzHB	Propagation Delay from TRI－STATE to a Logical＂ 1 ＂from CD to B Port	$\begin{aligned} & \mathrm{A} 0 \text { to } \mathrm{A} 7=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } C \text {) } \\ & \mathrm{S} 3=0, \mathrm{R5}=1 \mathrm{k}, \mathrm{C} 4=300 \mathrm{pF} \\ & \mathrm{~S} 3=0, \mathrm{R} 5=5 \mathrm{k}, \mathrm{C} 4=45 \mathrm{pF} \end{aligned}$		$\begin{array}{r} 26 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
TRANSMIT／RECEIVE MODE SPECIFICATIONS						
${ }_{\text {t }}$ trl	Propagation Delay from Transmit Mode to Receive a Logical＂ 0 ＂，$T / \overline{\mathrm{R}}$ to A Port	$\begin{aligned} & C D=0.4 V(\text { Figure } B) \\ & S 1=0, R 4=100 \Omega, C 3=5 \mathrm{pF} \\ & S 2=1, R 3=1 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \\ & \hline \end{aligned}$		30	40	ns
${ }^{\text {t }}$ TR ${ }^{\text {r }}$	Propagation Delay from Transmit Mode to Receive a Logical＂ 1 ＂，$T / \overline{\mathrm{R}}$ to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V},(\text { Figure B) } \\ & \mathrm{S} 1=1, \mathrm{R} 4=100 \Omega, \mathrm{C}=5 \mathrm{pF} \\ & \mathrm{~S} 2=0, \mathrm{R} 3=5 \mathrm{k}, \mathrm{C} 2=30 \mathrm{pF} \end{aligned}$		28	40	ns
$\mathrm{t}_{\text {RTH }}$	Propagation Delay from $\overline{\text { Receive }}$ Mode to Transmit a Logical＂ 1 ＂，$T / \overline{\mathrm{R}}$ to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}(\text { Figure B) } \\ & \mathrm{S} 1=0, \mathrm{R4}=1 \mathrm{k}, \mathrm{C}=300 \mathrm{pF} \\ & \mathrm{~S} 2=1, \mathrm{R} 3=300 \Omega, \mathrm{C} 2=5 \mathrm{pF} \end{aligned}$		28	40	ns

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．They are not meant to imply that the devices should be operated at these limits．The tables of＂Electrical Characteristics＂provide conditions for actual device operation．
Note 2：Unless otherwise specified，min／max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions．All typical values given are for $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ ．
Note 3：All currents into device pins are positive；all currents out of device pins are negative．All voltages are referenced to ground unless otherwise specified．
Note 4：Only one output at a time should be shorted．

Switching Time Waveforms and AC Test Circuits

TL／F／8793－3

Note：C1 includes test fixture capacitance．
FIGURE A．Propagation Delay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (Continued)

TL/F/8793-5

TL/F/8793-6
Note: C2 and C3 include test fixture capacitance.
FIGURE B. Propagation Delay from T/偪 to A Port or B Port

TL/F/8793-8
Note: C4 includes test fixture capacitance.
Port input is in a fixed logical condition. See AC table.

