## Features

- Multichip Module Containing Field Programmable System Level Integrated Circuit (FPSLIC ${ }^{\text {TM }}$ ) and Secure Configuration EEPROM Memory
- 512 Kbits to 1 Mbit of Configuration Memory with Security Protection and In-System Programming (ISP)
- Field Programmable System Level Integrated Circuit (FPSLIC)
- AT40K SRAM-based FPGA with Embedded High-performance RISC AVR ${ }^{\circledR}$ Core and Extensive Data and Instruction SRAM
- 5,000 to $\mathbf{4 0 , 0 0 0}$ Gates of Patented SRAM-based AT40K FPGA with FreeRAM ${ }^{\text {™ }}$
- 2-18.4 Kbits of Distributed Single/Dual Port FPGA User SRAM
- High-performance DSP Optimized FPGA Core Cell
- Dynamically Reconfigurable In-System - FPGA Configuration Access Available On-chip from AVR Microcontroller Core to Support Cache Logic ${ }^{\circledR}$ Designs
- Very Low Static and Dynamic Power Consumption - Ideal for Portable and Handheld Applications
- Patented AVR Enhanced RISC Architecture
- 120+ Powerful Instructions - Most Single Clock Cycle Execution
- High-performance Hardware Multiplier for DSP-based Systems
- Approaching 1 MIPS per MHz Performance
- C Code Optimized Architecture with $32 \times 8$ General-purpose Internal Registers
- Low-power Idle, Power-save, and Power-down Modes
- $\mathbf{1 0 0} \mu \mathrm{A}$ Standby and Typical 2-3 mA per MHz Active
- Up to 36 Kbytes of Dynamically Allocated Instruction and Data SRAM
- Up to 16 Kbytes x 16 Internal 15 ns Instructions SRAM
- Up to 16 Kbytes x 8 Internal 15 ns Data SRAM
- JTAG (IEEE Std. 1149.1 Compliant) Interface
- Extensive On-chip Debugging Support
- Limited Boundary-scan Capabilities According to the JTAG Standards (AVR Ports)
- AVR Fixed Peripherals
- Industry-standard 2-wire Serial Interface
- Two Programmable Serial UARTs
- Two 8-bit Timer/Counters with Separate Prescaler and PWM
- One 16-bit Timer/Counter with Separate Prescaler, Compare, Capture Modes and Dual 8-, 9- or 10-bit PWM
- Support for FPGA Custom Peripherals
- AVR Peripheral Control - Up to 16 Decoded AVR Address Lines Directly Accessible to FPGA
- FPGA Macro Library of Custom Peripherals
- Up to 16 FPGA Supplied Internal Interrupts to AVR
- Up to Four External Interrupts to AVR
- 8 Global FPGA Clocks
- Two FPGA Clocks Driven from AVR Logic
- FPGA Global Clock Access Available from FPGA Core
- Multiple Oscillator Circuits
- Programmable Watchdog Timer with On-chip Oscillator
- Oscillator to AVR Internal Clock Circuit
- Software-selectable Clock Frequency
- Oscillator to Timer/Counter for Real-time Clock
- $\mathrm{V}_{\mathrm{cc}}$ : 3.0V-3.6V
- 5 V Tolerant I/O
- 3.3V 33 MHz PCI Compliant FPGA I/O
- 20 mA Sink/Source High-performance I/O Structures
- All FPGA I/O Individually Programmable
- High-performance, Low-power $0.35 \mu$ CMOS Five-layer Metal Process
- State-of-the-art Integrated PC-based Software Suite including Co-verification


Description
The AT94S Series (Secure FPSLIC family) shown in Table 1 is a combination of the popular Atmel AT40K Series SRAM FPGAs, the AT17 Series Configuration Memories and the high-performance Atmel AVR 8-bit RISC microcontroller with standard peripherals. Extensive data and instruction SRAM as well as device control and management logic are included in this multi-chip module (MCM).
The embedded AT40K FPGA core is a fully 3.3 V PCI-compliant, SRAM-based FPGA with distributed 10 ns programmable synchronous/asynchronous, dual-port/single-port SRAM, 8 global clocks, Cache Logic ability (partially or fully reconfigurable without loss of data) and 5,000 to 40,000 usable gates.

Table 1. The AT94S Series Family

| Device | AT94S05AL | AT94S10AL | AT94S40AL |
| :--- | :---: | :---: | :---: |
| Configuration Memory Size | 1 Mbit | 1 Mbit | 1 Mbit |
| FPGA Gates | 5 K | 10 K | 40 K |
| FPGA Core Cells | 256 | 576 | 2304 |
| FPGA SRAM Bits | 2048 | 4096 | 18432 |
| FPGA Registers (Total) | 436 | 846 | 2862 |
| Maximum FPGA User I/O | 95 | 143 | 287 |
| AVR Programmable I/O Lines | 8 | 16 | 16 |
| Program SRAM Bytes | $4 \mathrm{~K}-16 \mathrm{~K}$ | $20 \mathrm{~K}-32 \mathrm{~K}$ | $20 \mathrm{~K}-32 \mathrm{~K}$ |
| Data SRAM Bytes | $4 \mathrm{~K}-16 \mathrm{~K}$ | $4 \mathrm{~K}-16 \mathrm{~K}$ | $4 \mathrm{~K}-16 \mathrm{~K}$ |
| Hardware Multiplier (8-bit) | Yes | Yes | Yes |
| 2-wire Serial Interface | Yes | Yes | Yes |
| UARTs | 2 | 2 | 2 |
| Watchdog Timer | Yes | Yes | Yes |
| Timer/Counters | 3 | 3 | 3 |
| Real-time Clock | Yes | Yes | Yes |
| JTAG ICE | Yes | Yes | Yes |
| Typical AVR | 19 MIPS | 19 MIPS | 19 MIPS |
| Throughput | 30 MIPS | 30 MIPS | 30 MIPS |
| Operating Voltage | $3.0-3.6 \mathrm{~V}$ | $3.0-3.6 \mathrm{~V}$ | $3.0-3.6 \mathrm{~V}$ |

Figure 1. AT94S Architecture


The embedded AVR core achieves throughputs approaching 1 MIPS per MHz by executing powerful instructions in a single-clock-cycle, and allows system designers to optimize power consumption versus processing speed. The AVR core is based on an enhanced RISC architecture that combines a rich instruction set with 32 general-purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code-efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers at the same clock frequency. The AVR executes out of on-chip SRAM. Both the FPGA configuration SRAM and AVR instruction code SRAM are automatically loaded at system power-up using Atmel's in-system programmable AT17 Series EEPROM configuration memories, which are part of the AT94S Multi-chip Module (MCM).
State-of-the-art FPSLIC design tools, System Designer ${ }^{\text {rw }}$, were developed in conjunction with the FPSLIC architecture to help reduce overall time-to-market by integrating microcontroller development and debugging, FPGA development, place and route, and complete system co-verification in one easy-to-use software tool.

## Internal Architecture

## FPSLIC and Configurator Interface

For details of the AT94S Secure FPSLIC architecture, please refer to the AT94K FPSLIC datasheet and the AT17 Series Configuration Memory datasheet, available on the Atmel web site at http://www.atmel.com. This document only describes the differences between the AT94S Secure FPSLIC and the AT94K FPSLIC.

- Fully In-System Programmable and Re-programmable
- When Security Bit Set:
- Data Verification Disabled
- Data Transfer to FPSLIC not Externally Visible
- Secured EEPROM Will Only Boot the FPSLIC Device or Respond to a Chip Erase
- When Security Bit Cleared:
- Entire Chip Erase Performed
- In-System Programming Enabled
- Data Verification Enabled

External Data pins allow for In-System Programming of the device and setting of the EEPROM-based security bit. When the security bit is set (active) this programming connection will only respond to a device erase command. Data cannot be read out of the external programming/data pins when the security bit is set. The part can be re-programmed, but only after first being erased.

## Programming and Configuration Timing Characteristics

Atmel's Configurator Programming Software (CPS), available from the Atmel web site (http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3191), creates the programming algorithm for the embedded configurator; however, if you are planning to write your own software or use other means to program the embedded configurator, the section below includes the algorithm and other details.

The FPSLIC Configurator

The FPSLIC Configurator is a serial EEPROM memory which is used to load programmable devices. This document describes the features needed to program the Configurator from within its programming mode (i.e., when SER_EN is driven Low).

Reference schematics are supplied for ISP applications.

Serial Bus Overview

The serial bus is a two-wire bus; one wire (cSCK) functions as a clock and is provided by the programmer, the second wire (CSDA) is a bi-directional signal and is used to provide data and control information.

Information is transmitted on the serial bus in messages. Each MESSAGE is preceded by a Start Condition and ends with a Stop Condition. The message consists of an integer number of bytes, each byte consisting of 8 bits of data, followed by a ninth Acknowledge Bit. This Acknowledge Bit is provided by the recipient of the transmitted byte. This is possible because devices may only drive the cSDA line Low. The system must provide a small pull-up current ( $1 \mathrm{k} \Omega$ equivalent) for the cSDA line.

The MESSAGE FORMAT for read and write instructions consists of the bytes shown in "Bit Format" on page 5.
While writing, the programmer is responsible for issuing the instruction and data. While reading, the programmer issues the instruction and acknowledges the data from the Configurator as necessary.

## AT94S Secure Family

## Bit Format

## Start and Stop

Conditions

## Acknowledge Bit

Again, the Acknowledge Bit is asserted on the cSDA line by the receiving device on a byte-by-byte basis.

The factory blanks devices to all zeros before shipping. The array cannot otherwise be "initialized" except by explicitly writing a known value to each location using the serial protocol described herein.

Data on the cSDA pin may change only during the cSCK Low time; whereas Start and Stop Conditions are identified as transitions during the cSCK High time.

## Write Instruction Message Format



Current Address Read (Extended to Sequential Read) Instruction Message Format


The Start Condition is indicated by a high-to-low transition of the cSDA line when the cSCK line is High. Similarly, the Stop Condition is generated by a low-to-high transition of the cSDA line when the cSCK line is High, as shown in Figure 2.
The Start Condition will return the device to the state where it is waiting for a Device Address (its normal quiescent mode).

The Stop Condition initiates an internally timed write signal whose maximum duration is $\mathrm{t}_{\mathrm{WR}}$ (refer to AC Characteristics table for actual value). During this time, the Configurator must remain in programming mode (i.e., $\overline{\text { SER_EN }}$ is driven Low). cSDA and cSCK lines are ignored until the cycle is completed. Since the write cycle typically completes in less than $t_{W R}$ seconds, we recommend the use of "polling" as described in later sections. Input levels to all other pins should be held constant until the write cycle has been completed.

The Acknowledge (ACK) Bit shown in Figure 2 is provided by the Configurator receiving the byte. The receiving Configurator can accept the byte by asserting a Low value on the cSDA line, or it can refuse the byte by asserting (allowing the signal to be externally pulled up to) a High value on the cSDA line. All bytes from accepted messages must be terminated by either an Acknowledge Bit or a Stop Condition. Following an ACK Bit, when the cSDA line is released during an exchange of control between the Configurator and the programmer, the cSDA line may be pulled High temporarily due to the open-collector output nature of the line. Control of the line must resume before the next rising edge of the clock.

## Bit Ordering Protocol

Device Address Byte

The most significant bit is the first bit of a byte transmitted on the cSDA line for the Device Address Byte and the EEPROM Address Bytes. It is followed by the lesser significant bits until the eighth bit, the least significant bit, is transmitted. However, for Data Bytes (both writing and reading), the first bit transmitted is the least significant bit. This protocol is shown in the diagrams below.

The contents of the Device Address Byte are shown below, along with the order in which the bits are clocked into the device.

The $\overline{\mathrm{CE}}$ pin cannot be used for device selection in programming mode (i.e., when SER_EN is drive Low).

Figure 2. Start and Stop Conditions


## Device Address Byte

| MSB |
| :--- |
| \begin{tabular}{\|c|c|c|c|c|c|c|c|}
\hline
\end{tabular} |
| 1 |

Where: $\mathrm{R} / \overline{\mathrm{W}}=1$ Read
= 0 Write

## EEPROM Address



The EEPROM Address consists of three bytes on the 1-Mbit part. Each Address Byte is followed by an Acknowledge Bit (provided by the Configurator). These bytes define the normal address space of the Configurator. The order in which each byte is clocked into the Configurator is also indicated. Unused bits in an Address Byte must be set to " 0 ". Exceptions to this are when reading Device and Manufacturer Codes.

Programming Summary:
Write to Whole Device


Notes: 1. The 1-Mbit part requires three EEPROM address bytes; all three bytes must be individually ACK'd by the EEPROM.
2. Data byte received/sent LSB to MSB.

## EEPROM Address is Defined as:

AT17LV010 $00000_{000} x_{9} \quad x_{8} x_{7} x_{6} x_{5} \quad x_{4} x_{3} x_{2} x_{1} \quad x_{0} 000 \quad 0000$

Note: where $X_{n} \ldots X_{0}$ is (PAGE_COUNT) $\mathrm{b} b$
T_BYTE
AT17LV010

T_PAGE
AT17LV010

START CONDITION


STOP CONDITION


## DATA BIT



## ACK BIT



## Programming Summary: <br> Read from Whole Device



Notes: 1. The 1-Mbit part requires three EEPROM address bytes; all three bytes must be individually ACK'd by the EEPROM.
2. Data byte received/sent LSB to MSB

## EEPROM Address is Defined as:

AT17LV010

TT_BYTE
AT17LV010
131072 \d

START CONDITION


SAMPLE DATA BIT


ACK BIT


## Data Byte

| LSB |
| :--- |
| \begin{tabular}{\|c|c|c|c|c|c|c|c|}
\hline
\end{tabular} |
| D0 |

The organization of the Data Byte is shown above. Note that in this case, the Data Byte is clocked into the device LSB first and MSB last.

## Writing

Writing to the normal address space takes place in pages. A page is 128 -bytes long in the 1-Mbit part. The page boundaries are, respectively, addresses where $A_{E 0}$ down to $A_{\text {EOS }}$ are all zero, and $A_{E 6}$ down to $A_{E 0}$ are all zero. Writing can start at any address within a page and the number of bytes written must be 128 for the 1-Mbit part. The first byte is written at the transmitted address. The address is incremented in the Configurator following the receipt of each Data Byte. Only the lower 7 bits of the address are incremented. Thus, after writing to the last byte address within the given page, the address will roll over to the first byte address of the same page. A Write Instruction consists of:

```
a Start Condition
a Device Address Byte with R/\overline{W}=0
    An Acknowledge Bit from the Configurator
MS Byte of the EEPROM Address
    An Acknowledge Bit from the Configurator
Next Byte of the EEPROM Address
    An Acknowledge Bit from the Configurator
LS Byte of EEPROM Address
    An Acknowledge Bit from the Configurator
One or more Data Bytes (sent to the
Configurator)
    Each followed by an Acknowledge Bit from the
    Configurator
a Stop Condition
```

WRITE POLLING: On receipt of the Stop Condition, the Configurator enters an inter-nally-timed write cycle. While the Configurator is busy with this write cycle, it will not acknowledge any transfers. The programmer can start the next page write by sending the Start Condition followed by the Device Address, in effect polling the Configurator. If this is not acknowledged, then the programmer should abandon the transfer without asserting a Stop Condition. The programmer can then repeatedly initiate a write instruction as above, until an acknowledge is received. When the Acknowledge Bit is received, the write instruction should continue by sending the first EEPROM Address Byte to the Configurator.
An alternative to write polling would be to wait a period of $t_{\text {WR }}$ before sending the next page of data or exiting the programming mode. All signals must be maintained during the entire write cycle.

Reading
Read instructions are initiated similarly to write instructions. However, with the $R / \bar{W}$ bit in the Device Address set to one. There are three variants of the read instruction: current address read, random read and sequential read.

For all reads, it is important to understand that the internal Data Byte address counter maintains the last address accessed during the previous read or write operation, incremented by one. This address remains valid between operations as long as the chip power is maintained and the device remains in 2 -wire access mode (i.e., SER_EN is driven Low). If the last operation was a read at address n , then the current address would be $\mathrm{n}+1$. If the final operation was a write at address n , then the current address would again be $\mathrm{n}+1$ with one exception. If address n was the last byte address in the page, the incremented address $\mathrm{n}+1$ would "roll over" to the first byte address on the next page.

CURRENT ADDRESS READ: Once the Device Address (with the R/ $\bar{W}$ select bit set to High) is clocked in and acknowledged by the Configurator, the Data Byte at the current address is serially clocked out by the Configurator in response to the clock from the programmer. The programmer generates a Stop Condition to accept the single byte of data and terminate the read instruction.

```
A Current Address Read instruction consists of
    a Start Condition
    a Device Address with R/\overline{W}=1
    An Acknowledge Bit from the Configurator
    a Data Byte from the Configurator
    a Stop Condition from the programmer.
```

RANDOM READ: A Random Read is a Current Address Read preceded by an aborted write instruction. The write instruction is only initiated for the purpose of loading the EEPROM Address Bytes. Once the Device Address Byte and the EEPROM Address Bytes are clocked in and acknowledged by the Configurator, the programmer immediately initiates a Current Address Read.

A Random Address Read instruction consists of :

```
a Start Condition
a Device Address with R/\overline{W}=0
    An Acknowledge Bit from the Configurator
MS Byte of the EEPROM Address
    An Acknowledge Bit from the Configurator
Next Byte of the EEPROM Address
    An Acknowledge Bit from the Configurator
LS Byte of EEPROM Address
    An Acknowledge bit from the Configurator
a Start Condition
a Device Address with R/\overline{W}=1
    An Acknowledge Bit from the Configurator
a Data Byte from the Configurator
a Stop Condition from the programmer.
```


## AT94S Secure Family

## Programmer Functions

## Reading Manufacturer's and Device Codes

Programming the Device

Important Note on AT94S Series Configurators Programming

Verifying the Device

## In-System Programming Applications

SEQUENTIAL READ: Sequential Reads follow either a Current Address Read or a Random Address Read. After the programmer receives a Data Byte, it may respond with an Acknowledge Bit. As long as the Configurator receives an Acknowledge Bit, it will continue to increment the Data Byte address and serially clock out sequential Data Bytes until the memory address limit is reached. ${ }^{(1)}$ The Sequential Read instruction is terminated when the programmer does not respond with an Acknowledge Bit but instead generates a Stop Condition following the receipt of a Data Byte.

Note: 1. If an ACK is sent by the programmer after the data in the last memory address is sent by the configurator, the internal address counter will "rollover" to the first byte address of the memory array and continue to send data as long as an ACK is sent by the programmer.

The following programmer functions are supported while the Configurator is in programming mode (i.e., when SER_EN is driven Low):

1. Read the Manufacturer's Code and the Device Code (optional for ISP).
2. Program the device.
3. Verify the device.

In the order given above, they are performed in the following manner.
On AT17LV010 Configurator, the sequential reading of these bytes are accomplished by performing a Random Read at EEPROM Address 040000H.
The correct codes are:

| Manufacturers Code | -Byte 0 | 1E |
| :--- | :--- | :--- | :--- |
| Device Code | - Byte 1 F7 | AT17LV010 |

Note: The Manufacturer's Code and Device Code are read using the byte ordering specified for Data Bytes; i.e., LSB first, MSB last.

All the bytes in a given page must be written. The page access order is not important but it is suggested that the Configurator be written sequentially from address 0 . Writing is accomplished by using the cSDA and cSCK pins.

The first byte of data will not be cached for read back during FPGA Configuration (i.e., when SER_EN is driven High) until the Configurator is power-cycled.

All bytes in the Configurator should be read and compared to their intended values. Reading is done using the cSDA and cSCK pins.

The AT94S Series Configurators are in-system (re)programmable (ISP). The example shown on the following page supports the following programmer functions:

1. Read the Manufacturer's Code and the Device Code.
2. Program the device.
3. Verify the device data.

While Atmel's Secure FPSLIC Configurators can be programmed from various sources (e.g., on-board microcontrollers or PLDs), the applications shown here are designed to facilitate users of our ATDH2225 Configurator Programming Cable. The typical system setup is shown in Figure 3.
The pages within the configuration EEPROM can be selectively rewritten.
This document is limited to example implementations for Atmel's AT94S application.

Figure 3. Typical System Setup


The diode connection between the AT94S' RESET pin and the SER_EN signal allows the external programmer to force the FPGA into a reset state during ISP. This eliminates the potential for contention on the cSCK line. The pull-up resistors required on the lines to RESET, CON and INIT are present on the inputs (internally) to the AT94S FPSLIC, see Figure 4.

Figure 4. ISP of the AT17LV512/010 in an AT94S FPSLIC Application


Note: 1. Configurator signal names are shown in parenthesis.

Figure 5. Serial Data Timing Diagram


DC Characteristics ${ }^{(1)}$
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}^{(2)(3)(4)}$

| Symbol | Parameter | Test Condition | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage |  | 3.0 | 3.3 | 3.6 | V |
| $\mathrm{I}_{\mathrm{CC}}$ | Supply Current | $\mathrm{V}_{\mathrm{CC}}=3.6$ |  | 2 | 3 | mA |
| $\mathrm{I}_{\mathrm{LL}}$ | Input Leakage Current | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ |  | 0.10 | 10 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{LO}}$ | Output Leakage Current | $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$ |  | 0.05 | 10 | $\mu \mathrm{~A}$ |
| $\mathrm{~V}_{\mathrm{IH}}$ | High-level Input Voltage |  | $\mathrm{V}_{\mathrm{CC}} \times 0.7$ |  | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level Input Voltage |  | -0.5 |  | 0.2 | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low-level Voltage | $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$ |  |  | 0.4 | V |

Notes: 1. Specific to programming mode (i.e., when $\overline{\text { SER_EN }}$ is driven Low)
2. Commercial temperature range $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
3. Industrial temperature range $-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
4. This parameter is characterized and is not $100 \%$ tested.

AC Characteristics ${ }^{(1)}$
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}^{(2)(3)(4)}$

| Symbol | Parameter | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {CLOCK }}$ | Clock Frequency, Clock |  | 100 | KHz |
| tow | Clock Pulse Width Low | 4 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {HIGH }}$ | Clock Pulse Width High | 4 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{AA}}$ | Clock Low to Data Out Valid | 0.1 | 1 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {BUF }}$ | Time the Bus Must Be Free Before a New Transmission Can Start | 4.5 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {HD } ; \text { STA }}$ | Start Hold Time | 2 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {SU; }}$ STA | Start Setup Time | 2 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {HD DAT }}$ | Data In Hold Time | 0 |  | $\mu \mathrm{s}$ |
| $t_{\text {SU DAT }}$ | Data In Setup Time | 0.2 |  | $\mu \mathrm{s}$ |
| $t_{R}$ | Inputs Rise Time |  | 0.3 | $\mu \mathrm{s}$ |
| $t_{\text {F }}$ | Inputs Fall Time |  | 0.3 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {SU STO }}$ | Stop Setup Time | 2 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{DH}}$ | Data Out Hold Time | 0.1 |  | $\mu \mathrm{s}$ |
| $t_{\text {WR }}$ | Write Cycle Time |  | 20 | ms |

Notes: 1. Specific to programming mode (i.e., when $\overline{\text { SER_EN }}$ is driven Low)
2. Commercial temperature range $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
3. Industrial temperature range $-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
4. This parameter is characterized and is not $100 \%$ tested.

## Secure FPSLIC Configurator Pin Configurations

| 144-pin LQFP | $\begin{aligned} & \text { 256-pin } \\ & \text { CABGA } \end{aligned}$ | Name | 1/0 | Description |
| :---: | :---: | :---: | :---: | :---: |
| 105 | D16 | cSDA | I/O | Three-state DATA output for configuration. Open-collector bi-directional pin for programming. |
| 107 | C16 | cSCK | O | CLOCK output. Used to increment the internal address and bit counter for reading and programming. |
| 53 | K9 | $\underset{\overline{\mathrm{E}}}{\mathrm{RESET} / \overline{\mathrm{O}}}$ | 1 | RESET/OE input (when $\overline{\text { SER_EN }}$ is High). A Low level on both the $\overline{\mathrm{CE}}$ and RESET/OE inputs enables the data output driver. A High level on RESET/OE resets both the address and bit counters. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. This document describes the pin as RESET/ $\overline{\mathrm{OE}}$. |
| 72 | N16 | $\overline{C E}$ | 1 | Chip Enable input. Used for device selection only when SER_EN is High. A Low level on both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ enables the data output driver. A High level on $\overline{\mathrm{CE}}$ disables both the address and bit counters and forces the device into a low-power mode. Note this pin will not enable/disable the device in the 2-wire Serial mode (i.e., when $\overline{\text { SER_EN }}$ is driven Low). |
| 81 | M5 | $\overline{\text { SER_EN }}$ | 1 | Serial enable is normally High during FPGA loading operations. Bringing SER_EN Low enables the programming mode. |

## Security Bit <br> AT17LV512/010 Security Bit Programming

Disabling the Security Bit

Enabling the Security Bit

Verifying the Security Bit

Once the security bit is programmed, data will no longer output from the normal data pad. Once the fuse is set, any attempt to erase the fuse will cause the configurator to erase all of it contents.

Write 4 bytes " 00000000 " to addresses $800000-800003$ twice, without a power cycle in between, using the previously defined 2 -wire write algorithm.

Write 4 bytes "FF FF FF FF" to addresses $800000-800003$ using the previously defined 2-wire write algorithm.

Read 4 bytes of data from addresses 800000-800003 using the previously defined 2wire Random Read algorithm. If the data is "FF FF FF FF", the security bit has been enabled. If the data is " 00000000 ", the security bit has been disabled.

Chip Erase Timing
The entire device can be erased at once by writing to a specific address. This operation will erase the entire array. See Table 2 for specifics on the write algorithm.

Table 2. Chip Erase Cycle Characteristics

| Symbol | Parameter |
| :--- | :--- |
| Tec | Chip Erase Cycle Time $(25 \mathrm{~ms})$ |

Figure 6. Chip Erase Timing Diagram


AT94S Secure Family

## Packaging and <br> Pin List information

Table 3. Part and Package Combinations Available

| Part \# | Package | AT94S05 | AT94S10 | AT94S40 |
| :--- | :---: | :---: | :---: | :---: |
| BG256 | DG | 93 | 137 | 162 |
| LQ144 | BQ | - | 84 | 84 |

Table 4. AT94K JTAG ICE Pin List

| Pin | AT94S05 <br> 96 FPGA I/O | AT94S10 <br> 192 FPGA I/O | AT94S40 <br> 384 FPGA I/O |
| :--- | :---: | :---: | :---: |
| TDI | 1034 | 1050 | 1098 |
| TDO | 1038 | 1054 | 10102 |
| TMS | 1043 | 1063 | 10123 |
| TCK | 1044 | 1064 | 10124 |

Table 5. AT94S Pin List

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
| FPSLIC Array |  |  |  |  |
| I/O1, GCK1 (A16) | I/O1, GCK1 (A16) | I/O1, GCK1 (A16) | A1 | 2 |
| I/O2 (A17) | I/O2 (A17) | I/O2 (A17) | D4 | 3 |
| I/O3 | I/O3 | I/O3 | D3 | 4 |
| I/O4 | I/O4 | I/O4 | B1 | 5 |
| I/O5 (A18) | I/O5 (A18) | I/O5 (A18) | C2 | 6 |
| I/O6 (A19) | I/O6 (A19) | 1/O6 (A19) | C1 | 7 |
|  |  | I/O7 |  |  |
|  |  | 1/08 |  |  |
| NC | NC | I/O9 | D2 |  |
| NC | NC | 1/O10 | D1 |  |
|  |  | 1/011 |  |  |
|  |  | 1/O12 |  |  |
|  |  | I/O13 |  |  |
|  |  | I/O14 |  |  |
| I/O7 | I/O7 | 1/O15 | E3 |  |
| I/O8 | I/O8 | 1/O16 | E4 |  |
| NC | I/O9 | 1/O17 | E2 |  |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
| NC | I/O10 | I/O18 | E1 |  |
|  |  | 1/O19 |  |  |
|  |  | 1/O20 |  |  |
| NC | 1/O11 | 1/O21 | F4 |  |
| NC | 1/O12 | 1/O22 | F3 |  |
|  |  | 1/O23 |  |  |
|  |  | I/O24 |  |  |
| I/O9, FCK1 | I/O13, FCK1 | I/O25, FCK1 | F1 | 9 |
| I/O10 | I/O14 | 1/O26 | G7 | 10 |
| I/O11 (A20) | I/O15 (A20) | I/O27 (A20) | G6 | 11 |
| I/O12 (A21) | I/O16 (A21) | I/O28 (A21) | G4 | 12 |
| NC | I/O17 | I/O29 | G5 |  |
| NC | I/O18 | 1/O30 | G2 |  |
|  |  | I/O31 |  |  |
|  |  | 1/032 |  |  |
|  |  | 1/O33 |  |  |
|  |  | I/O34 |  |  |
| NC | NC | 1/035 | G1 |  |
| NC | NC | 1/O36 | H7 |  |
|  |  | 1/037 |  |  |
|  |  | 1/038 |  |  |
| NC | NC | 1/O39 | H6 |  |
| NC | NC | 1/O40 | H5 |  |
| NC | 1/O19 | I/O41 | H3 |  |
| NC | 1/O20 | I/O42 | H4 |  |
| 1/O13 | 1/O21 | I/O43 | H2 | 13 |
| 1/O14 | 1/O22 | I/O44 | H1 | 14 |
|  |  | I/O45 |  |  |
|  |  | I/O46 |  |  |
| I/O15 (A22) | 1/O23 (A22) | I/O47 (A22) | J7 | 15 |
| I/O16 (A23) | I/O24 (A23) | I/O48 (A23) | J1 | 16 |
| I/O17 (A24) | I/O25 (A24) | I/O49 (A24) | J4 | 19 |
| I/O18 (A25) | I/O26 (A25) | I/O50 (A25) | J5 | 20 |
|  |  | I/O51 |  |  |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
|  |  | I/O52 |  |  |
| 1/O19 | 1/O27 | I/O53 | J6 | 21 |
| I/O20 | I/O28 | I/O54 | J8 | 22 |
| NC | 1/O29 | I/O55 | K1 |  |
| NC | 1/O30 | 1/O56 | K2 |  |
|  |  | I/O57 |  |  |
|  |  | 1/O58 |  |  |
|  |  | 1/O59 |  |  |
|  |  | 1/060 |  |  |
| NC | NC | I/O61 | K4 |  |
| NC | NC | 1/062 | K5 |  |
|  |  | I/O63 |  |  |
|  |  | 1/O64 |  |  |
| NC | NC | 1/065 | K6 |  |
| NC | NC | 1/066 | L1 |  |
| NC | I/O31 | I/O67 | L2 |  |
| NC | 1/032 | I/O68 | L5 |  |
| I/O21 (A26) | I/O33 (A26) | I/O69 (A26) | L4 | 23 |
| I/O22 (A27) | I/O34 (A27) | I/O70 (A27) | M1 | 24 |
| I/O23 | I/O35 | I/O71 | M2 | 25 |
| I/O24, FCK2 | I/O36, FCK2 | I/O72, FCK2 | N1 | 26 |
|  |  | I/O73 |  |  |
|  |  | I/O74 |  |  |
|  | 1/O37 | I/O75 |  |  |
|  | I/O38 | 1/076 |  |  |
|  |  | I/077 |  |  |
|  |  | I/O78 |  |  |
|  |  | 1/079 |  |  |
|  |  | 1/080 |  |  |
| 1/O25 | I/O39 | 1/081 | M3 |  |
| 1/O26 | 1/O40 | 1/082 | N2 |  |
|  | 1/O41 | 1/083 |  |  |
|  | I/O42 | I/O84 |  |  |
|  |  | I/O85 |  |  |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
|  |  | 1/O86 |  |  |
|  |  | I/087 |  |  |
|  |  | 1/088 |  |  |
| 1/O27 (A28) | I/O43 (A28) | I/O89 (A28) | P1 | 28 |
| I/O28 | I/O44 | I/O90 | P2 | 29 |
|  |  | I/O91 |  |  |
|  |  | 1/092 |  |  |
| 1/O29 | 1/O45 | 1/093 | R1 | 30 |
| 1/030 | I/O46 | 1/094 | N3 | 31 |
| I/O31 ( $\overline{\mathrm{OTS}}$ ) | I/O47 ( $\overline{\mathrm{OTS}}$ ) | I/O95 ( $\overline{\mathrm{OTS}}$ ) | T1 | 32 |
| I/O32, GCK2 (A29) | I/O48, GCK2 (A29) | I/O96, GCK2 (A29) | P3 | 33 |
| AVRRESET | AVRRESET | AVRRESET | R2 | 34 |
| M0 | M0 | M0 | R3 | 36 |
| FPSLIC Array |  |  |  |  |
| M2 | M2 | M2 | T3 | 38 |
| I/O33, GCK3 | I/O49, GCK3 | I/O97, GCK3 | R4 | 39 |
| I/O34 (HDC/TDI) | I/O50 (HDC/TDI) | I/O98 (HDC/TDI) | T4 | 40 |
| 1/O35 | I/O51 | I/O99 | N5 | 41 |
| 1/O36 | 1/052 | 1/O100 | P5 | 42 |
|  | 1/O53 | I/O101 |  | 43 |
| $\overline{\text { SER_EN }}$ | SER_EN | SER_EN | M5 | 81 |
| I/O38 (LDC/TDO) | I/O54 (LDC/TDO) | I/O102 (LDC/TDO) | R5 | 44 |
|  |  | I/O103 |  |  |
|  |  | I/O104 |  |  |
|  |  | I/O105 |  |  |
|  |  | 1/0106 |  |  |
| NC | NC | I/O107 | T5 |  |
| NC | NC | I/O108 | M6 |  |
| 1/O39 | I/O55 | I/O109 | P6 |  |
| I/O40 | I/O56 | I/O110 | R6 |  |
| NC | 1/O57 | I/O111 | L6 |  |
| NC | I/O58 | I/O112 | T6 |  |
|  |  | I/O113 |  |  |
|  |  | I/O114 |  |  |

Table 5. AT94S Pin List (Continued)


Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | $\begin{gathered} \text { AT94S40 } \\ 288 \text { FPGA I/O } \end{gathered}$ | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
|  |  | I/O149 |  |  |
|  |  | I/O150 |  |  |
| 1/O51 | 1/075 | I/O151 | M9 | 58 |
| 1/O52 | 1/076 | I/O152 | L9 | 59 |
| NC | 1/077 | I/O153 | J9 |  |
| NC | I/O78 | I/O154 | T10 |  |
|  |  | I/O155 |  |  |
|  |  | I/O156 |  |  |
|  |  | I/O157 |  |  |
|  |  | I/O158 |  |  |
|  |  | I/O159 |  |  |
|  |  | I/O160 |  |  |
|  |  | I/O161 |  |  |
|  |  | I/O162 |  |  |
| NC | 1/079 | I/O163 | P10 |  |
| NC | 1/O80 | I/O164 | N10 |  |
| I/O53 (TD4) | I/O81 (TD4) | I/O165 (TD4) | L10 | 60 |
| I/O54 (TD3) | I/O82 (TD3) | I/O166 (TD3) | T11 | 61 |
| I/O55 | 1/083 | I/O167 | R11 | 62 |
| 1/O56 | I/O84 | I/O168 | M11 | 63 |
| NC | NC | I/O169 | N11 |  |
| NC | NC | I/O170 | T12 |  |
| NC | 1/O85 | 1/O171 | R12 |  |
| NC | 1/086 | I/O172 | T13 |  |
|  |  | I/0173 |  |  |
|  |  | 1/0174 |  |  |
|  |  | I/O175 |  |  |
|  |  | I/O176 |  |  |
| NC | 1/087 | I/O177 | N12 |  |
| NC | 1/088 | I/O178 | P12 |  |
| 1/O57 | 1/089 | I/O179 | R13 |  |
| 1/O58 | I/O90 | I/O180 | T14 |  |
| NC | NC | I/O181 | N13 |  |
| NC | NC | I/O182 | P13 |  |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
| I/O59 (TD2) | I/O91 (TD2) | I/O183 (TD2) | T16 | 65 |
| I/O60 (TD1) | I/O92 (TD1) | I/O184 (TD1) | P14 | 66 |
|  |  | I/O185 |  |  |
|  |  | I/O186 |  |  |
|  |  | I/O187 |  |  |
|  |  | I/O188 |  |  |
| 1/061 | 1/O93 | I/O189 | R16 | 67 |
| I/O62 | 1/094 | 1/O190 | P15 | 68 |
| I/O63 (TD0) | I/O95 (TD0) | I/O191 (TD0) | N14 | 69 |
| I/O64, GCK4 | I/O96, GCK4 | I/O192, GCK4 | P16 | 70 |
| CON/EE | CON/CE | CON/CE | N16 | 72 |
| FPSLIC Array |  |  |  |  |
| RESET | RESET | RESET | M14 | 74 |
| PE0 | PE0 | PE0 | M12 | 75 |
| PE1 | PE1 | PE1 | M15 | 76 |
| PD0 | PD0 | PD0 | M16 | 77 |
| PD1 | PD1 | PD1 | L12 | 78 |
| PE2 | PE2 | PE2 | L15 | 79 |
| PD2 | PD2 | PD2 | L11 | 80 |
| NC | NC | NC | E12 |  |
| SER_EN | SER_EN | SER_EN | M5 | 81 |
| PD3 | PD3 | PD3 | K11 | 82 |
| PD4 | PD4 | PD4 | K12 | 83 |
| PE3 | PE3 | PE3 | K14 | 84 |
| $\overline{\mathrm{CSO}}$ | $\overline{\mathrm{CSO}}$ | $\overline{\mathrm{CSO}}$ | K15 | 85 |
| SDA | SDA | SDA | J10 |  |
| SCL | SCL | SCL | J12 |  |
| PD5 | PD5 | PD5 | J14 | 86 |
| PD6 | PD6 | PD6 | J13 | 87 |
| PE4 | PE4 | PE4 | J16 | 88 |
| PE5 | PE5 | PE5 | J11 | 89 |
| PE6 | PE6 | PE6 | H15 | 92 |
| PE7 ( $\overline{\mathrm{CHECK}}$ ) | PE7 ( $\overline{\mathrm{CHECK}}$ ) | PE7 ( $\overline{\mathrm{CHECK}})$ | H14 | 93 |
| PD7 | PD7 | PD7 | H13 | 94 |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
| INTP0 | INTP0 | INTP0 | H12 | 95 |
| XTAL1 | XTAL1 | XTAL1 | G15 | 96 |
| XTAL2 | XTAL2 | XTAL2 | G14 | 97 |
| RX0 | RX0 | RX0 | G12 | 98 |
| TX0 | TX0 | TX0 | G11 | 99 |
| INTP1 | INTP1 | INTP1 | F15 |  |
| INTP2 | INTP2 | INTP2 | F14 |  |
| TOSC1 | TOSC1 | TOSC1 | E16 | 101 |
| TOSC2 | TOSC2 | TOSC2 | E15 | 102 |
| RX1 | RX1 | RX1 | E14 | 103 |
| TX1 | TX1 | TX1 | E13 | 104 |
| DATA0/cSDA | DATA0/cSDA | DATA0/cSDA | D16 | 105 |
| INTP3 (-CSOUT) | INTP3 (-CSOUT) | INTP3 ( $\overline{\text { CSOUT }}$ ) | D15 | 106 |
| CCLK/cSCK | CCLK/cSCK | CCLK/cSCK | C16 | 107 |
| I/O65:96 Are Unbonded | I/O97:144 Are Unbonded | I/O193:288 Are Unbonded |  |  |
| FPSLIC Array |  |  |  |  |
| Testclock | Testclock | Testclock | C15 | 109 |
| 1/O97 (A0) | I/O145 (A0) | I/O289 (A0) | C14 | 111 |
| I/O98, GCK7 (A1) | I/O146, GCK7 (A1) | I/O290, GCK7 (A1) | B15 | 112 |
| I/O99 | I/O147 | I/O291 | A16 | 113 |
| I/O100 | I/O148 | 1/O292 | D13 | 114 |
|  |  | I/O293 |  |  |
|  |  | I/O294 |  |  |
| NC | NC | I/O295 | C13 |  |
| NC | NC | I/O296 | B14 |  |
| I/O101 ( $\overline{\mathrm{CS1}}, \mathrm{~A} 2)$ | I/O149 ( $\overline{\mathrm{CS1}}, \mathrm{~A} 2)$ | I/O297 ( $\overline{\mathrm{CS1}}, \mathrm{~A} 2)$ | A15 | 115 |
| I/O102 (A3) | I/O150 (A3) | I/O298 (A3) | A14 | 116 |
|  |  | I/O299 |  |  |
|  |  | 1/O300 |  |  |
| I/O104 | I/O151 | I/O301 | Shared with Test clock |  |
| NC | I/O152 | 1/O302 | D12 |  |
| I/O103 | I/O153 | I/O303 | C12 | 117 |
| NC | I/O154 | I/O304 | A13 |  |
| NC | NC | I/O305 | B12 |  |

$24 \quad$ AT94S Secure Family

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
|  |  | 1/O306 |  |  |
|  |  | 1/O307 |  |  |
|  |  | I/O308 |  |  |
| NC | 1/O155 | I/O309 | A12 |  |
| NC | 1/O156 | 1/O310 | E11 |  |
| NC | NC | I/O311 | C11 |  |
| NC | NC | I/O312 | D11 |  |
| I/O105 | I/O157 | I/O313 | A11 | 119 |
| I/O106 | I/O158 | I/O314 | F10 | 120 |
| NC | I/O159 | 1/O315 | E10 |  |
| NC | I/O160 | 1/O316 | D10 |  |
| NC | NC | I/O317 | C10 |  |
| NC | NC | I/O318 | B10 |  |
|  |  | I/O319 |  |  |
|  |  | I/O320 |  |  |
|  |  | 1/O321 |  |  |
|  |  | I/O322 |  |  |
|  |  | I/O323 |  |  |
|  |  | I/O324 |  |  |
| I/O107 (A4) | I/O161 (A4) | 1/O325 (A4) | A10 | 121 |
| I/O108 (A5) | I/O162 (A5) | I/O326 (A5) | G10 | 122 |
| NC | I/O163 | I/O327 | G9 |  |
| NC | I/O164 | 1/O328 | F9 |  |
| I/O109 | I/O165 | I/O329 | E9 | 123 |
| I/O110 | I/O166 | 1/O330 | C9 | 124 |
|  |  | 1/O331 |  |  |
|  |  | I/O332 |  |  |
|  |  | I/O333 |  |  |
|  |  | I/O334 |  |  |
| I/O111 (A6) | I/O167 (A6) | I/O335 (A6) | B9 | 125 |
| I/O112 (A7) | I/O168 (A7) | 1/O336 (A7) | A9 | 126 |
| I/O113 (A8) | I/O169 (A8) | 1/O337 (A8) | A8 | 129 |
| I/O114 (A9) | I/O170 (A9) | 1/O338 (A9) | B8 | 130 |
|  |  | I/O339 |  |  |

Table 5. AT94S Pin List (Continued)

| AT94S05 96 FPGA I/O | AT94S10 144 FPGA I/O | AT94S40 288 FPGA I/O | Package |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chip Array 256 CABGA | LQ144 ${ }^{(1)}$ |
|  |  | I/O340 |  |  |
|  |  | I/O341 |  |  |
|  |  | I/O342 |  |  |
| I/O115 | I/O171 | I/O343 | C8 | 131 |
| I/O116 | I/O172 | I/O344 | D8 | 132 |
| NC | I/O173 | I/O345 | E8 |  |
| NC | I/O174 | I/O346 | F8 |  |
| I/O117 (A10) | I/O175 (A10) | I/O347 (A10) | H8 | 133 |
| I/O118 (A11) | I/O176 (A11) | I/O348 (A11) | A7 | 134 |
| NC | NC | I/O349 | C7 |  |
| NC | NC | I/O350 | D7 |  |
|  |  | I/O351 |  |  |
|  |  | I/O352 |  |  |
|  |  | 1/O353 |  |  |
|  |  | I/O354 |  |  |
|  |  | I/O355 |  |  |
|  |  | 1/O356 |  |  |
| NC | I/O177 | I/O357 | F7 |  |
| NC | I/O178 | I/O358 | A6 |  |
| I/O119 | I/O179 | I/O359 | F6 | 135 |
| I/O120 | I/O180 | I/O360 | B6 | 136 |
|  |  | 1/O361 |  |  |
|  |  | 1/O362 |  |  |
| NC | I/O181 | I/O363 | D6 |  |
| NC | I/O182 | 1/O364 | E6 |  |
|  |  | I/O365 |  |  |
|  |  | I/O366 |  |  |
|  |  | I/O367 |  |  |
|  |  | I/O368 |  |  |
| I/O121 | I/O183 | 1/O369 | A5 |  |
| I/O122 | I/O184 | I/O370 | B5 |  |
| I/O123 (A12) | I/O185 (A12) | I/O371 (A12) | E5 | 138 |
| I/O124 (A13) | I/O186 (A13) | 1/O372 (A13) | C5 | 139 |
|  |  | I/O373 |  |  |

## 26 <br> AT94S Secure Family

Table 5. AT94S Pin List (Continued)

|  |  |  | Package |  |
| :---: | :---: | :---: | :---: | :---: |
| AT94S05 <br> 96 FPGA I/O | AT94S10 <br> 144 FPGA I/O | AT94S40 <br> 288 FPGA I/O | Chip Array 256 <br> CABGA | LQ144 ${ }^{(1)}$ |

Note: 1. LQ144 is only offered in the AT94S10 and AT94S40.
Table 6. 256 CABGA and LQ144 $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$ and GND Pins ${ }^{(1)}$

| Package | $\mathrm{V}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{cc}}$ | GND |
| :--- | :--- | :--- | :--- |
| 256 <br> CABGA | B2, G13, R14, G8, H10, J3, <br> K13, L3, M10, T7 | D14, F12, P4, G3, H9, E7, <br> K10, L13, M13, T9 | B11, B13, B16, B7, C3, C6, D5, D9, F11, F13, T15, F16, <br> F2, F5, G16, H11, H16, J15, J2, K16, K3, T2, L14, L16, <br> L7, M4, N15, N4, N6, P11, R9, R10, R15, T8 |
| LQ144 | 90 | $18,37,54,73,108,128,144$ | $1,8,17,27,35,45,55, ~ 64, ~ 71, ~ 91, ~ 100, ~ 110, ~ 118, ~ 127, ~$ <br> 137 |

Note: 1. For power rail support for product migration to lower-power devices, refer to the "Designing in Split Power Supply Support for AT94KAL/AX and AT94SAL/AX Devices" application note (doc2308.pdf), available on the Atmel web site, at http://www.atmel.com/dyn/products/app_notes.asp?family_id=627.

Thermal Coefficient Table

| Package Style | Lead Count | Theta J-A [ $\left.{ }^{\circ} \mathbf{C} / \mathrm{W}\right]$ <br> $\mathbf{0 ~ L F P M ~}$ | Theta J-A [ $\left.{ }^{\circ} \mathbf{C} / \mathrm{W}\right]$ <br> $\mathbf{2 2 5}$ LFPM | Theta J-A [ $\left.{ }^{\circ} \mathbf{C} / \mathrm{W}\right]$ <br> $\mathbf{5 0 0}$ LPFM |
| :---: | :---: | :---: | :---: | :---: |
| CABGA | 256 | 27 | 23 | 20 |
| LQFP | 144 | 35 | - | - |

Ordering Information

| Usable Gates | Speed Grade | Ordering Code | Package | Operation Range |
| :---: | :---: | :---: | :---: | :---: |
| 5,000 | 25 MHz | AT94S05AL-25DGC | 256ZA | Commercial $\left(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)$ |
|  |  | AT94S05AL-25DGI | 256ZA | $\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) \end{gathered}$ |
| 10,000 | 25 MHz | AT94S10AL-25DGC | 256ZA | Commercial $\left(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)$ |
|  |  | AT94S10AL-25BQC | 144L1 |  |
|  |  | AT94S10AL-25DGI | 256ZA | $\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) \end{gathered}$ |
|  |  | AT94S10AL-25BQI | 144L1 |  |
| 40,000 | 16 MHz | AT94S40AL-25DGC | 256ZA | Commercial$\left(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)$ |
|  |  | AT94S40AL-25BQC | 144L1 |  |
|  |  | AT94S40AL-25DGI | 256ZA | $\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) \end{gathered}$ |
|  |  | AT94S40AL-25BQI | 144L1 |  |


| Package Type |  |
| :---: | :--- |
| 256ZA | 256-ball, Chip Array Ball Grid Array Package (CABGA) |
| $\mathbf{1 4 4 L 1}$ | 144-lead, Low Profile Plastic Gull Wing Quad Flat Package (LQFP) |

## Packaging Information

## 256ZA - CABGA




Side View

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$ )

| SYMBOL | MIN | NOM | MAX | NOTE |
| :---: | :---: | :---: | :---: | :---: |
| D | - | 17 BSC | - |  |
| E | - | 17 BSC | - |  |
| A | 1.30 | 1.40 | 1.50 |  |
| A1 | 0.31 | 0.36 | 0.41 |  |
| A2 | 0.29 | 0.34 | 0.39 |  |
| A3 | 0.65 | 0.70 | 0.75 |  |
| e | 1.00 BSC |  |  |  |
| b | 0.46 REF |  |  |  |

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-205 for proper dimensions, tolerances, datums, etc. 2. Array as seen from the bottom of the package.

11/07/01

| 2325 Orchard Parkway San Jose, CA 95131 | TITLE 256ZA, 256-ball (16 x 16 Array), $17 \times 17$ mm Body, Chip Array Ball Grid Array (CABGA) Package | DRAWING NO. 256ZA | $\begin{gathered} \text { REV. } \\ \text { A } \end{gathered}$ |
| :---: | :---: | :---: | :---: |

$144 L 1$ - LQFP


Top View


Side View


Bottom View

COMMON DIMENSIONS
(Unit of Measure = mm)

| SYMBOL | MIN | NOM | MAX | NOTE |
| :---: | :---: | :---: | :---: | :---: |
| A1 | 0.05 |  | 0.15 | 6 |
| A2 | 1.35 | 1.40 | 1.45 |  |
| D | 22.00 BSC |  |  |  |
| D1 | 20.00 BSC |  |  | 2,3 |
| E | 22.00 BSC |  |  |  |
| E1 | 20.00 BSC |  |  | 2,3 |
| e | 0.50 BSC |  |  |  |
| b | 0.17 | 0.22 | 0.27 | 4,5 |
| L1 | 1.00 REF |  |  |  |

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-026 for additional information.
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm .
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm . Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.
5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
6. A1 is defined as the distance from the seating place to the lowest point on the package body.

| 2325 Orchard Parkway | TITLE <br> 144L1, 144-lead ( $20 \times 20 \times 1.4 \mathrm{~mm}$ Body), Low Profile <br> Plastic Quad Flat Pack (LQFP) | DRAWING NO. <br> 144L1 | REV. <br> A |
| :---: | :--- | :--- | :--- |

## Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

## Regional Headquarters

## Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

## Atmel Operations

Memory<br>2325 Orchard Parkway<br>San Jose, CA 95131, USA<br>Tel: 1(408) 441-0311<br>Fax: 1(408) 436-4314

## Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

## RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/<br>High Speed Converters/RF Datacom<br>Avenue de Rochepleine<br>BP 123<br>38521 Saint-Egreve Cedex, France<br>Tel: (33) 4-76-58-30-00<br>Fax: (33) 4-76-58-34-80

## Literature Requests <br> www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2004. All rights reserved. Atme ${ }^{\circledR}$ and combinations thereof, $A V R^{\circledR}$, and Cache Logic ${ }^{\circledR}$ are the registered trademarks, and FPSLIC ${ }^{T M}$, Secure FPSLIC ${ }^{T M}$, FreeRAM ${ }^{T M}$, System Designer ${ }^{T M}$ and megaAVR ${ }^{T M}$ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

