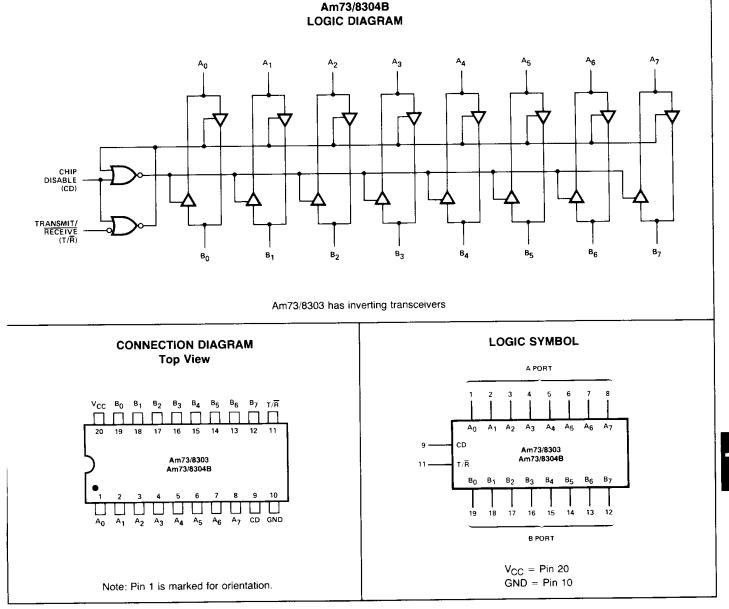
Am73/8303 • Am73/8304B Octal Three-State Bidirectional Bus Transceivers

DISTINCTIVE CHARACTERISTICS


- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC} –1.15V V_{OH} interfaces with TTL, MOS and CMOS
- 48mA, 300pF bus drive capability
- Am73/8303 inverting transceivers
- Am73/8304B noninverting transceivers
- Transmit/Receive and Chip Disable simplify control logic
- 20-pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- · Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am73/8303 and Am73/8304B are 8-bit 3-State Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3-state condition. Chip Disable is functionally the same as an active LOW chip select.

The output high voltage (V_{OH}) is specified at V_{CC} -1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Supply Voltage	7.0
Input Voltage	5.5V
Output Voltage	
Lead Temperature (Soldering, 10 seconds)	5.5V
	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

MIL COM'L $T_A = -55 \text{ to } +125^{\circ}\text{C}$ $T_A = 0 \text{ to } +70^{\circ}\text{C}$

 V_{CC} MIN = 4.5V V_{CC} MIN = 4.75V

 $V_{CC} MAX = 5.5V$ $V_{CC} MAX = 5.25V$

DC ELECTRICAL CHARACTERISTICS over operating temperature range

Parameter			over operating temperature range Test Conditions			Min	Typ (Note 1)	Max	Unita	
			A PORT (A ₀ -A ₇)					(1000-1)		
VIH	Logical "1" Input Voltage							1	r	
	1		$CD = V_{IL} MAX, T/\overline{R} = 2.0V$				2.0			Volts
VIL	Logical "0" Input Voltage		$\frac{CD}{T/R} = V_{iL} MAX,$ $T/R = 2.0V$		COM'L		<u> </u>		0.8	_ Volts
V			00 1/ 1/1/		<u> </u>				0.7	<u> </u>
V _{OH}	Logical "1" Output Voltage	9	$\begin{array}{c} C\underline{D} = V_{IL} MAX, \\ T/\overline{R} = 0.8V \end{array} \qquad $			V _{CC} -1.15 2.7	V _{CC} -0.7		. Volts	
V _{OL}	Logical "0" Output Voltage		$C\underline{D} = V_{IL} MAX,$		l _{OL} = 8n		<u> </u>	3.95 0.3	0.4	–
			T/R = 0.8V	COMIL	I _{OL} = 16			0.35	0.4	Volts
los	Output Short Circuit Curre	ent	CD = V _{IL} MAX, T/R V _{CC} = MAX, Note 2	MAX, $T/\overline{R} = 0.8V$, $V_{O} = 0V$,			-10	-38	-75	mA
Iн	Logical "1" Input Current		$CD = V_{IL} MAX, T/\overline{R}$		= 2.7V			0.1		<u> </u>
4	Input Current at Maximum	Input Voltage	$CD = 2.0V, V_{CC} MA$				<u> </u>	0.1	80	μΑ
I _{IL}	Logical "0" Input Current		$CD = V_{IL} MAX, T/\overline{R}$					-70	1 	mA
V _C	Input Clamp Voltage		CD = 2.0V, I _{IN} = -					-0.7	-1.5	<u>μ</u> Α
IOD	Output/Input 3-State Curre		CD = 2.0V		V _O = 0.4	v	<u> </u>		-200	Volts
			CD = 2.0V		$V_0 = 4.0$				80	μA
			B PORT ((B ₀ -B ₇)			4	L		<u> </u>
V _{IH}	Logical "1" Input Voltage		CD = VIL MAX, T/R			—·	2.0			Volts
V _{IL}	Logical "0" Input Voltage	ogical "0" loput Voltage				COMIL			0.8	VUIS
,r			$T/R = V_{IL} MAX$			MIL	<u> </u>	├ <u></u> _	0.7	Volts
			$CD = V_{IL} MAX,$		I _{OH} = -().4mA	V _{CC} -1.15	V _{CC} -0.8		Volts
VOH Logical "1	Logical "1" Output Voltage	al "1" Output Voltage			юн =t	.0mA	2.7	3.9		
			T/R = 2.0V		I _{OH} = -1		2.4	3.6		
VOL	Logical "0" Output Voltage		$C\underline{D} = V_{ L} MAX, \qquad I_{OL} = 20 mA$				0.3	0.4	Volts	
			$T/\overline{R} = 2.0V$	$l_{OL} = 48 \text{mA}$			0.4	0.5		
los	Output Short Circuit Curren	nt	$CD = V_{IL} MAX, T/\overline{R} = 2.0V, V_O = 0V$ $V_{CC} = MAX, Note 2$				-25	-50	-150	mA
ш	Logical "1" Input Current		$CD = V_{IL} MAX, T/R$	= V _{IL} MAX,	$V_{1} = 2.7V$			0.1	80	μA
łı	Input Current at Maximum	Input Voltage	$CD = 2.0V, V_{CC} = N$						1	mA
IL	Logical "0" Input Current		$CD = V_{IL} MAX, T/R$				······	-70	-200	μA
v _c	Input Clamp Voltage		$CD = 2.0V, I_{IN} = -1$					-0.7	-1.5	Volts
ю	Output/Input 3-State Curren	nt	$CD = 2.0V$ $V_0 = 0.4V$		/			-200		
				$V_0 = 4$					200	μA
			CONTROL INPL	JTS CD, T	Ŕ					
V _{IH}	Logical "1" Input Voltage						2.0			Volts
Vil	Logical "0" Input Voltage					COMIL		·	0.8	
						MIL			0.7	Volts
н	Logical "1" Input Current		V _I = 2.7V			0.5	20	μA		
<u> </u>	Input Current at Maximum	Input Voltage	$V_{CC} = MAX, V_I = V_C$	C MAX					1.0	mA
n.	Logical "0" Input Current		$V_1 = 0.4V$ T/\overline{R} CD			-0.1	-0.25	mA		
/c	Input Clamp Voltage		$i_{\rm IN} = -12mA$	·				-0.1	-0.25	
			POWER SUPPLY		π	[-0.8		Volts
1		A-70/0000	$CD = V_{I} = 2.0V, V_{CC}$			r	<u> </u>	70		
	Power Supply Ourset	Am73/8303	$CD = 0.4V, V_{INA} = T$	-	. —		70	100	mA	
CC	Power Supply Current	Am73/8304B				 		100	150	
			$CD = 2.0V, V_{I} = 0.4V, V_{CC} = MAX$ $CD = V_{VV} = 0.4V, T\overline{D} = 2.0V, V_{V} = 0.4V$				<u> </u>	70	100	mA
			$CD = V_{INA} = 0.4V, T/\overline{R} = 2.0V, V_{CC} = MAX$				90	140		

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25^{\circ}C$)

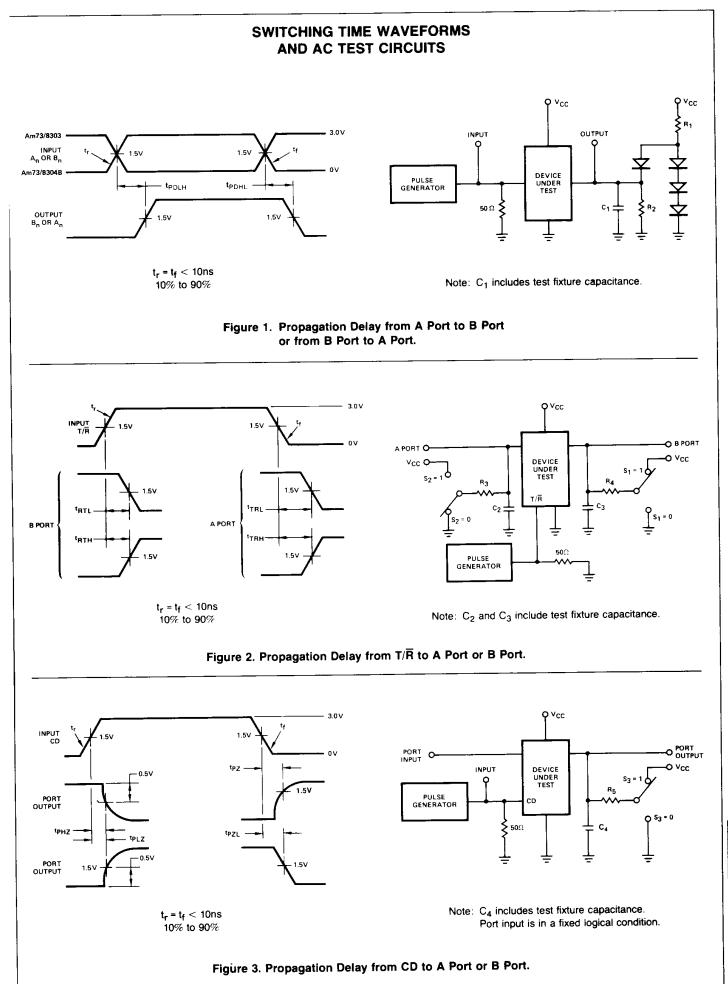
arameters	Description	Test Conditions	Typ (Note 1)	Max	Units
	A PORT DATA/N	IODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	$\begin{array}{l} \text{CD} = 0.4\text{V}, \ \text{T}\overline{\text{R}} = 0.4\text{V} \ \text{(Figure 1)} \\ \text{R}_1 = 1\text{k}, \ \text{R}_2 = 5\text{k}, \ \text{C}_1 = 30\text{pF} \end{array}$	8	12	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	$CD = 0.4V, T/\overline{R} = 0.4V$ (Figure 1) $R_1 = 1k, R_2 = 5k, C_1 = 30pF$	11	16	ns
^t PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7=2.4V,\ T/\overline{R}=0.4V$ (Figure 3) $S_3=$ 1, $R_5=$ 1k, $C_4=$ 15pF	10	15	ns
^t PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B ₀ to B ₇ = 0.4V, T/\overline{R} = 0.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 15pF	8	15	ns
^t PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	20	30	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	30	ns
	B PORT DATA/	NODE SPECIFICATIONS			
^t PDHLB	Propagation Delay to a Logical "0" from	$\frac{\text{CD} = 0.4\text{V}, \text{T}/\overline{\text{R}} = 2.4\text{V} \text{ (Figure 1)}}{\text{R}_1 = 100\Omega, \text{R}_2 = 1\text{k}, \text{C}_1 = 300\text{pF}}$	12	18	ns
	A Port to B Port	$R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$	7	12	ns
Propagation Delay to a Logical "1" from		$\frac{\text{CD} = 0.4\text{V, T}/\overline{\text{R}} = 2.4\text{V (Figure 1)}}{\text{R}_1 = 100\Omega, \text{R}_2 = 1\text{k, C}_1 = 300\text{pF}}$	15	20	ns
1 Denio	A Port to B Port	$R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$	9	14	ns
^t PLZB	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A ₀ to A ₇ = 2.4V, T/ \overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 15pF	13	18	ns
^t PHZB	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
Propagation Delay from 3-State to a Logical "0" fro		$\begin{tabular}{ c c c c c } \hline A_0 \mbox{ to } A_7 = 2.4 \mbox{ V, } T/\overline{R} = 2.4 \mbox{ V (Figure 3)} \\ \hline S_3 = 1, R_5 = 100 \Omega, C_4 = 300 \mbox{ pF} \end{tabular}$	25	35	ns
	CD to B Port	$S_3 = 1, R_5 = 667\Omega, C_4 = 45pF$	16	25	ns
Propagation Delay from 3-State to a Logical "1" from		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	22	35	ns
	CD to B Port	$S_3 = 0, R_5 = 5k, C_4 = 45pF$	14	25	ns
	TRANSMIT RECEIV	/E MODE SPECIFICATIONS			
^t TRL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/ \vec{R} to A Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \text{ (Figure 2)} \\ \text{S}_1 = 1, \text{R}_4 = 100 \Omega, \text{C}_3 = 5 \text{pF} \\ \text{S}_2 = 1, \text{R}_3 = 1 \text{k}, \text{C}_2 = 30 \text{pF} \end{array}$	23	35	ns
^t trih	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{ (Figure 2)} \\ \text{S}_1 = 0, \mbox{ R}_4 = 100 \Omega, \mbox{ C}_3 = 5 \mbox{ pF} \\ \text{S}_2 = 0, \mbox{ R}_3 = 5 \mbox{ k}, \mbox{ C}_2 = 30 \mbox{ pF} \end{array}$	22	35	ns
^t RTL	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{ (Figure 2)} \\ \text{S}_1 = 1, \mbox{ R}_4 = 100 \Omega, \mbox{ C}_3 = 300 \mbox{pF} \\ \text{S}_2 = 1, \mbox{ R}_3 = 300 \Omega, \mbox{ C}_2 = 5 \mbox{pF} \end{array}$	26	35	ns
^t RTH	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	$\begin{array}{l} \text{CD}=0.4\text{V} \;(\text{Figure 2}) \\ \text{S}_1=0, \text{R}_4=1\text{k}, \text{C}_3=300\text{pF} \\ \text{S}_2=0, \text{R}_3=300\Omega, \text{C}_2=5\text{pF} \end{array}$	27	35	ns

Notes: 1. All typical values given are for $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. Only one output at a time should be shorted.

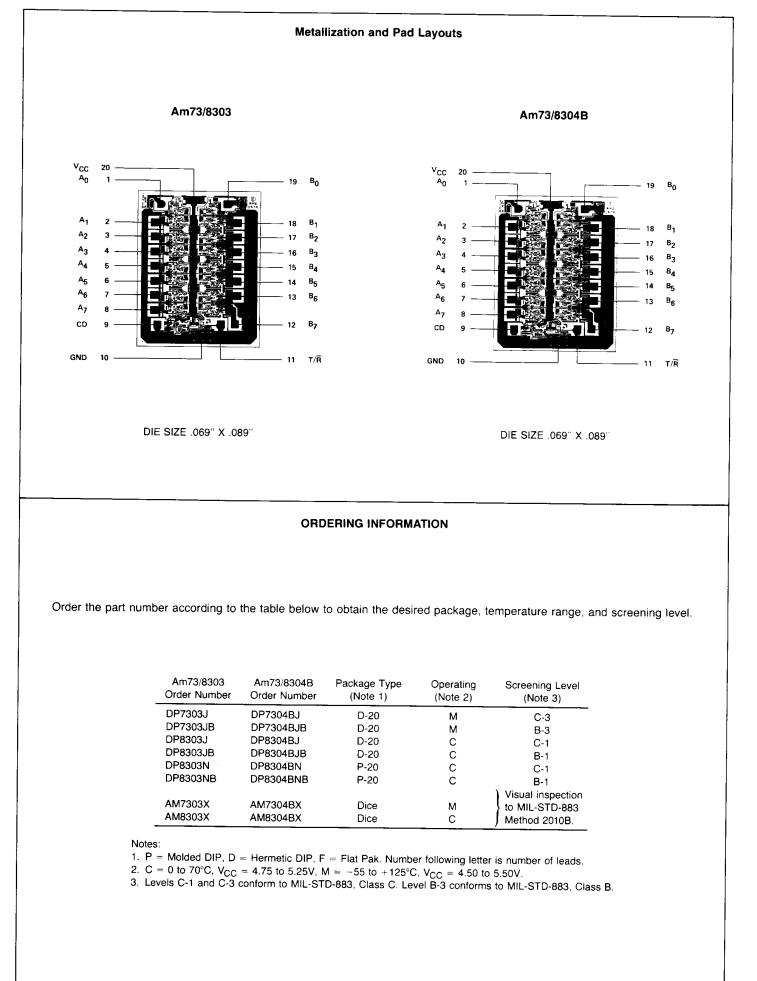
FL	INCTION TABLE		
Inputs		Condition	8
Chip Disable	0	0	1
Transmit/Receive	0	1	х
A Port	Out	ln	HI-Z
B Port	In	Out	HI-Z

12

AC ELECTRICAL	CHARACTERISTICS	$(V_{CC} = 5.0V, T_{e})$	∖ = 25°C)
---------------	-----------------	--------------------------	-----------


s Description	Test Conditions	Typ (Note 1)	Max	Unite
A PORT DATA/	MODE SPECIFICATIONS			<u> </u>
Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/ \overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	14	18	ns
Propagation Delay to a Logical "1" from B Port to A Port	$CD = 0.4V, T/\overline{R} = 0.4V$ (Figure 1) $R_1 = 1k, R_2 = 5k, C_1 = 30pF$	13	18	ns
Propagation Delay from a Logical "0" to 3-State from CD to A Port	$B_0 \text{ to } B_7 = 0.4V, T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1, R_5 = 1k, C_4 = 15pF$	11	15	ns
Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	27	35	ns
Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	25	ns
B PORT DATA/	MODE SPECIFICATIONS	L		L
Propagation Delay to a Logical "0" from	CD = 0.4V, T/R = 2.4V (Figure 1)	18	23	ns
		11	18	ns
Propagation Delay to a Logical "1" from A Port to B Port	$ \begin{array}{c} \text{CD} = \ 0.4 \text{V}, \ \text{T/R} = 2.4 \text{V} \ \text{(Figure 1)} \\ \hline \text{R}_1 = \ 100 \Omega, \ \text{R}_2 = \ 1 \text{k}, \ \text{C}_1 = \ 300 \text{pF} \end{array} $	16	23	ns
	$R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$	11	18	ns
Propagation Delay from a Logical "0" to 3-State from CD to B Port	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 15pF	13	18	ns
Propagation Delay from a Logical "1" to 3-State from CD to B Port	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 15pF	8	15	ns
Propagation Delay from 3-State to a Logical "0" from CD to B Port		32	40	ns
		16	22	ns
Propagation Delay from 3-State to a Logical "1" from CD to B Port	$S_3 = 0, R_5 = 1k, C_4 = 300pF$	26	35	ns
		14	22	ns
TRANSMIT RECEIV	E MODE SPECIFICATIONS			
Propagation Delay from Transmit Mode to Receive a Logical "0", T/ \overline{R} to A Port	CD = 0.4V (Figure 2) $S_1 = 0, R_4 = 100\Omega, C_3 = 5pF$ $S_2 = 1, R_3 = 1k, C_2 = 30pF$	30	40	ns
Propagation Delay from Transmit Mode to Receive a Logical "1", T/\overline{R} to A Port	CD = 0.4V (Figure 2) $S_1 = 1, R_4 = 100\Omega, C_3 = 5pF$ $S_2 = 0, R_3 = 5k, C_2 = 30pF$	28	40	ns
Propagation Delay from Receive Mode to Transmit a Logical "0", T/ \overline{R} to B Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{ (Figure 2)} \\ \text{S}_1 = 1, \mbox{ R}_4 = 100 \Omega, \mbox{ C}_3 = 300 \mbox{pF} \\ \text{S}_2 = 0, \mbox{ R}_3 = 300 \Omega, \mbox{ C}_2 = 5 \mbox{pF} \end{array}$	31	40	ns
Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 0, R_4 = 1k, C_3 = 300pF$ $S_2 = 1, R_3 = 300\Omega, C_2 = 5pF$	28	40	ns
	A PORT DATA/ Propagation Delay to a Logical "0" from B Port to A Port Propagation Delay from a Logical "1" from CD to A Port Propagation Delay from a Logical "1" to 3-State from CD to A Port Propagation Delay from a Logical "1" to 3-State from CD to A Port Propagation Delay from 3-State to a Logical "0" from CD to A Port Propagation Delay from 3-State to a Logical "1" from CD to A Port Propagation Delay from 3-State to a Logical "1" from A Port to B Port Propagation Delay to a Logical "0" from A Port to B Port Propagation Delay to a Logical "1" from A Port to B Port Propagation Delay from a Logical "0" to 3-State from CD to B Port Propagation Delay from a Logical "1" to 3-State from CD to B Port Propagation Delay from 3-State to a Logical "0" from CD to B Port Propagation Delay from 3-State to a Logical "0" from CD to B Port Propagation Delay from 3-State to a Logical "1" from CD to B Port Propagation Delay from 3-State to a Logical "1" from CD to B Port Propagation Delay from 7-ransmit Mode to Receive a Logical "0", T/R to A Port Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port Propagation Delay from Transmit Mode to Transmit a	A PORT DATA/MODE SPECIFICATIONSPropagation Delay to a Logical "0" from B Port to A PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 11k, R2 = 5k, C1 = 30pFPropagation Delay to a Logical "1" from CD to A PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 11k, R2 = 5k, C1 = 30pFPropagation Delay from a Logical "0" to 3-State from CD to A PortBy to to A PortPropagation Delay from a Logical "1" to 3-State from CD to A PortBy to By = 0.4V, T/R = 0.4V (Figure 3) S3 = 1, R5 = 1k, C4 = 15pFPropagation Delay from 3-State to a Logical "1" from CD to A PortBy to By = 0.4V, T/R = 0.4V (Figure 3) S3 = 1, R5 = 1k, C4 = 30pFPropagation Delay from 3-State to a Logical "1" from CD to A PortBy to By = 0.4V, T/R = 0.4V (Figure 3) S3 = 1, R5 = 1k, C4 = 30pFPropagation Delay from 3-State to a Logical "1" from A Port to B PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 6670, R2 = 5k, C1 = 45pFPropagation Delay to a Logical "0" from A Port to B PortCD = 0.4V, T/R = 2.4V (Figure 1) R1 = 6670, R2 = 5k, C1 = 45pFPropagation Delay from a Logical "0" to 3-State from CD to B PortAo to Ar = 0.4V, T/R = 2.4V (Figure 3) S3 = 1, R5 = 1k, C4 = 15pFPropagation Delay from a Logical "1" to 3-State from CD to B PortAo to Ar = 0.4V, T/R = 2.4V (Figure 3) S3 = 1, R5 = 1k, C4 = 300pFPropagation Delay from 3-State to a Logical "1" from CD to B PortCD = 0.4V, T/R = 2.4V (Figure 3) S3 = 1, R5 = 6670, R2 = 300pFPropagation Delay from 3-State to a Logical "1" from CD to B PortAo to Ar = 2.4V, T/R = 2.4V (Figure 3) S3 = 1, R5 = 6670, C4 = 350pFPropagation Delay from 3-State to a Logical "1" from CD to B PortCD =	SDescriptionTest Conditions(Note 1)A PORT DATA/MODE SPECIFICATIONSPropagation Delay to a Logical "0" from $CD = 0.4V, T/R = 0.4V$ (Figure 1)14B Port to A PortR1 = 1k, R2 = 5k, C1 = 30pF14Propagation Delay to a Logical "1" from B_0 to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)13Propagation Delay from a Logical "1" to 3-State fromBo to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)8Propagation Delay from a Logical "1" to 3-State fromBo to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)8Propagation Delay from 3-State to a Logical "1" fromBo to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)27Propagation Delay from 3-State to a Logical "1" fromBo to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)27Propagation Delay from 3-State to a Logical "1" fromBo to $B_2 = 0.4V, T/R = 0.4V$ (Figure 3)19CD to A PortB PORT DATA/MODE SPECIFICATIONSPropagation Delay from 3-State to a Logical "1" fromR0 to $B_2 = 2.4V, T/R = 0.4V$ (Figure 1)R + not to B PortR + not to B PortR + not to B PortPropagation Delay to a Logical "0" fromCD = 0.4V, T/R = 2.4V (Figure 1)R + not to B PortR + not to B PortR + not to B PortPropagation Delay from a Logical "1" to 3-State fromCD = 0.4V, T/R = 2.4V (Figure 3)S = 0, R_2 = 1k, C_4 = 15pF11Propagation Delay from a Logical "1" to 3-State fromA to A P = 2.4V, T/R = 2.4V (Figure 3)S = 0, R_2 = 1k, C_4 = 15pF11Propagation Delay from a Logical "1" to 3-State fromA to A P = 2.4V, T/R = 2.4V (Figure 3)S = 0, R_3 = 1k	A PORT DATA/MODE SPECIFICATIONSPropagation Delay to a Logical "0" from B Port to A PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 1K, R2 = 5K, C1 = 300F1418Propagation Delay to a Logical "1" from B Port to A PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 1K, R2 = 5K, C1 = 300F1318Propagation Delay from a Logical "1" to 3-State from CD to A PortBy to 8 = 0.4V, T/R = 0.4V (Figure 3) S3 = 1, R5 = 1K, C4 = 15pF1115Propagation Delay from a Logical "1" to 3-State from CD to A PortBy to 8 = 2.4V, T/R = 0.4V (Figure 3) S3 = 0, R6 = 1K, C4 = 15pF815Propagation Delay from 3-State to a Logical "0" from A Port to B PortBy to 8 = 2.4V, T/R = 0.4V (Figure 3) S3 = 0, R6 = 5K, C4 = 300F1925Propagation Delay from 3-State to a Logical "0" from A Port to B PortCD = 0.4V, T/R = 0.4V (Figure 1) R1 = 1000, R2 = 1K, C1 = 300F1823Propagation Delay to a Logical "0" from A Port to B PortCD = 0.4V, T/R = 2.4V (Figure 1) R1 = 1000, R2 = 1K, C1 = 300F1823Propagation Delay from a Logical "0" from A Port to B PortCD = 0.4V, T/R = 2.4V (Figure 1) R1 = 6670, R2 = 5K, C1 = 450F1118Propagation Delay from a Logical "1" from CD to B PortCD = 0.4V, T/R = 2.4V (Figure 3) R1 = 6670, R2 = 5K, C1 = 450F1118Propagation Delay from a Logical "1" from CD to B PortAy to A = 2.4V, T/R = 2.4V (Figure 3) R1 = 6670, R2 = 5K, C1 = 450F1118Propagation Delay from a Logical "1" from CD to B PortAy to A = 2.4V, T/R = 2.4V (Figure 3) R3 = 1, R5 = 10.00, C4 = 450F1118Prop

Notes: 1. All typical values given are for V_{CC} = 5.0V and T_{A} = 25°C. 2. Only one output at a time should be shorted.


DEFINITION OF FUNCTIONAL TERMS Ag-A7 A port inputs/outputs are receiver output drivers when T/\overline{R}

- is LOW and are transmit inputs when T/\overline{R} is HIGH.
- B_0-B_7 B port inputs/outputs are transmit output drivers when T/\overline{R} is HIGH and receiver inputs when T/\overline{R} is LOW.
- Chip Disable forces all output drivers into 3-state when CD HIGH (same function as active LOW chip select, CS).

T/R Transmit/Receive direction control determines whether A port or B port drivers are in 3-state. With T/R HIGH A port is the input and B port is the output. With T/R LOW A port is the output and B port is the input.

Am73/8303/8304B

