

D/A Converter Series for Electronic Adjustments

Standard 8bit 4ch · 6ch Type D/A Converters

BH2227FV, BH2228FV

Description

The BH2227FV and BH2228FV ICs are 8bit R-2R-type D/A converters with 4 and 6 channels, respectively. Optimized circuitry allows two output voltages to be supplied (3V/5V). Furthermore, the built-in RESET function ensures that the output voltage at all channels is Low during power up. A broad power supply voltage range is available (2.7V-5.5V), providing design flexibility.

Features

- 1) Suitable for 2 independent power sources (3V/5V)
- 2) Built-in RESET function
- 3) High speed output response characteristics
- 4) 3-line serial interface
- 5) Broad power supply voltage range: 2.7V-5.5V

Applications

DVCs, DSCs, DVDs, CD-Rs, CD-RWs

Lineup

Parameter	BH2227FV	BH2228FV
Power source voltage range	2.7 to 5.5V	2.7 to 5.5V
Number of channels	4ch	6ch
Current consumption	0.9mA	0.9mA
Differential non linearity error	±1.0LSB	±1.0LSB
Integral non linearity error	±1.5LSB	±1.5LSB
Output current performance	±1.0mA	±1.0mA
Settling time	100µs	100µs
Data transfer frequency	10MHz	10MHz
Input method	CMOS	CMOS
Data latch method	CSB method	CSB method
Package	SSOP-B14	SSOP-B14

Absolute Maximum Ratings

(Ta=25°C)

Parameter	Symbol	Limits	Unit	Remarks
Power source voltage	VCC	-0.3 to 7.0	V	-
Terminal voltage	VIN	-0.3 to VCC	V	-
Storage temperature range	TSTG	-55 to 125	°C	-
Power dissipation	PD	400*1	mW	-

^{*1} Derated at 4.0mW/ $^{\circ}\text{C}\,$ at Ta>25 $^{\circ}\text{C}\,$

Recommended Operating Conditions

(Ta=25°C)

Dorameter	Cumbal		Limits		Unit	Domorko
Parameter	Symbol	Min.	Тур.	Max.	Offic	Remarks
VDD power source voltage	VDD	2.7	-	5.5	V	-
VFS voltage to be impressed	VFS	2.7	-	5.5	V	-
Terminal input voltage range	VIN	0	-	VDD	V	-
Analog output current	O	-1.0	-	1.0	mA	-
Action temperature range	TOPR	-20	-	85	°C	-
Serial clock frequency	ncy FCLK		1.0	10.0	MHz	-
Limit load capacity	CL	-	-	0.1	μF	-

Electrical Characteristics

(Unless otherwise specified, VDD=VFS=3.0V, RL=OPEN, CL=0pF, Ta=25°C)

Parameter	Cumphal		Limits		Linis	O and distance				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions				
Current consumption>										
VDD system	IDD	-	0.5	1.5	mA	VDD=5V, CLK=1MHz				
VFS system	IFS	-	0.3	0.9	mA					
<logic interface=""></logic>										
L input voltage	VIL	VSS	-	0.6	V	VDD=5.0V				
H input voltage	VIH	2.4	-	VDD	V	VDD=5.0V				
Input current	IIN	-10	-	10	μA					
<buffer amplifier=""></buffer>					•					
	70	VSS	-	0.1	V	00h setting, at no load				
Output zero scale voltage	ZS	VSS	-	0.3	V	00h setting, IOL=1.0mA				
	F04	VDD-0.1	-	VDD	V	FFh setting, at no load				
	FS1	VDD-0.3	-	VDD	V	FFh setting,IOH=1.0mA				
Output full scale voltage		VFS-0.1	-	VFS	V	FFh setting, at no load				
	FS2	VFS-0.3	-	VFS	V	FFh setting,IOH=1.0mA				
<d a="" converter="" precision=""></d>										
Differential non linearity error	DNL	-1.0	-	1.0	LSB	Input code 02H to FDH				
Integral non linearity error	INL	-1.5	-	1.5	LSB	Input code 02H to FDH				
VDD power source voltage rise time	trVDD	100	-	-	μs	VDD=0→2.7				
Power ON reset release voltage	VPOR	-	1.9	-	V					

^{*2} This product is not robust against radiation.

Timing Chart

(Unless otherwise specified, VDD = VFS = 3.0V, RL = OPEN, CL = 0pF, Ta = 25°C)

Parameter	Cumbal		Limits			O a madistica ma
	Symbol	MIN.	TYP.	MAX.	Unit	Conditions
CLK L level time	tCLKL	50	-	-	ns	
CLK H level time	tCLKH	50	-	-	ns	
DI setup time	tsDI	20	-	-	ns	
DI hold time	thDI	40	-	-	ns	
CSB setup time	tsCSB	50	-	-	ns	
CSB hold time	thCSB	50	-	-	ns	
CSB H level time	tCSBH	50	-	-	ns	
D/A Output settling time	tOUT	- 1	-	100	μs	CL=50pF,RL=10kΩ

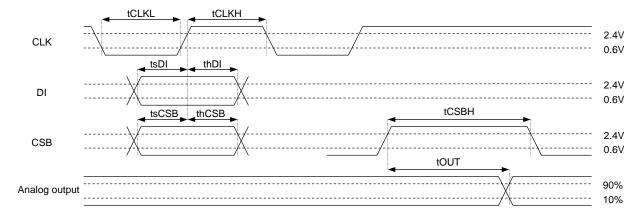
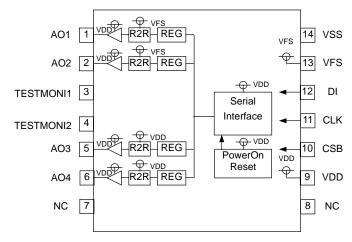
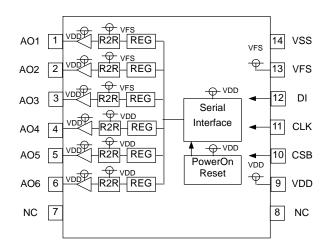



Fig.1

Terminal Description / Block Diagrams


(BH2227FV)

Terminal	Terminal name	Function
1	AO1	Analag autout tarminal
2	AO2	Analog output terminal
3	TESTMONI1	Test terminal
4	TESTMONI2	(OPEN at normal use)
5	AO3	Analog output terminal
6	AO4	Analog output terminal
7	NC	Internally not composted yet
8	NC	Internally not connected yet
9	VDD	Power source terminal (AO3, 4 full scale voltage use in common)
10	CSB	Chip select signal input terminal
11	CLK	Serial clock input terminal
12	DI	Serial data input terminal
13	VFS	AO1,2 full scale Voltage setting terminal
14	VSS	Ground terminal

(BH2228FV)

Terminal	Terminal name	Function					
1	AO1						
2	AO2						
3	AO3	Analog cutnut to main al					
4	AO4	Analog output terminal					
5	AO5						
6	AO6						
7	NC	Internally not connected yet					
8	NC	Internally not connected yet					
9	VDD	Power source terminal (AO4~6 full scale voltage use					
		in common)					
10	CSB	Chip select signal input terminal					
11	CLK	Serial clock input terminal					
12	DI	Serial data input terminal					
13	VFS	AO1,2,3 full scale					
13	VFS	Voltage setting terminal					
14	VSS	Ground terminal					

● Equivalent Circuits

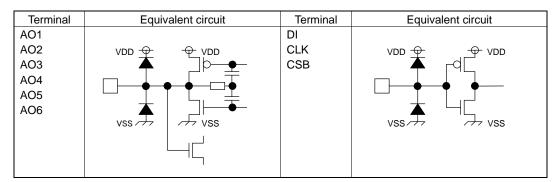


Fig.4 Equivalent circuit

Operation Description

· Command Transmission

The Control command consists of 3-lines of 12bit serial input data (MSB first).

Data is read at the rise edge of CLK, and data becomes valid in the CSB Low area (before the CSB rise for 12bit data).

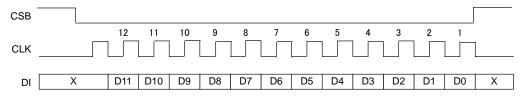


Fig.5

Data Settings

D0	D1	D2	D3	D4	D5	D6	D7	Setting
0	0	0	0	0	0	0	0	GND
1	0	0	0	0	0	0	0	(VDD or VFS-GND)/256x1
0	1	0	0	0	0	0	0	(VDD or VFS-GND)/256x2
1	1	0	0	0	0	0	0	(VDD or VFS-GND)/256x3
0	0	1	0	0	0	0	0	(VDD or VFS-GND)/256x4
			•	-				~
0	1	1	1	1	1	1	1	(VDD or VFS-GND)/256x254
1	1	1	1	1	1	1	1	(VDD or VFS-GND)/256x255

Note: Initial status D[7:0]=00h

Channel Settings

D8	D9	D10	D11	BH2227FV	BH2228FV
0	0	0	0	Inconsequential	Inconsequential
0	0	0	1	AO1	AO1
0	0	1	0	AO2	AO2
0	0	1	1	Inconsequential	AO3
0	1	0	0	Inconsequential	AO4
0	1	0	1	AO3	AO5
0	1	1	0	AO4	AO6
0	1	1	1	Inconsequential	Inconsequential
1	0	0	0	Inconsequential	Inconsequential
1	0	0	1	Inconsequential	Inconsequential
1	0	1	0	Inconsequential	Inconsequential
1	0	1	1	Inconsequential	Inconsequential
1	1	0	0	Inconsequential	Inconsequential
1	1	0	1	Inconsequential	Inconsequential
1	1	1	0	Inconsequential	Inconsequential
1	1	1	1	Inconsequential	Inconsequential

Electrical Characteristics Curves

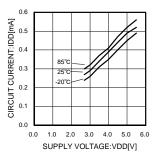


Fig.6 VDD current consumption

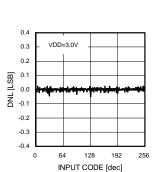


Fig.9 Differential non linearity error

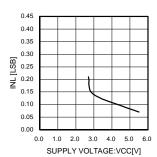


Fig.12 Power source voltage to integral non linearity error

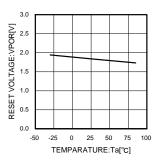


Fig.15 Reset release voltage

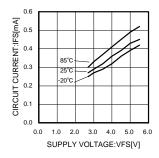


Fig.7 VFS current consumption

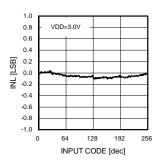


Fig.10 Integral non linearity

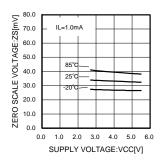


Fig.13 Output zero scale voltage

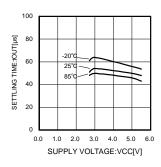


Fig.16 Settling time

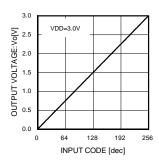


Fig.8 Output voltage characteristic

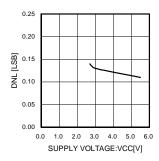


Fig.11 Power source voltage to differential non linearity error

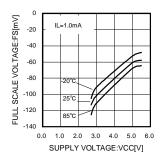


Fig.14 Output full scale voltage

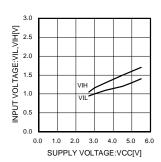


Fig.17 Input voltage

Operation Notes

(1) Absolute maximum ratings

Operating or testing the device over the maximum specifications may damage the part itself as well as peripheral components. Therefore, please ensure that the specifications are not exceeded.

(2) GND potential

Ensure that the GND terminal is at the lowest potential under all operating conditions.

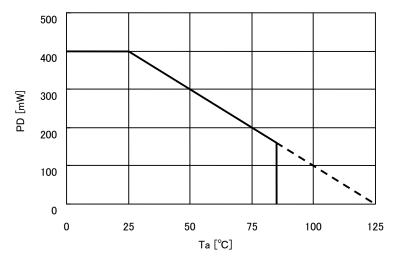
(3) Thermal design

Use a thermal design that allows for a sufficient margin regarding power dissipation (Pd) under actual operating conditions.

(4) Terminal shorts and mis-mounting

Incorrect orientation or misalignment of the IC when mounting to the PCB may damage part. Short-circuits caused by The introduction of foreign matter between the output terminals or across the output and power supply or GND may also result in destruction.

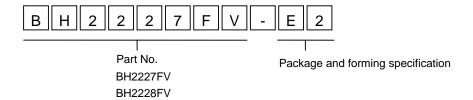
(5) Operation in a strong magnetic field

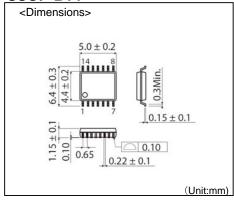

Operation in a strong electromagnetic field may cause malfunction.

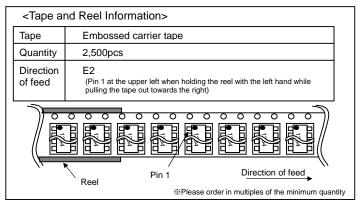
- (6) Set the power source voltage so that $VDD \ge VFS$.
- (7) Reset function

The power on reset circuit, which initializes internal settings, may malfunction during abrupt power ons. Therefore, set the time constant so as to satisfy the power source rise time.

Thermal Derating Curve


· SSOP-B14


Board size: 70 x 70 x 1.6mm Material: FR4 glass epoxy board (copper foil area less than 3%)


Fig.18

● Part Number Explanation

SSOP-B14

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD.

ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

Appendix1-Rev2.0