
1

Features
• Decimation in frequency radix-2 FFT algorithm.
• 256-point transform.
• 12-bit fixed point arithmetic.
• Fixed scaling to avoid numeric overflow.
• Requires no external memory, i.e. uses on chip RAM and ROM.
• External access to on-chip RAM for data IO.
• Clock speed of 21 MHz.
• 98 ms processing time.
• 70% utilization of AT40K30 logic resources.
• 48% utilization of AT40K30 RAM resources.

Description
The Fast Fourier Transform (FFT) processor is a FFT engine developed for the
AT40K family of Field Programmable Gate Arrays (FPGAs). The design is based on a
decimation-in-frequency radix-2 algorithm and employs in-place computation to opti-
mize memory usage. In order to operate the processor, data must first be loaded into
the internal RAM. The processor is then instructed to compute the FFT, overwriting
the input data in the RAM with the results. Upon completion of the FFT, the results
may be read out from the RAM via the output data port.

AT40K FPGA
IP Core

AT40K-FFT

Rev. 1132A–08/98

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT2

Operation and Interfacing

Figure 1. Internal architecture of the FFT processor.

Figure 1 shows the architecture of the FFT processor. The
design is based on the radix-2 decimation in frequency
algorithm and employs in-place computation to optimize
memory usage.

To operate the processor data must first be loaded into the
internal RAM. The processor is then instructed to compute
the FFT, overwriting the input data in the RAM with the
results. On completion of the FFT the results can be read
out from the RAM via the output data port.

Figure 2. Example FFT processor configuration 1.

Figure 3. Example FFT processor configuration 2.

Data RAM

Butterfly

Twiddle
Factor ROM

12

Address
Counter

8 Control

88

12

1212

12

Address
Counter

Address
Counter

Data output
port

Data input
port

Control port

FFT
Processor

Address
8A

D
C

A
D

C

F IFO

FIFO

µµµµProc
Data

2412

12 12

12

Real
input

Imag
input

Input
Clock

Processor
clock

FFT
Processor

Address
8

µµµµProc
Data

24

Processor
clock

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT

3

Interfacing requirements are likely to be highly application
specific. The FFT processor has therefore been designed
so that users may readily customize the data IO interface to
meet their requirements. Two examples of likely interfacing
scenarios are depicted in Figure 2 and Figure 3. In the first,
the processor is used to perform transforms on real time
data generated by a pair of ADC’s. This data can either be
buffered with a FIFO, or be fed directly into the processor,
depending on whether “end to end” transforms are required
or not. The results from the FFT processor are then read
out to a microprocessor for further processing. In the sec-
ond scenario both the input and output ports of the FFT
processor are mapped into the memory space of a micro-
processor. In this configuration the FFT processor can be
used as a co-processor to the microprocessor.

The FFT processor uses fractional 12-bit fixed point arith-
metic. To prevent internal overflows occurring the proces-
sor scales all intermediate results by ½, thus for a 256 point
transform the output data is scaled by 1/256. Furthermore,
to ensure that no overflows occur, the input data must
observe the following rules:

|Re(Input)+jIm(Input)| < 1

or

-1≤Re(Input)<1, Im(Input)=0

where Re(Input) and Im(Input) are the real and imaginary
components of the input data.

Detailed Design Description
The architecture of the design is depicted in Figure 1. From
this it can be seen that the design contains the following
components.

• Butterfly

• Twiddle factor ROM

• Data RAM

• Address generators

• Controller

The design of each of these components is discussed in
turn, starting with the butterfly. Following this the design
entry, layout and simulation strategies are described. For

further information on the design the reader is referred to
the design source files, especially the schematics.

The reader is assumed to be familiar with the various FFT
algorithms and their classification. General background
information on the FFT algorithm can be found in [1], [2]
and [3]. Information on hardware implementations of the
FFT can be found in [4].

Butterfly
This function implements the radix-2 decimation in fre-
quency butterfly described by the following equations:

A’=(A+B)/2

B’=(A-B)xWT/2

where A and B are the complex inputs to the butterfly, A’
and B’ are the complex outputs and WT is the complex
twiddle factor. The divide by two is not normally found in
the butterfly equation, but is included here to prevent
numeric overflow in the fixed point implementation.

Analysis of this function indicates that it requires the follow-
ing logical operations.

• 2 complex data fetches

• 2 complex data stores

• 1 complex twiddle factor fetch

• 1 complex addition (2 signed adders)

• 1 complex subtraction (2 signed subtracters)

• 1 complex multiply (4 signed multipliers and 3 signed
adders)

Unfortunately it is impossible to execute all these functions
in a single cycle for the following two reasons. Firstly, the
dual ported memory bank is incapable of supporting more
than 1 data write and 1 data read per cycle, and secondly
the implementation of 4 medium precision array multipliers
would exceed the logic resources of a single AT40K FPGA.

These problems can be overcome if the butterfly calcula-
tion is performed over two clock cycles. This balances the
memory and butterfly IO requirements and also halves the
number of multipliers required, permitting the design to fit
on a single chip.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT4

Figure 4. Architecture of the butterfly.

Figure 4 shows the internal architecture of the 2 clock cycle
butterfly. From the input the data flow splits into two main
paths. The upper one computes A’=(A+B)/2 and the lower
one B’=(A-B)xWT/2. The results from these two data paths
are then multiplexed onto the output data bus using tristate
buffers.

In upper path the input data is fed into an accumulator. This
sums it every two cycles, divides the result by two and
rounds to 12 bits, giving A’=(A+B)/2. The result is then sent
through a short register based delay to align it with the
result from the slightly longer lower data path used to com-
pute B’.

In the B’ data path the input data is fed into a differencing
circuit which computes –A+B. The real and imaginary 13 bit
results are then fed through a cross bar switch which pre-
sents the difference of the imaginary components (-
Im(A)+Im(B)) to both 13x12 bit signed multipliers in the first
cycle, and the difference of the real components (-
Re(A)+Re(B)) in the second. In the first cycle both multipli-
ers multiply by the imaginary component of the twiddle fac-
tor (Im(WT)) and in the second by the negated real
component (-Re(WT)). (Note that the reason for negating
the real component of the twiddle factor is discussed in
section Twiddle factor ROM.)

The outputs of the two multipliers are therefore Im(-
A+B)xIm(WT), Re(-A+B)x-Re(WT) and Re(-A+B)xIm(WT),
Im(-A+B)x-Re(WT). The 25 bit results from the multipliers
are then truncated to 14 bits. One data stream is fed into an
accumulator which sums the results, divides by two and
truncates the result to 12 bits with rounding, giving,

Re(B’)=(Im(-A+B)xIm(WT)+Re(-A+B)x
Re(WT))/2=Re((A-B)xWT).

The other is fed into a differencing circuit which subtracts
the two results, divides by two and truncates the result to
12 bits with rounding, yielding,

Im(B’)=(-Re(-A+B)xIm(WT)+Im(-A+B)x-
Re(WT))/2=Im((A-B)xWT).

To improve performance the butterfly is more heavily pipe-
lined than is shown in Figure 4. This results in an input to
output latency for the butterfly of 9 cycles.

Twiddle factor ROM
The twiddle factor ROM is organized as 256 x 12 bit words.
Each of the 128 complex twiddle factors is stored in the
ROM with alternate words being used for the real and
imaginary components.

To improve the accuracy of the most common twiddle fac-
tor, i.e. W0=1, the real components of the twiddle factors
are negated in the ROM. Thus W0 is stored as –1 rather
than 0.995; 0.995 being the closest approximation to 1 per-
mitted by a 12 bit two’s complement fractional integer.

The twiddle factor ROM was generated using Atmel’s
macro generator. The input data file for the macro genera-
tor was generated using a MatLab script.

Data RAM
The data RAM is configured as two 256 x 12 bit dual ported
memories. One is used to hold the real components and
the other to hold the imaginary components.

The availability of dual ported, as opposed to single ported,
memory significantly improves the utilization of on chip
RAM. Use of single ported RAM would have required twice
as much memory to permit the concurrent data fetches and
stores required by the butterfly.

To achieve maximum memory efficiency the FFT algorithm
uses “in place” computation, i.e. the data stored after each
butterfly computation is placed back in the same locations
that the input data was read from. This requirement has no
impact on performance, but does somewhat complicate the
design of the data address generators.

Delay

Delay

Cross Bar

13

12

12

13 13

13

14

14

12

12

12

12

Re (A), Re (B)

Im (A), Im (B) 12

12 Re (A'), Re (B')

Im (A'), Im (B')

12

12

Im (W T), -Re (W T)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT

5

Address Generators
The design employs two address generators to control the
input and output of data from the data RAM. One is used to
generate the read addresses and the other the write
addresses. Both produce the same address pattern,
though they are skewed in phase by 9 cycles, i.e. the
length of the butterfly pipeline.

The data address generators are based on an 8 bit accu-
mulator where the carry out signal is connected to the carry
in signal. The accumulator increment is provide by a
Johnson counter which increments every 256 cycles. The
data address generators feature tristate outputs to discon-
nect them from the address busses while data is trans-
ferred into or out of the chip.

The twiddle factor address generator produces a different
address sequence. Here an 8 bit binary counter is
employed, the output bits of which are ANDed with a mask-
ing function. This masking function is provided by an 8-bit
shift register which steps through the following pattern
00000001b, 00000011b, 00000111b, etc., once every 256
cycles.

Controller
The controller synchronizes the operation of all the other
components. It contains a state machine closely coupled to
a counter to generate all the control signals required.

The state machine provides a simple two line control port
(START and BUSY) to enable external devices to initiate
processing and monitor its completion.

Design Capture and Layout
The design was entered via schematic capture using Work-
view Office. This design method was employed to provide
good design visibility to users.

Extensive use was made of user macros to ensure high
performance layouts for sub components.

The device targeted for the design was the AT40K30. Utili-
zation of the part was as follows:

Logic Cells: 1114/1600 = 69.6%

RAM Cells: 48/100 = 48%

Design Simulation
The design was simulated using the gate level simulator
ViewSim. Both functional and post layout simulations were
performed to confirm the correct operation of the design.

A MatLab script was employed to generated the input data
files for the simulation. This same script was also used to
read the results files from the simulation and check them
against the MatLab FFT function.

Timing Analysis
Timing analysis of the design indicated a maximum clock
speed of 21.2 MHz when using the AT40K30 part. Investi-
gations into the limiting data path revealed this to be the
delay from the twiddle factor address counter output,
through the asynchronous twiddle factor ROM to the butter-
fly’s twiddle factor input. Clearly, conversion of the twiddle
ROM from asynchronous to synchronous operation would
be a starting point for improving the design’s performance.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT6

Design Analysis
Design Performance
The design requires Nlog2N clock cycles to compute the
FFT, where N is the transform length. In this design N is
fixed at 256, requiring a total of 2048 clock cycles. Timing
analysis of the design (see section Timing Analysis) indi-
cates a maximum clock rate of 21 MHz. This gives a total
processing time for the FFT of 98 µs.

It should be noted that the design does not support concur-
rent data IO and processing. Consequently, in real applica-
tions the user must also allow time to transfer data in and
out. 256 clock cycles are required to write data into the
internal RAM, yielding a minimum data input time of 12 µs
at 21 MHz. Determination of the time required to read data
out from the device is somewhat more difficult, partly
because read accesses to the on chip RAM are asynchro-
nous, and partly because the user may not require the
complete output data set. However, it is not unrealistic to
assume a similar data transfer time to the input. This gives
a likely total data IO time of approximately 24 µs at 21 MHz.

Suggested Techniques to Improve
Performance
Three main methods exist to increase the rate at which
AT40K FPGAs can perform FFTs, namely:

• Increasing the design clock speed.

• Double buffer data to hide data IO time.

• Consider other FFT architectures.

The simplest method of increasing performance is to
increase the clock frequency of the design. Timing analysis
(see section Timing Analysis) indicates that the limiting
path is through the asynchronous ROM block. Conversion
of the ROM block to synchronous operation would improve
performance somewhat.

In general the clock rate of the design is limited by two fac-
tors: the loading on the internal address and data busses
and the speed of the multipliers. The first factor is affected
by both the length of the transform and its precision.
Decreasing these reduces the size of the dual ported mem-
ory, leading to reduced bus loadings and increasing the
data IO bandwidth between the butterfly and memory. The
second factor is affected only by the precision of the trans-
form. Increasing the precision increases the size of the
multipliers, reducing the system’s performance. It should
be noted that increasing either the data precision or the
transform length will lead to a reduction in performance.
For large transform lengths the use of an external dual
ported memory should be considered, this may also pro-
vide faster data transfer times by reducing on chip bus
loadings.

System performance could potentially be improved by pro-
viding suitable buffering to permit concurrent data process-
ing and IO. Double buffering designs would most probably
have to use external memory devices.

The only technique to radically improve performance is to
consider other FFT architectures, probably involving multi-
ple FPGAs. The most probable architecture is the “pipeline
FFT” processor described in [4]. This requires log2N butter-
flies arranged in a line and interspersed with delay lines.
Data is then fed continuously through the pipeline to com-
pute the FFT. Using the current butterfly design such an
FFT processor would require multiple FPGAs, each con-
taining one or two butterflies and their associated line
delays. For an transform length of N such an architecture
would produce an log2N fold performance increase com-
pared to the current design, (i.e. an 8 times improvement
for a 256 point FFT.) An alternative strategy would be to
attempt to reduce the complexity of the butterfly by using
bit serial arithmetic, thus permitting more butterflies to be
implemented on a single FPGA.

Recommendations to Improve Functionality
Two potential improvements to the design are suggested:

• Use of block floating point.

• Reduction of the size of the twiddle factor ROM.

Currently the design uses fixed scaling by ½ at the output
of the butterfly to prevent numeric overflow. However, this
can significantly reduce the dynamic range of the output
data when the input signals are weak. An alternative
approach is to use a block floating point strategy [4]. In this
case the scaling by ½ is only included in each FFT column
of calculations if the results from the previous column are
likely to cause overflow in the current column. This leads to
an improvement in the dynamic range of the output data.

The additional logic required in the butterfly to implement a
block floating point is a conditional divide by 2, i.e. a simple
shifter. Inclusion of this function in the butterfly should nei-
ther significantly increase its size or degrade its perfor-
mance. In addition to changes to the butterfly some extra
logic is required in the controller unit to operate the shifter.

The overall size of the design could be reduced by investi-
gating techniques to decrease the size of the twiddle factor
ROM. Currently this stores half of the unit circle. By includ-
ing logic to manipulate the input address and sign of the
output data it should be possible to reduce the size of the
ROM to store only a quarter or eighth of the unit circle. This
is, however, only likely to be of significant benefit for large
FFTs.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

AT40K-FFT

7

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

© Atmel Corporation 1998.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
er ty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1132A–08/98/15M

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/6130723/at40k-fft.html

