

Dual LNA with Selectable Gain and Input Impedance

Preliminary Technical Data

FEATURES

Low noise Input voltage noise: 0.85 nV/√Hz Current noise: 2.0 pA/√Hz Excellent ac specifications 200 MHz bandwidth @ G = 4 271 V/µs slew rate Selectable Gain: ×4, ×8, ×12, ×16 Active input impedance matching Single-ended input, differential output Supply range: 4.5 V to 5.5 V Low power: 60 mW/channel

APPLICATIONS

Ultrasound front ends Wideband A/D drivers Low Noise Preamplification Predriver for I/Q demodulators and phase shifters

GENERAL DESCRIPTION

The AD8432 is a dual-channel, low power, ultralow noise amplifier with selectable gain and active impedance matching. Each amplifier has a single-ended input, differential output, and optional integrated input clamps. By pin strapping the gain setting pins, four accurate gains of $G = \times 4$, $\times 8$, $\times 12$, and $\times 16$ are possible. A bandwidth of 200 MHz at $G = \times 4$ makes this amplifier well suited for many high speed applications.

The exceptional noise performance of the AD8432 is made possible by the active impedance matching. Using a feedback network, the input impedance of the amplifiers can be adjusted to match the signal source impedance without compromising the noise performance. Impedance matching and low noise of the AD8432 allow designers to create wider dynamic range systems that are able to detect even very low level signals.

FUNCTIONAL BLOCK DIAGRAM

AD8432

The AD8432 achieves $0.85 \text{ nV}/\sqrt{\text{Hz}}$ input referred voltage noise for a gain of ×4. The ultralow noise and low distortion of the AD8432, excellent gain accuracy, and active impedance matching is ideal for high performance ultrasound systems. Dual-channel and gain matching make it ideal for processing I/Q demodulator signals.

The AD8432 operates on a single supply of 5 V at 24 mA. It is available in a 4 mm × 4 mm, 24-lead LFSCP. The LFCSP features an exposed paddle that provides a low thermal resistance path to the PCB, which enables more efficient heat transfer and increases reliability. The operating temperature range is -40° C to $+85^{\circ}$ C.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6

Typical Performance Characteristics	7
Theory of Operation	8
Low Noise Amplifier (LNA)	8
Gain Setting Technique	8
Active Input Resistance Matching	9
Applications Information	11
Outline Dimensions	12
Ordering Guide	12

SPECIFICATIONS

 $V_S = 5 V$, $T_A = 25^{\circ}C$, $R_S = R_{IN} = 50 \Omega$, $R_{FB} = 150 \Omega$, $C_{SH} = 47 pF$, $R_{SH} = 15 \Omega$, $C_L = 5 pF$, $R_L = 500 \Omega$ (per SE output), G = 12.04 dB (single-ended input to differential output), f = 10 MHz, unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
Gain Range	Single-ended input to differential output (selectable gain)	12.04		24.08	dB
	Input to either of two outputs (selectable gain)	6.02		18.06	dB
–3 dB Small Signal Bandwidth	R_{IN} unterminated, $R_S = 50 \Omega$, $R_{FB} = \infty$				
	$G=12.04~dB,~R_{S}=50~\Omega,~R_{FB}=\infty,~C_{SH}=0~pF,~R_{SH}=0~\Omega$		200		MHz
	$G=18.06~dB,R_{s}=50~\Omega,R_{FB}=\infty,C_{SH}=0~pF,R_{SH}=0~\Omega$		82		MHz
	$G=21.58~dB,R_{\text{S}}=50~\Omega,R_{\text{FB}}=\infty,C_{\text{SH}}=0~p\text{F},R_{\text{SH}}=0~\Omega$		50		MHz
	$G=24.08~dB,R_{s}=50~\Omega,R_{FB}=\infty,C_{SH}=0~pF,R_{SH}=0~\Omega$		32		MHz
–3 dB Large Signal Bandwidth	$V_{OUT} = 2 V p - p$		22		MHz
Slew Rate (Rising Edge)	$V_{OUT} = 2 V p-p, f = 10 MHz$		271		V/µs
Slew Rate (Falling Edge)	$V_{OUT} = 2 V p-p, f = 10 MHz$		170		V/µs
Overdrive Recovery Time			10		ns
DISTORTION/NOISE PERFORMANCE					
Input Voltage Noise	$R_{S} = 0, R_{FB} = \infty, f = 100 \text{ kHz}$		0.85		nV/√⊦
Input Current Noise	$R_{FB} = \infty$, f = 100 kHz		2.0		pA/√ŀ
Noise Figure					
Unterminated	$R_s = 50 \Omega$, $R_{FB} = \infty$, $f = 1 MHz$		2.8		dB
Active Termination	$R_s = R_{IN} = 50 \Omega$, $R_{FB} = 150 \Omega$, $f = 1 MHz$		5.4		dB
	$R_{\text{S}} = 50 \ \Omega, \ R_{\text{FB}} = 226 \ \Omega, \ R_{\text{IN}} = 75 \ \Omega \ f = 1 \ MHz$		4.2		dB
	$R_{\text{S}}=50~\Omega,R_{\text{FB}}=301~\Omega,R_{\text{IN}}=100~\Omega$ f $=1~\text{MHz}$		3.7		
	$R_s = 50 \ \Omega$, $R_{FB} = 619 \ \Omega$, $R_{IN} = 200 \ \Omega$, $f = 1 \ MHz$		3.1		dB
	$R_{\text{S}} = 50 \; \Omega, R_{\text{FB}} = 3.57 \; k\Omega, R_{\text{IN}} = 1 \; k\Omega, f = 1 \; \text{MHz}$		2.8		dB
Output Referred Noise	$G = 12.04 \text{ dB}, R_s = 0 \Omega, R_{FB} = \infty, f = 100 \text{ kHz}$		3.4		nV/√⊦
	$G = 18.06 \text{ dB}, R_s = 0 \Omega, R_{FB} = \infty, f = 100 \text{ kHz}$		6.8		nV/√⊦
	$G = 21.58 \text{ dB}, R_s = 0 \Omega, R_{FB} = \infty, f = 100 \text{ kHz}$		10.2		nV/√⊦
	$G = 24.08 \text{ dB}, R_s = 0 \Omega, R_{FB} = \infty, f = 100 \text{ kHz}$		13.6		nV/√⊦
Harmonic Distortion					
HD2	$V_{OUT} = 1 V p \cdot p$, $f = 1 MHz$, $R_s = R_{IN} = 50 \Omega$		-102		dBc
HD3	$V_{\text{OUT}} = 1 \text{ V p-p}, f = 1 \text{ MHz}, R_s = R_{\text{IN}} = 50 \Omega$		-102		dBc
HD2	$V_{\text{OUT}} = 1 \text{ V p-p}, f = 10 \text{ MHz}, R_s = R_{\text{IN}} = 50 \Omega$		-64		dBc
HD3	$V_{\text{OUT}} = 1 \text{ V p-p}, f = 10 \text{ MHz}, R_s = R_{\text{IN}} = 50 \Omega$		-70		dBc
HD2	$V_{\text{OUT}} = 1 \text{ V p-p}, f = 1 \text{ MHz}, R_{\text{S}} = 50 \Omega, R_{\text{FB}} = \infty C_{\text{SH}} = 0 \text{ pF}$		-99		dBc
HD3	$V_{OUT} = 1 V p$ -p, f = 1 MHz, R _s = 50 Ω , R _{FB} = ∞ C _{SH} = 0 pF		-100		dBc
HD2	$V_{OUT} = 1 V p-p$, $f = 10 MHz$, $R_S = 50 \Omega$, $R_{FB} = \infty C_{SH} = 0 pF$		63		dBc
HD3	$V_{OUT} = 1 V p-p$, f = 10 MHz, $R_s = 50 \Omega$, $R_{FB} = \infty C_{SH} = 0 pF$		70		dBc
HD2	$V_{\text{OUT}} = 2 \text{ V p-p}, f = 1 \text{ MHz}, R_s = R_{\text{IN}} = 50 \Omega$		-95		dBc
HD3	$V_{OUT} = 2 V p-p, f = 1 MHz, R_s = R_{IN} = 50 \Omega$		-97		dBc
HD2	$V_{OUT} = 2 V p-p, f = 10 MHz, R_s = R_{IN} = 50 \Omega$		-57		dBc
HD3	$V_{OUT} = 2 V p-p, f = 10 MHz, R_s = R_{IN} = 50 \Omega$		-67		dBc
HD2	$V_{OUT} = 2 V p$ -p, f = 1 MHz, R _S = 50 Ω , R _{FB} = ∞ C _{SH} = 0 pF		-93		dBc
HD3	$V_{OUT} = 1 V p$ -p, f = 1 MHz, $R_S = 50 \Omega$, $R_{FB} = \infty C_{SH} = 0 pF$		-95		dBc
HD2	$V_{\text{OUT}}=1~V~p\text{-}p,~f=10~MHz,~R_{\text{S}}=50~\Omega,~R_{\text{FB}}=\infty~C_{\text{SH}}=0~p\text{F}$		-56		dBc
HD3	$V_{OUT} = 1 V p-p, f = 10 MHz, R_s = 50 \Omega, R_{FB} = \infty C_{SH} = 0 pF$		-64		dBc

AD8432

Preliminary Technical Data

Parameter	Conditions	Min	Тур	Max	Unit
Two-Tone IMD3 Distortion					
10 MHz	$V_{OUT} = 1 \text{ V p-p}, \text{ f } 1 = 9.5 \text{ MHz}, \text{ f } 2 = 10.5 \text{ MHz}, \text{ R}_{S} = \text{R}_{IN} = 50 \Omega$		-90		dBc
	$V_{OUT} = 1 \text{ V p-p}, f1 = 9.5 \text{ MHz}, f2 = 10.5 \text{ MHz}, R_s = 50 \Omega$,		-72		dBc
	$R_{FB} = \infty, C_{SH} = 0 \text{ pF}$				
	$V_{OUT} = 2 V p-p$, f 1 = 9.5 MHz, f2 = 10.5 MHz, Rs = R _{IN} = 50 Ω		-73		dBc
	$V_{OUT} = 2 V p-p$, f1 = 9.5 MHz, f2 = 10.5 MHz, Rs = 50 Ω ,		-63		dBc
	$R_{FB} = \infty, C_{SH} = 0 \text{ pF}$				
1 MHz	V_{OUT} = 1 V p-p, f 1 = 0.9 MHz, f2 = 1.1 MHz, R_{\text{S}} = R_{IN} = 50 Ω		-110		dBc
	$V_{OUT} = 1 V p-p$, f1 = 0.9 MHz, f2 = 1.1 MHz, Rs = 50 Ω ,		-102		dBc
	$R_{FB} = \infty, C_{SH} = 0 \text{ pF}$				
	$V_{OUT} = 2 V p-p, f 1 = 0.9 MHz, f 2 = 1.1 MHz, R_s = R_{IN} = 50 \Omega$		-103		dBc
	$V_{OUT} = 2 V p-p, f1 = 0.9 MHz, f2 = 1.1 MHz, R_s = 50 \Omega,$		-98		dBc
	$R_{FB} = \infty$, $C_{SH} = 0pF$		TRO		15
Input 1dB Compression Point	$V_{OUT} = 1 V p-p, f = 1 MHz to 10 MHz$		TBD		dBm
Input 1dB Compression Point	$V_{OUT} = 2 V p-p, f = 1 MHz$ to 10 MHz		TBD		dBm
Output-Third Order Intercept					
	$V_{OUT} = 1 V p-p of composite tones, f = 1 MHz$		36		dBV rms
	$V_{OUT} = 1 V p-p of composite tones, f = 10 MHz$		27		dBV rms
	$V_{OUT} = 2 V p-p$ of composite tones, f = 1 MHz		41		dBV rms
	$V_{OUT} = 2 V p-p of composite tones, f = 10 MHz$		26		dBV rms
	V_{OUT} = 1 V p-p of composite tones, f = 1 MHz, reference to 50 Ω		49		dBm
	$V_{OUT} = 1 V p$ -p of composite tones, f = 10 MHz, reference to 50 Ω		40		dBm
	$V_{OUT} = 2 V p-p$ of composite tones, f = 1 MHz, reference to 50 Ω		54		dBm
	$V_{OUT} = 2 V p-p$ of composite tones, f = 10 MHz, reference to 50 Ω		39		dBm
Crosstalk	V _{OUT} = 1 V p-p, f = 1 MHz		TBD		dB
DC PERFORMANCE					
Input Offset Voltage			1		mV
Input Offset Voltage Drift			300		μV/°C
INPUT CHARACTERISTICS					
Input Voltage Range	AC-coupled		1.2		V p-p
Input Resistance	$R_{FB} = 150 \ \Omega, f = 100 \ \text{kHz}$		50		Ω
	$R_{FB} = 226 \Omega$, f = 100 kHz		75		Ω
	$R_{FB} = 301 \ \Omega, f = 100 \ \text{kHz}$		100		Ω
	$R_{FB} = 619 \Omega, f = 100 \text{ kHz}$		200		Ω
	$R_{FB} = 3.57 \text{ k}\Omega, f = 100 \text{ kHz}$		1		kΩ
	$R_{FB} = \infty$, f = 10 kHz		6.2		kΩ
Input Capacitance			6		рF
Input Common Mode Voltage			3.3		V
OUTPUT CHARACTERISTCS					
Output Common-Mode Voltage			2.5		V
Output Offset Voltage			4		mV
Output Voltage Swing			4.8		V p-p
Output Resistance	Single-ended, either output			200	Ω
Output Resistance in Shutdown Mode	Single-ended, either output	1000			Ω
Output Short-Circuit Current	$R_L = 1 \Omega$ differential	1000	60		mA
POWER SUPPLY					
Supply Voltage		4.5	5	5.5	v
Quiescent Current		т.)	24	5.5	w mA
Over Temperature	$-40^{\circ}C < T_{A} < +85^{\circ}C$	21	24	27	mA
	$=40 C < T_A < +85 C$ ENB = GND	~ 1	44	21	
Supply Current in Shutdown Mode					μA
Power Dissipation			120		mW
PSRR	f = 10 kHz		-82		dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Voltage	
Supply Voltage	5.5 V
Input Voltage	VPS, COM
Power Dissipation	120 mW
Temperature	
Operating Temperature	-40°C to +85°C
Storage Temperature	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
Thermal Resistance 24-Lead LFCSP ¹	
θ _{JA}	57.9°C/W
θ」ϲ	11.2°C/W
Өлө	35.9°C/W
Ψл	1.1°C/W

¹ Exposed pad soldered to 4-layer JEDEC Board (2S2P).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8432

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	INH1	Noninverting Input of LNA1
2	INL1	Inverting Input of LNA1 (AC-Coupled to Ground)
- 3, 7	IND1, IND2	Integrated Input Clamping Back-to-Back Diodes
4	COMM	Input Ground
5	INL2	Inverting Input of LNA2
6	INH2	Noninverting Input of LNA2
8	VPS2	5 V Supply for LNA2
9	OPH2	Noninverting Output of LNA2
10	GOH2	Gain Setting Pin for LNA2
11	GMH2	Gain Setting Pin for LNA2
12	GML2	Gain Setting Pin for LNA2
13	GOL2	Gain Setting Pin for LNA2
14	OPL2	Inverting Output of LNA2
15	COM2	LNA2 Output Ground
16	COM1	LNA1 Output Ground
17	OPL1	Inverting Output of LNA1
18	GOL1	Gain Setting Pin for LNA1
19	GML1	Gain Setting Pin for LNA1
20	GMH1	Gain Setting Pin for LNA1
21	GOH1	Gain Setting Pin for LNA1
22	OPH1	Noninverting Output of LNA1
23	VPS1	5 V Supply of LNA1
24	ENB	Enable
	EPAD	Exposed pad must be connected to ground.

TYPICAL PERFORMANCE CHARACTERISTICS

THEORY OF OPERATION LOW NOISE AMPLIFIER (LNA)

A simplified schematic of an LNA is shown in Figure 9. The LNA is driven with a single-ended input and measured differentially at the output. The inverting input INL must be accoupled to ground for proper operation. The LNA cannot be driven differentially due to the asymmetry of the internal gain setting resistors. The gain from the inverting input INL to the single-ended output (OPH or OPL) is different from the gain from the noninverting input INH to the single-ended output.

Both inputs are capacitively coupled by the same value capacitor. The dc input bias is 3.3 V, and dc output bias is 2.5 V. The LNA supports a differential output voltage of 4.8 V p-p for the common-mode output voltage of 2.5 V. Therefore, for a differential gain G = 4, the maximum input voltage allowed is 1.2 V p-p.

The clamping technique ensures quick recovery from large input voltages. In addition, the input back-to-back diodes, that are integrated inside the die (IND1 and IND2), should be used for the lowest gain configuration (12.04 dB) to protect the input from overdriving. They should be connected after the source resistance or before INH.

The use of fully differential topology and negative feedback minimizes distortion. A differential signal enables smaller swings at each output that results in reduction of third-order distortion. The AD8432 is a voltage feedback amplifier. Due to gain bandwidth product (GBW), a decrease in bandwidth should be expected as the gain increases. Table 4 displays the values of -3 dB bandwidth for each gain with unterminated input impedance.

GAIN SETTING TECHNIQUE

Pin strapping is used to set the gain of the amplifier. Gain setting resistors are integrated in the LNA, with multiple nodes to the resistors available externally. By externally shorting different pins, and thereby shorting or connecting the internal resistors, the AD8432 can be configured for several gains. The single-ended gain from INHx to OPHx (see Figure 9) is defined as

$$G_{OPH-INH} = \frac{R_{G1} + R_{G2} + R_{G3} + R_{G4}}{R_{G1}}$$

By externally shorting the GMHx, GOHx, and OPHx pins, four different gain configurations can be realized.

The single-ended gain from INHx to OPLx is defined as

$$G_{OPL-INH} = -\frac{R_{G5} + R_{G6} + R_{G7}}{R_{G1}}$$

Again, different gain configurations can be realized by externally shorting the GMLx, GOLx, and OPLx pins.

Figure 9. Simplified Schematic of LNA

Table 4. Gain Setting Using Pin-Strapping Technique and -3 dB Bandwidth for Each Gain Configura	tion

Differential Gain (dB)	Single Gain (dB)	RG1 (Ω)	RG2 (Ω)	RG3 (Ω)	RG4 (Ω)	RG5 (Ω)	RG6 (Ω)	RG7 (Ω)	–3 dB BW (Hz)
12.04	6.02	12	12	Connect GMH to GOH	Connect GOH to OPH	24	Connect GML to GOL	Connect GOL to OPL	200 M
18.06	12.04	12	12	24	Connect GOH to OPH	24	24	Connect GOL to OPL	96 M
21.58	15.56	12	12	Connect GMH to GOH	48	24	Connect GML to GOL	48	55 M
24.08	18.06	12	12	24	48	24	24	48	38 M

Rev. PrA | Page 8 of 12

The single-ended gain from INHx to OPLx is defined as

$$G_{OPL-INH} = -\frac{R_{G5} + R_{G6} + R_{G7}}{R_{G1}}$$

Again, different gain configurations can be realized by externally shorting the GMLx, GOLx, and OPLx pins.

The values of the seven gain resistors are chosen so that both single-ended gains are equal. For example, to set a gain G = 4 (12.04 dB) differentially, the gain from INHx to each output (OPHx, OPLx) should be ×2 (6.02 dB).

INHx to OPHx: if $R_{G1} = R_G$ and $R_{G2} = R_G$, where R_G = any resistor value, then

$$G_{OPH-INH} = \frac{R_{G1} + R_{G2}}{R_{G1}} = \frac{2 * R_G}{R_G} = 2$$

INHx to OPLx: if $R_{G1} = R_G$ and $R_{G5} = 2 \times R_G$, then

$$G_{OPL-INH} = -\frac{R_{G5}}{R_{G1}} = -\frac{2*R_G}{R_G} = -2$$

By shorting the different external pins, four gain (4, 8, 12, and 16) configurations can be realized. The gains are set by first selecting a value for R_{G1} and then determining the values of the other resistors in terms of R_{G1} , and accordingly shorting the indicated pins.

ACTIVE INPUT RESISTANCE MATCHING

The AD8432 reduces noise by using active input termination to perform signal source resistance matching. To achieve this, connect a feedback resistor R_{FB} between the INHx and OPLx (see Figure 10). R_{IN} is given in Equation 1, where G/2 is the single-ended gain.

$$R_{IN} = \frac{R_{FB}}{1 + \frac{G}{2}}$$

$$R_{S} \xrightarrow{R_{IN}} \underbrace{INH}_{VIN} \underbrace{INH}_{VIN} \underbrace{V_{OUT}}_{VIN} \underbrace{V_{OUT}}_{VIN} \underbrace{R_{S}} \xrightarrow{R_{IN}} \underbrace{V_{OUT}}_{RESISTIVE}$$

$$R_{FB} \xrightarrow{R_{FB}} \underbrace{R_{S}}_{VIN} \underbrace{R_{FB}}_{VIN} \underbrace{R_{S}}_{VIN} \underbrace{R_{FB}}_{VIN} \underbrace{R_{FB}}_{INH} \underbrace{R_{FB}}_{VIN} \underbrace{R$$

In addition, to further reduce the input resistance, there is an internal resistance of 6.2 $k\Omega$ in parallel with the source resistance, such that

$$R_{IN} = \frac{R_{FB}}{1 + \frac{G}{2}} \left\| R_{INTERNAL} \right\|$$
(2)

Equation 3 should be used to calculate accurately R_{FB} for a desired input resistance and single-ended gain. Refer to Table 5 for calculated results for R_{FB} for several input resistance and gain combinations.

$$\Rightarrow R_{FB} = \frac{R_{IN} \left(1 + \frac{G}{2}\right)}{1 - \frac{R_{IN}}{R_{INTERNAL}}}, R_{INTERNAL} = 6.2 \, k\Omega \tag{3}$$

There is a feedback capacitor (C_{FB}) in series with R_{FB} because the dc levels of the positive output and the positive input are different. At higher frequencies, the value of the feedback capacitor needs to be considered. The user must determine the level of matching accuracy and adjust R_{FB} accordingly. C_{SH} also enhances the stability at higher frequencies and prevents high peaking especially for the lowest gain, 12.04 dB. (See the Applications Information section for the selection of C_{SH}).

The unterminated bandwidth ($R_{FB} = \infty$) is 200 MHz. The LNA has a low input referred voltage noise of 0.8 nV/ \sqrt{Hz} at the lowest gain, 12.04 dB (unterminated configuration). To achieve such low noise, the amplifier consumes 21.4 mA, resulting in a power consumption of 107 mW.

The primary purpose of the input impedance matching is to improve the system transient response. With resistive termination, the input noise increases due to the thermal noise of the matching resistor and the increased contribution of the input voltage noise generator of the LNA. With active impedance matching, however, the contributions of both are smaller than they would be for resistive termination by a factor of 1/(1 + LNA Gain).

(1)

AD8432

Desired $R_{IN}(\Omega)$	Single-Ended Gain, G/2 (V/V)	Exact $R_{FB}(\Omega)$, Equation 2	R _{FB} (Ω)	Actual $R_{IN}(\Omega)$, Equation 2
50	2	151.2	150	49.6
75	2	227.8	226	74.4
100	2	304.9	301	98.7
200	2	620	619	199.7
1 k	2	3.58 k	3.57k	998.4
50	4	252	250	49.6
100	4	508.2	511	100.5
50	6	352.9	357	50.6
100	6	711.5	715	100.5
50	8	453.7	453	49.9
100	8	914.8	909	99.4

Table 5. Feedback Resistance for Several $R_{\rm IN}$ and Gain Combinations

APPLICATIONS INFORMATION

The unterminated input impedance of LNA is 6.2 k Ω . Any input resistance between 50 Ω and 6.2 k Ω can be synthesized. When active input termination is used, a decoupling capacitor (C_{FB}) is required to isolate the input and output bias voltages of the LNA.

The shunt input capacitor, C_{SH} , reduces gain peaking of the lowest gain, 12.04 dB, at higher frequencies. Table 6 shows the required values of C_{SH} and R_{SH} for all four gains for all input impedance combinations. However, the C_{SH} and R_{SH} network can be customized as needed to optimize performance. The C_{SH} is needed only for the lowest gain. In addition, as R_{IN} increases, the value of C_{SH} diminishes, and for higher input impedance values, no capacitor may be required. The outputs of the AD8432 LNA can be used to drive the differential RFx inputs of the AD8333 I/Q demodulator through 20 Ω resistors.

Table 6. External Components Selections for Common Input Impedance

R _{IN} (Ω)	Gain (dB)	R _{FB} (Ω)	Сѕн (рF)	R _{sH} (Ω)	–3 dB BW (MHz)
50	12	150	47	15	176
	18	249	30	15	116
	21	357	None	None	117
	24	453	None	None	87
75	12	226	36p	15	167
	18	383	None	None	144
	21	536	None	None	100
	24	681	None	None	72
100	12	301	30p	15	164
	18	511	None	None	134
	21	715	None	None	90
	24	909	None	None	63
200	12	619	18p	15	164
	18	1.02 k	None	None	116
	21	1.43 k	None	None	74
	24	1.87 k	None	None	51
1 k	12	3.57 k	10p	10	160
	18	5.9 k	None	None	99
	21	8.2 5 k	None	None	61
	24	10.7 k	None	None	43
Unterminated, $R_s = 50 \Omega$	12	∞	None	None	178
	18	∞	None	None	95
	21	∞	None	None	59
	24	∞	None	None	40
Unterminated, $R_s = 0 \Omega$	12	∞	None	None	210
	18	∞	None	None	96
	21	∞	None	None	55
	24	∞	None	None	38

112108-A

OUTLINE DIMENSIONS

Figure 11. 24-Lead Lead Frame Chip Scale Package [LFSCP_WQ] 4 mm × 4 mm, Very Thin Quad (CP-24-7) Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range		Package Description	Package Option	Branding	
AD8432ACPZ ¹	-40°C to +85°C	24-Lead LFCSP_WQ	CP-24-7		
AD8432ACPZ-R7 ¹	-40°C to +85°C	24-Lead LFCSP_WQ, 7" Tape and Reel	CP-24-7		
AD8432ACPZ-RL ¹	-40°C to +85°C	24-Lead LFCSP_WQ, 13" Tape and Reel	CP-24-7		
AD8432ACPZ-WP1	-40°C to +85°C	24-Lead LFCSP_WQ, Waffle Pack	CP-24-7		
AD8432-EVALZ ¹		Evaluation Board			

 1 Z = RoHS Compliant Part.

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR08341-0-6/09(PrA)

www.analog.com