D/A Converter Series for Electronic Adjustments

Standard 8bit

2ch · 3ch Type D/A Converters

BH2219FVM, BH2220FVM

Description

The BH2219FVM and BH2220FVM are 8bit R-2R-type D/A converters with 2 and 3 channels, respectively. A compact package allows adjacent placement, thereby eliminating deterioration of the D/A converter due to wire pattern. Furthermore, a built-in RESET function ensures that the output voltage at all channels is Low during power up. A broad power supply voltage range (2.7V-5.5V) is available, providing design flexibility.

Features

- 1) Compact package enabling adjacent placement
- 2) Built-in RESET function
- 3) High speed output response characteristics
- 4) 3-line serial interface
- 5) Broad power supply voltage range: 2.7V-5.5V

Applications

DVCs, DSCs, DVDs, CD-Rs, CD-RWs

Parameter	BH2219FVM	BH2220FVM
Power source voltage range	2.7V to 5.5V	2.7V to 5.5V
Number of channels	2ch	3ch
Current consumption	0.6mA	0.6mA
Differential non linearity error	\pm 1.0LSB	±1.0LSB
Integral non linearity error	\pm 1.5LSB	±1.5LSB
Output current performance	±1.0mA	±1.0mA
Settling time	100µs	100µs
Maximum data transfer frequency	10MHz	10MHz
Input method	CMOS	CMOS
Data latch method	LD method	LD method
Package	MSOP8	MSOP8

●Lineup

Absolute Maximum Ratings

(Ta=25℃)

Parameter	Symbol	Limits	Unit	Remarks
Power source voltage	VCC	-0.3 to 7.0	V	-
Terminal voltage	VIN	-0.3 to VCC	V	-
Storage temperature range	TSTG	-55 to 125	ů	-
Power dissipation	PD	470*1	mW	-

*1 Derated at 4.7mW/C at Ta>25°C

*2 These products are not robust against radiation

Recommended Operating Conditions

(Ta=25℃)

Parameter	Symbol		Limits		Unit	Demorke
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
VCC power source voltage	VCC	2.7	-	5.5	V	-
Terminal input voltage range	VIN	0	-	VCC	V	-
Analog output current	IO	-1.0	-	1.0	mA	-
Action temperature range	TOPR	-30	-	85	ດຶ	-
Serial clock frequency	FSCLK	-	1.0	10.0	MHz	-
Limit load capacity	CL	-	-	0.1	μF	-

Electrical Characteristics

(Unless otherwise specified, VCC=3.0V, RL=OPEN, CL=0pF, Ta=25°C)

Deremeter	Cumphiel		Limits		l locit	Osaditisas	
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions	
<current consumption=""></current>							
VCC system	ICC	-	0.4	0.8	mA	CLK=1MHz, 80H setting	
<logic interface=""></logic>							
L input voltage	VIL	GND	-	0.2VCC	V		
H input voltage	VIH	0.8VCC	-	VCC	V		
Input current	IIN	-10	-	10	μA		
<buffer amplifier=""></buffer>							
	ZS1	GND	-	0.1	V	00H setting, at no load	
Output zero scale voltage	ZS2	GND	-	0.3	V	00H setting, IOH=1.0mA	
	FS1	VCC-0.1	-	VCC	V	FFH setting, at no load	
Output full scale voltage	FS2	VCC-0.3	-	VCC	V	FFH setting, IOL=1.0mA	
<d a="" converter="" precision=""></d>							
Differential non linearity error	DNL	-1.0	-	1.0	LSB	Input code 02H to FDH	
Integral non linearity error	INL	-1.5	-	1.5	LSB	Input code 02H to FDH	
VCC power source voltage rise time	trVCC	100	-	-	μs	VCC=0→2.7V	
Power ON reset release voltage	VPOR	-	1.9	-	V		

Parameter	Symbol		Limits		Unit	Conditions
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions
CLK L level time	tCLKL	50	-	-	ns	
CLK H level time	tCLKH	50	-	-	ns	
DI setup time	tsDI	20	-	-	ns	
DI hold time	thDI	40	-	-	ns	
LD setup time	tsLD	50	-	-	ns	
LD hold time	thLD	50	-	-	ns	
LD H level time	tLDH	50	-	-	ns	
Output settling time	tOUT	-	-	100	μs	CL=50pF, RL=10kΩ

(Unless otherwise specified, VCC = 3.0V, Ta = $25^{\circ}C$)

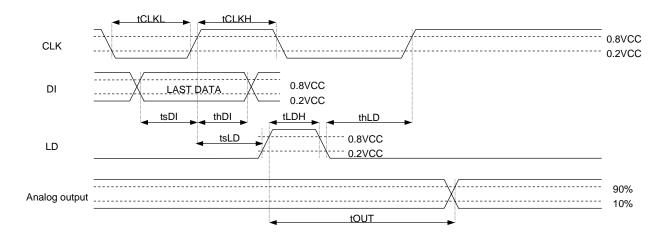


Fig.1

Terminal Description / Block Diagrams

(BH2219FVM)

(BH2220FVM)

Terminal

1

2

3

4

5

6

7

8

Terminal

name

AO1

AO2

AO3

VCC

GND

DI

CLK

LD

<u> </u>	,	
Terminal	Terminal	Function
reminar	name	
1	AO1	Analog output torminal
2	AO2	Analog output terminal
3	TEST	Test terminal
3	MONI	(OPEN at normal use)
4	VCC	Power source terminal
5	GND	Ground terminal
6	DI	Serial data input terminal
7	CLK	Serial clock input terminal
8	חו	Serial data load input
8	LD	terminal

Function

Analog output terminal

Power source terminal

Serial data input terminal

Serial clock input terminal Serial data load input

Ground terminal

terminal

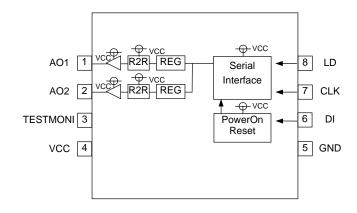
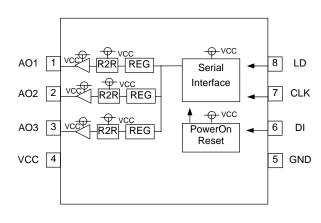
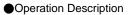



Fig.2



Equivalent Circuits

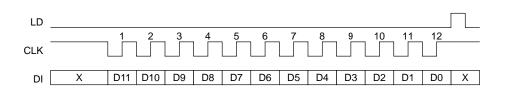

Terminal	Equivalent circuit	Terminal	Equivalent circuit
AO1		DI	
AO2	vcc <u>မ</u> ္ မ္ vcc	CLK	vcc 🛖 🔤 vcc
AO3		LD	

Fig.4 Equivalent circuit

Serial Interface

The Control command consists of 3 lines of 12bit serial input data (MSB first). DI data is read at the rising edge of the CLK, and is held in the LD Low area. The output data is determined in LD High area.

Fig.5

Data Settings

D0	D1	D2	D3	D4	D5	D6	D7	Setting
0	0	0	0	0	0	0	0	GND
1	0	0	0	0	0	0	0	(VCC-GND)/256x1
0	1	0	0	0	0	0	0	(VCC-GND)/256x2
1	1	0	0	0	0	0	0	(VCC-GND)/256x3
0	0	1	0	0	0	0	0	(VCC-GND)/256x4
			-	-				~
0	1	1	1	1	1	1	1	(VCC-GND)/256x254
1	1	1	1	1	1	1	1	(VCC-GND)/256x255

Channel Setting (BH2219FVM)

	<u> </u>			
D8	D9	D10	D11	Setting
0	0	Х	Х	AO1
1	0	Х	Х	AO2
0	1	Х	Х	Inconsequential
1	1	Х	Х	Inconsequential

Channel setting (BH2220FVM)

D8	D9	D10	D11	Setting					
0	0	Х	Х	AO1					
1	0	Х	Х	AO2					
0	1	Х	Х	AO3					
1	1	Х	Х	Inconsequential					

Electrical Characteristics Curves

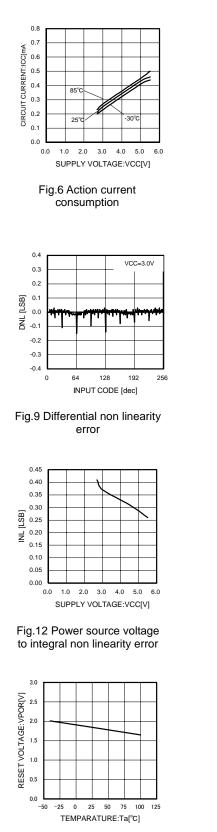


Fig.15 Reset release voltage

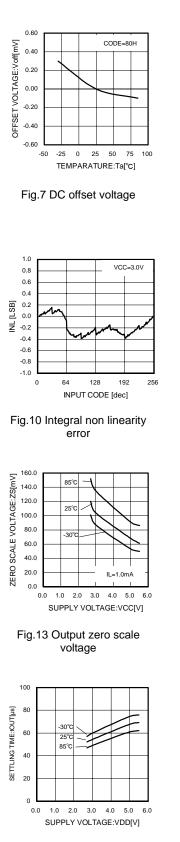


Fig.16 Settling time

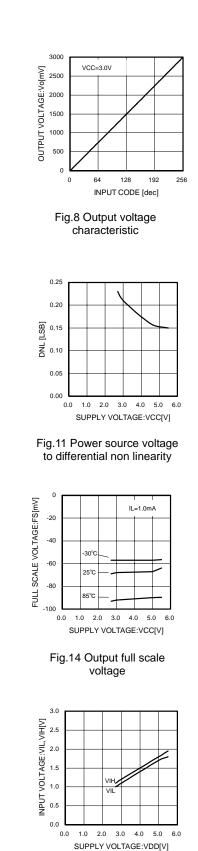


Fig.17 Input voltage

Precautions

- (1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- (2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- (3) Absolute maximum ratings

Operating or testing the device over the maximum specifications may damage the part itself as well as peripheral components. Therefore, please ensure that the specifications are not exceeded.

(4)GND potential

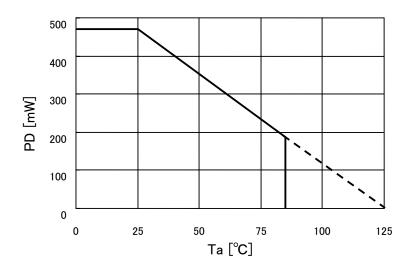
Ensure that the GND terminal is at the lowest potential under all operating conditions.

(5) Thermal design

Use a thermal design that allows for a sufficient margin regarding power dissipation (Pd) under actual operating conditions.

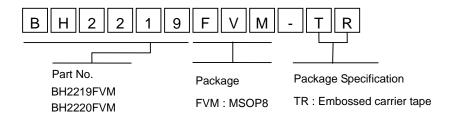
(6) Terminal shorts and mis-mounting

Incorrect orientation or misalignment of the IC when mounting to the PCB may damage part. Short-circuits caused by the introduction of foreign matter between the output terminals or across the output and power supply or GND may also result in destruction.

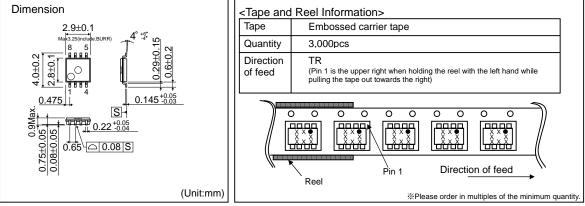

(7) Operation in a strong magnetic field

Operation in a strong electromagnetic field may cause malfunction.

(8) Reset circuit


The power on reset circuit, which initializes internal settings, may malfunction during abrupt power ons. Therefore, set the time constant so as to satisfy the power source rise time.

- Thermal Derating Curve
 - MSOP8



Board size: 70 x 70 x 1.6mm Material : FR4 glass epoxy board (copper foil area less than 3%)

Fig.18

MSOP8

The contents described herein are correct as of September, 2008
 The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.

upon circuit constants in the set

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.

office-automation equipment, communications devices, electrical appliances and electronic toys).

- The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.
- would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Any part of this application note must not be duplicated or copied without our permission. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding

Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO, LTD, disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment,

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which

TEL: +86-22-23029181	FAX: +86-22-23029183
TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
TEL: +86-571-87658072	FAX: +86-571-87658071
TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
TEL: +86-574-87654201	FAX: +86-574-87654208
TEL: +86-532-5779-312	FAX:+86-532-5779-653
TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
TEL: +86-510-82702693	FAX: +86-510-82702992
TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
TEL: +86-20-3878-8100	FAX: +86-20-3825-5965
TEL:+86-752-205-1054	FAX: +86-752-205-1059
TEL: +86-592-238-5705	FAX: +86-592-239-8380
TEL: +86-756-3232-480	FAX: +86-756-3232-460
TEL: +852-2-740-6262	FAX: +852-2-375-8971
TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +65-6332-2322	FAX: +65-6332-5662
TEL: +63-2-807-6872	FAX: +63-2-809-1422
TEL: +66-2-254-4890	FAX: +66-2-256-6334
TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
TEL: +60-4-2286453	FAX: +60-4-2286452
TEL: +81-75-365-1218	FAX: +81-75-365-1228
TEL: +81-45-476-2290	FAX: +81-45-476-2295

Excellence in Electronics

ROHM CO., LTD.

615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto

URL http://www.rohm.com Published by KTC LSI Development Headquarters LSI Business Pomotion Group

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2009 ROHM CO.,LTD.

ROHM Co., Ltd. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

Appendix-Rev4.0