Dual Digitally Programmable Potentiometers (DPP™) with 256 Taps & I²C Compatible Interface

Description

The CAT5270 is a volatile 256-tap by two channels, digitally programmable potentiometer (DPP^m) with an I²C compatible interface. Each DPP consists of a linear taper series of resistive elements connected between two externally accessible end points. The tap points between each resistive element are connected to the wiper outputs with CMOS switches. On power up the wiper position goes to mid scale.

The CAT5270 can be used as a potentiometer or as a two terminal, variable resistor. It is available in a 14–lead TSSOP package operating over the industrial temperature range (-40° C to 85° C).

Features

- Two Linear Taper Digitally Programmable Potentiometers
- 256 Resistor Taps per Potentiometer
- End to End Resistance 50 k Ω , 100 k Ω
- I²C Compatible Interface
- Low Wiper Resistance 75 Ω (typ.)
- 2.5 V to 5.5 V Operation
- Standby Current Less than 1 µA
- Power On to Mid Scale
- 14-lead TSSOP Package
- Industrial Temperature Range

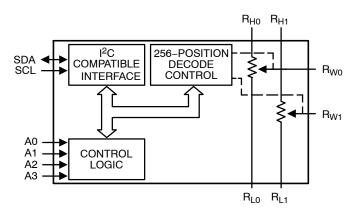
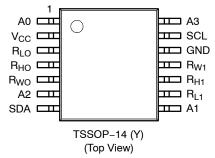


Figure 1. Functional Diagram


ON Semiconductor®

http://onsemi.com

TSSOP-14 Y SUFFIX CASE 948AM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

[©] Semiconductor Components Industries, LLC, 2009 October, 2009 – Rev. 3

Pin Description

SCL: Serial Clock

The CAT5270 serial clock input pin is used to clock all data transfers into or out of the device.

SDA: Serial Data

The CAT5270 bidirectional serial data pin is used to transfer data into and out of the device. The SDA pin is an open drain output and can be wire–OR'd with the other open drain or open collector I/Os.

A0, A1, A2, A3: Device Address Inputs

These inputs set the device address when addressing multiple devices. A total of sixteen devices can be addressed on a single bus. A match in the slave address must be made with the address input in order to initiate communication with the CAT5270.

R_H, R_L: Resistor End Points

The two sets of R_H and R_L pins are equivalent to the terminal connections on a mechanical potentiometer.

R_W: Wiper

The R_W pins are equivalent to the wiper terminal of a mechanical potentiometer.

Device Operation

The CAT5270 is two resistor arrays integrated with an l^2C compatible interface and two 8-bit wiper control registers. Each resistor array contains 255 separate resistive elements connected in series. The physical ends of each array are equivalent to the fixed terminals of a mechanical potentiometer (R_H and R_L). The tap positions between and at the ends of the series resistors are connected to the output

Table 1. PIN DESCRIPTION

Pin # TSSOP-14	Name	Function		
1	A0	Device Address, LSB		
2	V _{CC}	Supply Voltage		
3	R _{L0}	Low Reference Terminal for Potentiometer 0		
4	R _{H0}	High Reference Terminal for Potentiometer 0		
5	R _{W0}	Wiper Terminal for Potentiometer 0		
6	A2	Device Address		
7	SDA	Serial Data Input/Output		
8	A1	Device Address		
9	R _{L1}	Low Reference Terminal for Potentiometer 1		
10	R _{H1}	High Reference Terminal for Potentiometer 1		
11	R _{W1}	Wiper Terminal for Potentiometer 1		
12	GND	Ground		
13	SCL	Bus Serial Clock		
14	A3	Device Address		

wiper terminals (R_W) by a CMOS transistor switch. Only one tap point for each potentiometer is connected to its wiper terminal at a time and is determined by the value of the wiper control register. Data can be read or written to the wiper control register via the I²C compatible interface. Also, the device can be instructed to operate in an "increment/ decrement" mode.

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
Temperature Under Bias	-55 to +125	°C
Storage Temperature	-65 to +150	°C
Voltage on Any Pin with Respect to V _{SS} (Note 1)	-2.0 to +V _{CC} + 2.0	V
V _{CC} with Respect to Ground	-2.0 to +6.0	V
Package Power Dissipation Capability ($T_A = 25^{\circ}C$)	1.0	W
Lead Soldering Temperature (10 sec)	300	°C
Wiper Current	±6	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The minimum DC input voltage is -0.5 V. During transitions, inputs may undershoot to -2.0 V for periods of less than 20 ns. Maximum DC voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods of less than 20 ns.

Table 3. RECOMMENDED OPERATING CONDITIONS

Parameters	Ratings	Units
V _{CC}	+2.5 to +5.5	V
Industrial Temperature	-40 to +85	°C

Table 4. POTENTIOMETER CHARACTERISTICS (V_{CC} = +2.5 V to +5.5 V, unless otherwise specified.)

				Limits			
Symbol	Parameter	Test Conditions	Min Typ		Max	Units	
R _{POT}	Potentiometer Resistance (100 k Ω)			100		kΩ	
R _{POT}	Potentiometer Resistance (50 k Ω)			50		kΩ	
	Potentiometer Resistance Tolerance				±20	%	
	R _{POT} Matching				1	%	
	Power Rating	25°C, each pot			50	mW	
Iw	Wiper Current				±3	mA	
R _W	Wiper Resistance	$I_W = \pm 3 \text{ mA} @ V_{CC} = 3 \text{ V}$		200	300	Ω	
R _W	Wiper Resistance	$I_W = \pm 3 \text{ mA} @ V_{CC} = 5 \text{ V}$		75	150	Ω	
V _{TERM}	Voltage on any R_H or R_L Pin	V _{SS} = 0 V	V _{SS}		V _{CC}	V	
	Resolution			0.4		%	
	Absolute Linearity (Note 4)	R _{w(n)(actual)} - R _{(n)(expected)} (Note 7)			±1	LSB (Note 6)	
	Relative Linearity (Note 5)	$R_{w(n+1)} - R_{[w(n)+LSB]}$ (Note 7)			±0.2	LSB (Note 6)	
TC _{RPOT}	Temperature Coefficient of R _{POT}	(Note 3)		±100		ppm/°C	
TC _{RATIO}	Ratiometric Temp. Coefficient	(Note 3)			20	ppm/°C	
$C_{H}/C_{L}/C_{W}$	Potentiometer Capacitances	(Note 3)		10/10/25		pF	
fc	Frequency Response	R _{POT} = 50 kΩ (Note 3)		0.4		MHz	

2. Latch-up protection is provided for stresses up to 100 mA on address and data pins from -1 V to V_{CC} +1 V.

3. This parameter is tested initially and after a design or process change that affects the parameter.

4. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a

potentiometer. 5. Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.

6. LSB = R_{TOT} / 255 or ($R_H - R_L$) / 255, single pot 7. n = 0, 1, 2, ..., 255

Symbol	Parameter	Test Conditions	Min	Мах	Units	
Icc	Power Supply Current	f _{SCL} = 400 kHz, SDA = Open V _{CC} = 5.5 V, Inputs = GND		1	mA	
I _{SB}	Standby Current (V _{CC} = 5.0 V)	V_{IN} = GND or V_{CC} , SDA = Open		5	μΑ	
ILI	Input Leakage Current	$V_{IN} = GND$ to V_{CC}		10	μΑ	
I _{LO}	Output Leakage Current	$V_{OUT} = GND$ to V_{CC}		10	μΑ	
V _{IL}	Input Low Voltage		-1	V _{CC} x 0.3	V	
VIH	Input High Voltage		V _{CC} x 0.7	V _{CC} + 1.0	V	
V _{OL1}	Output Low Voltage ($V_{CC} = 2.5 V$)	I _{OL} = 3 mA		0.4	V	

Table 6. CAPACITANCE ($T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = 5 V$)

Symbol	Test	Conditions	Мах	Units
C _{I/O} (Note 8)	Input/Output Capacitance (SDA)	$V_{I/O} = 0 V$	8	pF
C _{IN} (Note 8)	Input Capacitance (A0, A1, A2, A3, SCL, WP)	V _{IN} = 0 V	6	pF

Table 7. A.C. CHARACTERISTICS

		2.5 V –	5.5 V	
Symbol	Parameter	Min	Max	Units
f _{SCL}	Clock Frequency		400	kHz
T _I (Note 8)	Noise Suppression Time Constant at SCL, SDA Inputs		200	ns
t _{AA}	SLC Low to SDA Data Out and ACK Out		1	μs
t _{BUF} (Note 8)	Time the bus must be free before a new transmission can start	1.2		μs
t _{HD:STA}	Start Condition Hold Time	0.6		μs
t _{LOW}	Clock Low Period	1.2		μs
thigh	Clock High Period	0.6		μs
t _{SU:STA}	Start Condition Setup Time (for a Repeated Start Condition)	0.6		μs
t _{HD:DAT}	Data in Hold Time	0		ns
t _{SU:DAT}	Data in Setup Time	50		ns
t _R (Note 8)	SDA and SCL Rise Time		0.3	μs
t _F (Note 8)	SDA and SCL Fall Time		300	ns
t _{SU:STO}	Stop Condition Setup Time	0.6		μs
t _{DH}	Data Out Hold Time	100		ns

Table 8. POWER UP TIMING (Notes 8 and 9)

Symbol	Parameter	Max	Units
t _{PUR}	Power-up to Read Operation	1	ms
t _{PUW}	Power-up to Write Operation	1	ms

Table 9. WIPER TIMING

Symbol	Parameter	Max	Units
t _{WRPO}	Wiper Response Time After Power Supply Stable	10	μs
t _{WRL}	Wiper Response Time After Instruction Issued	10	μs

8. This parameter is tested initially and after a design or process change that affects the parameter.
9. t_{PUR} and t_{PUW} are delays required from the time V_{CC} is stable until the specified operation can be initiated.

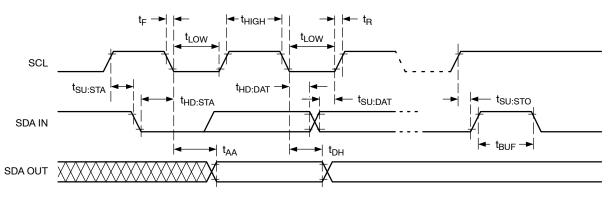


Figure 2. Bus Timing

Serial Bus Protocol

The following defines the features of the I²C compatible interface protocol:

- 1. Data transfer may be initiated only when the bus is not busy.
- During a data transfer, the data line must remain stable whenever the clock line is high. Any changes in the data line while the clock is high will be interpreted as a START or STOP condition.

The device controlling the transfer is a master, typically a processor or controller, and the device being controlled is the slave. The master will always initiate data transfers and provide the clock for both transmit and receive operations. Therefore, the CAT5270 will be considered a slave device in all applications.

START Condition

The START Condition precedes all commands to the device, and is defined as a HIGH to LOW transition of SDA when SCL is HIGH (see Figure 3). The CAT5270 monitors the SDA and SCL lines and will not respond until this condition is met.

STOP Condition

A LOW to HIGH transition of SDA when SCL is HIGH determines the STOP condition (see Figure 3). All operations must end with a STOP condition.

Device Addressing

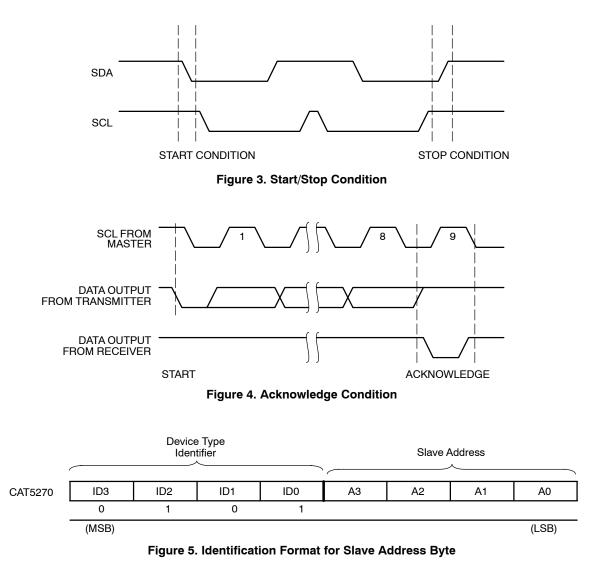
The bus Master begins a transmission by sending a START condition. The Master then sends the Slave Addres Byte which contains the address of the particular slave device it is requesting. The four most significant bits of the 8-bit slave address are fixed as 0101 for the CAT5270. The next four significant bits (A3, A2, A1, A0) are the device address bits and define which device the Master is accessing (see Figure 5). Up to sixteen devices may be individually addressed by the system. Typically, +5 V (V_{CC}) and ground are hard-wired to these pins to establish the device's address.

After the Master sends a START condition and the slave address byte, the CAT5270 monitors the bus and responds with an acknowledge (on the SDA line) when its address matches the transmitted slave address.

Slave Address Byte

The most significant four bits of the slave address are a device type identifier. These bits for the CAT5270 are fixed at 0101[B] (refer to Figure 5).

The next four bits, A3 – A0, are the internal slave address and must match the physical device address which is defined by the state of the A3 – A0 input pins for the CAT5270 to successfully continue the command sequence. Only the device which slave address matches the incoming device address sent by the master executes the instruction. The A3 – A0 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS}.


Acknowledge

After a successful data transfer, each receiving device is required to generate an acknowledge. The Acknowledging device pulls down the SDA line during the ninth clock cycle, signaling that it received the 8 bits of data (see Figure 4).

The CAT5270 responds with an acknowledge after receiving a START condition and its slave address. If the device has been selected along with a write operation, it responds with an acknowledge after receiving each 8-bit byte.

When the CAT5270 is in a READ mode it transmits 8 bits of data, releases the SDA line, and monitors the line for an acknowledge. Once it receives this acknowledge, the CAT5270 will continue to transmit data. If no acknowledge is sent by the Master, the device terminates data transmission and waits for a STOP condition.

If the device has been selected with an IN/DEC operation it will no longer responds with acknoleadge as the received data it is not in a byte format.

Instruction and Register Description

Instruction Byte

The next byte sent to the CAT5270 contains the instruction and register pointer information. The four most significant bits used provide the instruction opcode I3 - I0.

Instructions

Instructions are three bytes in length. These instructions are:

- Read Wiper Control Register read the current wiper position of the selected potentiometer in the WCR
- Write Wiper Control Register change current wiper position in the WCR of the selected potentiometer
- Increment/Decrement Wiper Control Register change step by step the current wiper position in the WCR of the selected potentiometer

The basic sequence of the three byte instructions is illustrated in Figure 8.

Write Operation

In the Write mode, the Master device sends the START condition and the slave address information to the Slave device. After the Slave generates an acknowledge, the Master sends the instruction byte that defines the requested operation of CAT5270. The instruction byte consists of a seven-bit opcode followed by pot/register selection bit. After receiving another acknowledge from the Slave, the Master device transmits the data to be written into the selected register. The CAT5270 acknowledges once more and the Master generates the STOP condition.

Increment/Decrement Command

The last command is Increment/Decrement (Figures 9 and 10). The Increment/Decrement command is different from the other commands. Once the instruction is issued and the CAT5270 has responded with an acknowledge, the master can clock the selected wiper up and/or down in one segment steps; thereby providing a fine tuning capability to the host. For each SCL clock pulse (t_{HIGH}) while SDA is HIGH, the selected wiper will move one resistor segment towards the R_H terminal. Similarly, for each SCL clock pulse while SDA is LOW, the selected wiper will move one resistor segment towards the R_L terminal.

See Instructions format for more details.

Wiper Control Register (WCR)

The CAT5270 contains two 8-bit Wiper Control Registers, one for each potentiometer. The Wiper Control Register output is decoded to select one of 256 switches along its resistor array. The contents of the WCR can be altered in two ways: it may be written by the host via Write Wiper Control Register instruction; or it can be modified one step at a time by the Increment/decrement instruction (see Instruction section for more details).

Р	WCR
0	Set R0 wiper position
1	Set R1 wiper position

The Wiper Control Register is a volatile register that loses its contents when the CAT5270 is powered-down. Upon power-up, the wiper is set to midspan and may be repositioned anytime after the power has become stable.

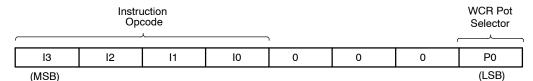


Figure 6. Instruction Byte Format

Table 10. INSTRUCTION SET

		Instruction Set (Note 10)							
Instruction	13	12	11	10	F2	F1	F0	WCR/P	Operation
Read Wiper Control Register	1	0	0	1	0	0	0	1/0	Read the contents of the Wiper Control Register pointed to by P
Write Wiper Control Register	1	0	1	0	0	0	0	1/0	Write new value to the Wiper Control Register pointed to by P
Increment/Decrement Wiper Control Register	0	0	1	0	0	0	0	1/0	Enable Increment/decrement of the Control Latch pointed to by P

10.1/0 = data is one or zero

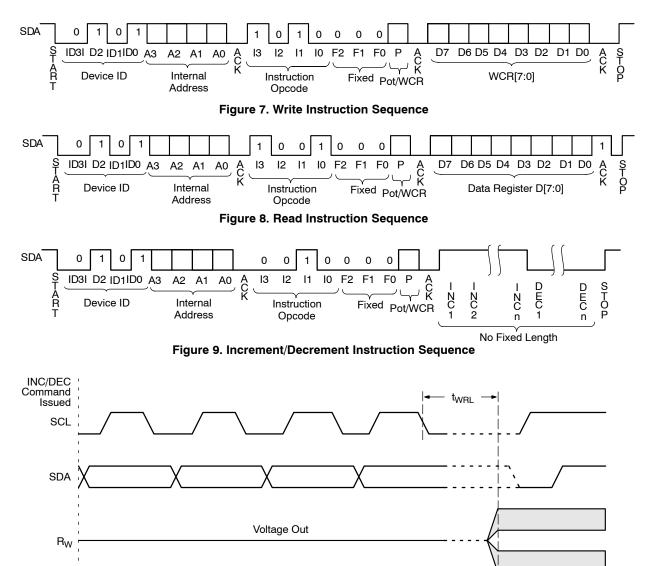


Figure 10. Increment/Decrement Timing Limits

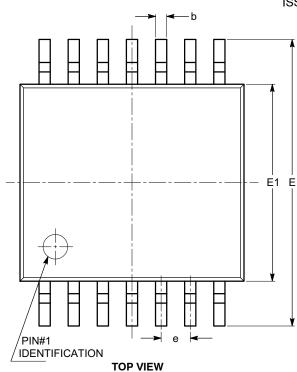
Instruction Format

Read Wiper Control Register (WCR)

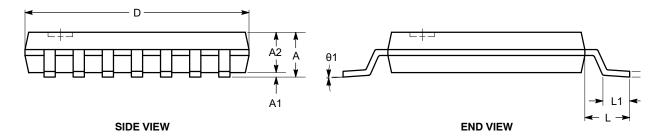
S T A			DE\	/ICE	ADDF	RESSI	ES		K K		INSTRUCTION					А С К									A C K	S T O		
R	0	1	0	1	A3	A2	A1	A0		1	0	0	1	0	0	0	Ρ	ĸ	7	6	5	4	3	2	1	0	· ·	P

Write Wiper Control Register (WCR)

S T A			DE\	/ICE	ADD	RESSI	ES		A C K		INSTRUCTION					К С К	C								A C K	S T O		
R T	0	1	0	1	A3	A2	A1	A0		1	0	1	0	0	0	0	Ρ	ĸ	7	6	5	4	3	2	1	0	ĸ	P


Increment (I)/Decrement (D) Wiper Control Register (WCR)

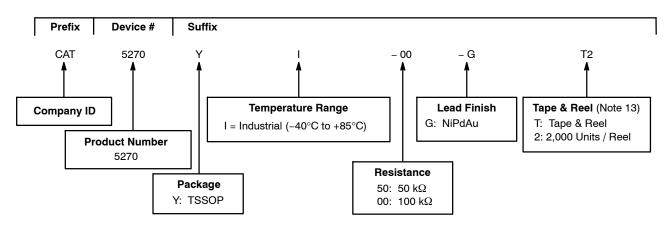
S T			DEV	ICE A	DDRE	ESSES	5		A C			IN	ISTRI	JCTIC	ON			A C			DATA	l l		S T
A R T	0	1	0	1	A3	A2	A1	A0	к	0	0	1	0	0	0	0	Ρ	к	 / D	 / D	•	 / D	 / D	O P


http://onsemi.com

PACKAGE DIMENSIONS

TSSOP14, 4.4x5 CASE 948AM-01 ISSUE O

SYMBOL	MIN	NOM	MAX					
А			1.10					
A1	0.05		0.15					
A2	0.85		0.95					
b	0.19		0.30					
с	0.13		0.20					
D	4.90		5.10					
E	6.30		6.50					
E1	4.30		4.50					
е	0.65 BSC							
L	1.00 REF							
L1	0.45		0.75					
θ	0°		8°					



Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-153.

Example of Ordering Information (Notes 11 and 12)

ORDERING INFORMATION

Part Number	Resistance	Package	Lead Finish
CAT5270YI-50-GT2	50 kΩ	TSSOP-14	NiPdAu
CAT5270YI-00-GT2	100 kΩ		

11. All packages are RoHS-compliant (Lead-free, Halogen-free).

12. The device used in the following example: CAT5270ŶI-00-GT2 is a TSSOP, Industrial Temperature, 100 kΩ, NiPdAu (TSSOP-14), Tape & Reel, 2,000/Reel.

13. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product customer personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent feedesign or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative