PCF2128

Integrated RTC / TCXO / Crystal

Rev. 00.03 — 4 June 2007

Preliminary [short] data sheet

General description

The PCF2128 is a ready to run CMOS real time clock/calendar with an integrated temperature compensated crystal oscillator (TCXO). In timekeeping applications the high accuracy of the PCF2128 allows it to be used as a replacement for costly and higher powered long wave receivers or GPS receivers. A programmable battery switch-over circuit enables an uninterruptible power supply and consequently continuous timekeeping. The PCF2128 additionally features 512 bytes of general purpose RAM, a programmable watchdog, a time stamp facility and a voltage monitoring facility. Programming is possible using either an SPI or an I²C-bus interface.

2. **Features**

- Integration of a 32.768 kHz quartz crystal in the same package as the RTC
- temperature compensated crystal oscillator (TCXO) with integrated capacitors.
- accuracy: typically 3 ppm from-20 °C to +70 °C, typically 5 ppm from -40 °C to +85 °C
- provides year, month, day, weekday, hours, minutes and seconds
- programmable alarm function with interrupt capability
- programmable countdown timer with interrupt capability
- programmable watchdog timer with interrupt and reset capability
- timestamp function with interrupt capability
- battery backup input pin and switch-over circuitry
- extra power fail detection with input and lock operating voltage: <tbd> to 5.5 V output pins
- battery low detection
- battery backed output voltage pin

- 512 bytes of general purpose static RAM
- 1 second or 1 minute interrupt output
- oscillator stop detection
- two line bi-directional 1 MHz fast mode plus I2C interface
- timestamp input
- power-on reset
- 3 line SPI interface with separate data input and output (maximum speed 6.5 Mbits/s)
- programmable square wave output pin
- I²C-bus slave address: read A3H and write A2H
- low backup current; typical 0.95 μA at V_{DD} = 3.0 V and T_{amb} = 25 °C
- selectable I²C and SPI interface

Real time clock / calendar

3. Quick reference data

Table 1. Quick reference data

 V_{DD} = 1.8 to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		1.8	-	5.5	V
I_{DD}	supply current	interface active				
		f _{SCL} = 6.5 MHz	-	-	800	μΑ
		f _{SCL} = 1.0 MHz	-	-	200	μΑ
		interface inactive (f _{SCL} = 0 kHz) timekeeping and power management configuration, CLKOUT disabled;				
		$V_{DD} = 5.0 \text{ V}$	-	2700	-	nA
		$V_{DD} = 3.0 \text{ V}$	-	2100	-	nA
		interface inactive (f _{SCL} = 0 kHz) timekeeping configuration; T _{amb} = +25 °C				
		$V_{DD} = 5.0 \text{ V}$	-	850	-	nA
		$V_{DD} = 3.0 \text{ V}$	-	450	-	nA
f _{SCL}	SCL clock frequency		0	-	6.5	MHz
Δf / f	frequency stability (f _o = 32.768 kHz)	$T_{amb} = -40 \text{ to } +85 ^{\circ}\text{C}$	-	±5	-	ppm
		$T_{amb} = -20 \text{ to } +70 ^{\circ}\text{C}$	-	±3	±5	ppm
T _{amb}	ambient temperature	operating	-40	-	+85	°C
T _{stg}	storage temperature		-65	-	+150	°C

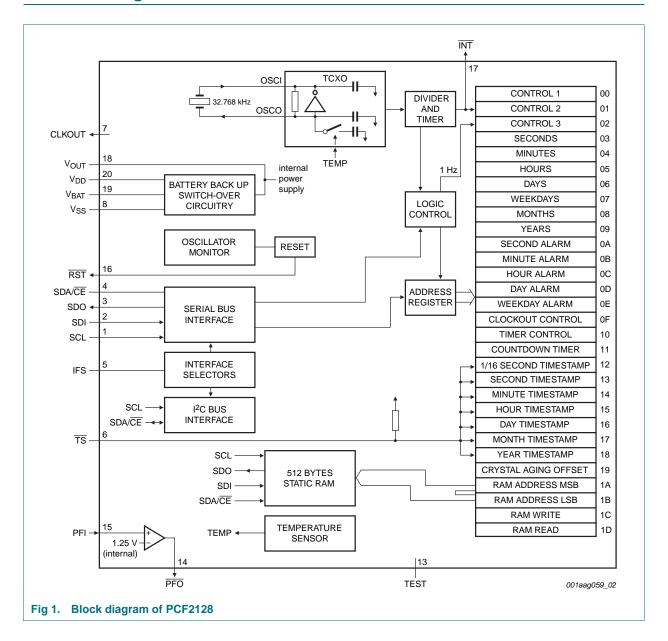

4. Ordering information

Table 2: Ordering information

Type number	•	Package				
	mark	Name	Description	Version		
PCF2128T / 1	PCF2128T	SO20	plastic thin shrink small outline package; 20 leads; body width 4.4mm	SOT163-1		

Real time clock / calendar

5. Block diagram

Real time clock / calendar

6. Pinning information

6.1 Pinning

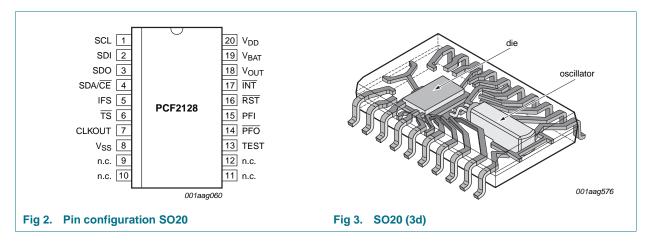


Table 3: Pin description PCF2128

Symbol	Pin	Description	Symbol	Pin	Description
SCL	1	combined serial clock input for both I^2C and SPI interface. May float when \overline{CE} inactive.	V_{DD}	20	positive supply voltage
SDI	2	serial data input for SPI interface. May float when $\overline{\text{CE}}$ inactive.	V_{BAT}	19	battery backup supply voltage
SDO	3	serial data output for SPI interface, push-pull	V _{OUT}	18	battery backed output voltage
SDA / CE	4	combined serial data input / output for the I ² C interface and chip enable input (active LOW) for the SPI interface.	ĪNT	17	interrupt output (open-drain; active LOW)
IFS	5	 connect to ground to select the SPI interface connect to V_{OUT} (pin 18) to select the I²C interface 	RST	16	reset output (open drain; active LOW)
TS	6	timestamp input (active LOW) with 200 $\mbox{k}\Omega$ internal pull-up resistor	PFI	15	power fail input
CLKOUT	7	clock output (open drain)	PFO	14	power fail output (open drain; active LOW)
V_{SS}	8	ground	TEST	13	Do not connect and do not use as feed through.
nc	9	Do not connect and do not use as feed through.	nc	12	Do not connect and do not use as feed through.
nc	10	Do not connect and do not use as feed through.	nc	11	Do not connect and do not use as feed through.

PCF2128_SDS_0 © NXP B.V. 2007. All rights reserved.

Real time clock / calendar

7. Limiting values

Table 4: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).

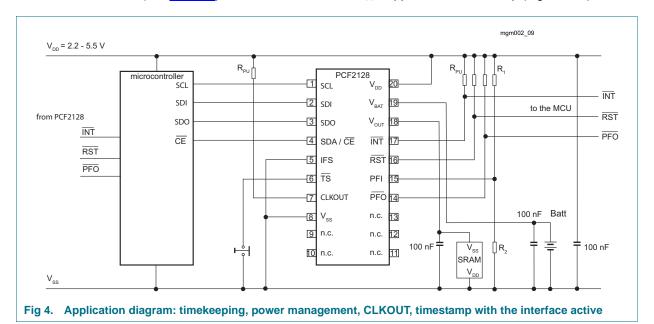
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.5	V
V_{BAT}	backup battery supply voltage		-0.5	+6.5	V
I_{DD}	supply current		-50	+50	mA
VI	input voltage		-0.5	+6.5	V
Vo	output voltage		-0.5	+6.5	V
I _I	input current		-10	+10	mA
Io	output current		-10	+10	mA
P _{tot}	total power dissipation		-	300	mW
T _{amb}	ambient temperature		-40	+85	°C
T_{stg}	storage temperature		-65	+150	°C

7.1 ESD values

- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 2000 V CDM per JESD22-C101.
- Latch-up testing is done to JEDEC standard JESD78 which exceeds 100 mA.

8. Application information

- The PCF2128 is a ready to run real time clock; no external quartz is required.
- You can set different configurations in your application depending on the PCF2128 functions you want to use.
- The integration of the quartz crystal in the same package as the RTC has the following advantages:
 - elimination of crystal procurement issues
 - elimination of RTC frequency tuning
 - no more crystal PCB layout issues.
- You can select the SPI or I²C-bus interface using the IFS pin.
- By connecting a battery to V_{BAT} an uninterruptible power supply is guaranteed.
- You can use the battery backed voltage V_{OUT} to supply an external RAM to retain RAM data in battery backup mode.
- You can connect PFI through an external voltage divider to V_{DD} to allow extra power fail detection. If not used, connect PFI to V_{SS}.
- You can connect the timestamp input pin \overline{TS} to a push button for tamper detection.


PCF2128_SDS_0 © NXP B.V. 2007. All rights reserved.

Real time clock / calendar

8.1 Application example

8.1.1 Timekeeping, power management, CLKOUT, timestamp and interface active

PCF2128 used for timekeeping, power management, CLKOUT and timestamp functions (see <u>Figure 4</u>). The interface is active. V_{out} supplies an external chip (e.g. SRAM).

Real time clock / calendar

9. Revision history

Table 5. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCF2128SDS_00.03	<tbd></tbd>	Preliminary		PCF2128SDS_00.02
Modifications:	 Added <u>Figure</u> 	<u>e 3</u> .		
PCF2128SDS_00.02	20070604	Preliminary		PCF2128SDS_00.01
Modifications:	 Datasheet te 	xt ammended. Section 8.1 corre	ected.	
PCF2128SDS_00.01	20070509	Preliminary short data sheet		-

Real time clock / calendar

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

11. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PCF2128_SDS_0 © NXP B.V. 2007. All rights reserved.

Real time clock / calendar

Notes

PCF2128 NXP Semiconductors

Real time clock / calendar

12. Contents

1	General description 1
2	Features
3	Quick reference data 2
4	Ordering information 2
5	Block diagram 3
6	Pinning information 4
6.1	Pinning 4
7	Limiting values 5
7.1	ESD values 5
8	Application information 5
8.1	Application example 6
8.1.1	Timekeeping, power management, CLKOUT,
	timestamp and interface active 6
9	Revision history 7
10	Legal information 8
10.1	Data sheet status 8
10.2	Definitions 8
10.3	Disclaimers
10.4	Trademarks 8
11	Contact information 8
12	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 June 2007 Document identifier: PCF2128_SDS_0

