-Description

Serial-in-parallel-out driver incorporates a built-in shift register and a latch circuit to control a maximum of 24 LED by a 4-line interface, linked to a microcontroller.
A single external resistor can set the output current value of the constant current up to a maximum of 50 mA . (BD7851FP only) CMOS open drain output type products can drive the maximum current of 25 mA .

-Features

1) LED can be driven directly.
2) Parallel output of a maximum of 24 bit
3) Operational on low voltage (2.7 V to 5.5 V)
4) Cascade connection is possible (BU2050F and BU2092F,BU2092FV are not acceptable)

-Application

For AV equipment such as, audio stereo sets, videos and TV sets, PCs, control microcontroller mounted equipment.
-Product line-up

Parameter	BU2050F	BU2092F	BU2092FV	BU2099FV	BD7851FP	BU2152FS	Unit
Output current	25	25	25	25	50	25	mA
Output line	8	12	12	12	16	24	line
Output type	CMOS	Open drain				Constant current	CMOS
Package	SOP14	SOP18	SSOP-B20	SSOP-B20	HSOP25	SSOP-A32	-

- Thermal derating curve

- Absolute maximum ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits			Unit
		BU2050F	BU2092F	BU2092FV	
Power Supply Voltage	VDD	-0.3 to +7.0	-0.3 to +7.0		V
Power dissipation 1	Pd1	450 *1	450 (SOP) *2	400 (SSOPB) *3	mW
Power dissipation 2	Pd2	-	550 (SOP) *4	650 (SSOPB) *5	mW
Input Voltage	VIN	Vss-0.3 to VdD+0.5	Vss-0.3 to Vdd+0.3		V
Output Voltage	Vo	Vss-0.3 to VdD+0.5	Vss to +25.0		V
Operating Temperature	Topr	-40 to +85	-25 to +75		${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to +125	-55 to +125		${ }^{\circ} \mathrm{C}$

*1 Reduced by $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
*2 Reduced by $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
*3 Reduced by $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
${ }^{*} 4$ Reduced by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ (When mounted on a board $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass-epoxy PCB).
$* 5$ Reduced by $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ (When mounted on a board $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass-epoxy PCB).

Parameter	Symbol	Limits			Unit
		BU2099FV	BD7851FP	BU2152FS	
Power Supply Voltage	VDD	-0.3 to +7.0	0 to +7.0	-0.3 to +7.0	V
Power dissipation 1	Pd1	400 (SSOPB) * ${ }^{6}$	$1450{ }^{* 7}$	$800{ }^{* 8}$	mW
Power dissipation 2	Pd2	650 (SSOPB) *9	-	-	mW
Input Voltage	Vin	Vss-0.3 to VdD+0.3	-0.3 to Vcc+0.3	Vss-0.3 to Vdd+0.3	V
Output Voltage	Vo	Vss to +25.0	0 to +10	Vss-0.3 to VdD+0.3	V
Operating Temperature	Topr	-40 to +85	-30 to +85	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to +125	-55 to +150	-55 to +125	${ }^{\circ} \mathrm{C}$

${ }^{*} 6$ Reduced by $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
*7 Reduced by $11.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
*8 Reduced by $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$
${ }^{*} 9$ Reduced by $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ (When mounted on a board $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass-epoxy PCB).

- Electrical characteristics

BU2050F (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	VdD	4.5	-	5.5	V	
Input high-level Voltage	VIH	0.7VdD	-	VDD	V	
Input low-level Voltage	VIL	Vss	-	0.3VDD	V	
Input Hysteresis	VHYs	-	0.5	-	V	
Output high-level Voltage	Vohd	VDD-1.5	-	VDD	V	IOH=-25mA
		VDD-1.0	-	VDD		IOH $=-15 \mathrm{~mA}$
		VDD-0.5	-	VDD		$\mathrm{IOH}=-10 \mathrm{~mA}$
Output low-level Voltage	Vold	Vss	-	1.5	V	$\mathrm{loL}=25 \mathrm{~mA}$
		Vss	-	0.8		Iol=15mA
		Vss	-	0.4		Iol $=10 \mathrm{~mA}$
Quiescent Current	IDD	-	-	0.1	mA	$\mathrm{VIH}=\mathrm{V} D \mathrm{D}, \mathrm{VIL}=\mathrm{Vss}$

BU2092F/BU2092FV (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} / 3.0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	VIH	$3.5 / 2.5$	-	-	V	$\mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}$
Input low-level Voltage	VIL	-	-	$1.5 / 0.4$	V	$\mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}$
Output low-level Voltage	VoL	-	-	$2.0 / 1.0$	V	$\mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}$, $\mathrm{IOL}=20 \mathrm{~mA} / 5 \mathrm{~mA}$
Output high-level disable Current	IOzH	-	-	10.0	$\mu \mathrm{~A}$	$\mathrm{VO}=25.0 \mathrm{~V}$
Output low-level disable Current	IOZL	-	-	-5.0	$\mu \mathrm{~A}$	$\mathrm{VO}=0 \mathrm{~V}$
Quiescent Current	IDD	-	-	$5.0 / 3.0$	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VSS}$ or VDD $(\mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V})$ OUTPUT:OPEN

BU2099FV (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} / 3.0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	VIH	3.5 / 2.1	-	-	V	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V} / 3 \mathrm{~V}$
Input low-level Voltage	VIL	-	-	1.5 / 0.9	V	Vdd $=5 \mathrm{~V} / 3 \mathrm{~V}$
Output high-level Voltage (SO)	Voh	Vdd-0.5 / VDD-0. 3	-	-	V	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}, \\ & \text { IOH }=-400 \mu \mathrm{~A} /-100 \mu \mathrm{~A} \end{aligned}$
Output low-level Voltage 1 (Qx)	Vol1	-	-	1.0	V	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}, \\ & \mathrm{IOL} 1=10 \mathrm{~mA} / 5 \mathrm{~mA} \end{aligned}$
		-	-	1.5		VDD $=5 \mathrm{~V}$, IOL1 $=15 \mathrm{~mA}$
		-	-	2.0		$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$, $\mathrm{IOL} 1=20 \mathrm{~mA}$
Output low-level Voltage 2 (SO)	Vol2	-	-	0.4 / 0.3	V	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} / 3 \mathrm{~V}, \\ & \mathrm{loL} 2=1.5 \mathrm{~mA} / 0.5 \mathrm{~mA} \end{aligned}$
Output high-level disable Current (Qx)	IozH	-	-	10	$\mu \mathrm{A}$	$\mathrm{Vo}=25.0 \mathrm{~V}$
Output low-level disable Current (Qx)	Iozl	-	-	-5.0	$\mu \mathrm{A}$	$\mathrm{Vo}=0 \mathrm{~V}$
IPULLDOWN ($\overline{\mathrm{OE}})$	IPD	-	-	150 / 60	$\mu \mathrm{A}$	$\overline{\mathrm{OE}}=\mathrm{V} \mathrm{dD}, \mathrm{V} D \mathrm{=}=5 \mathrm{~V} / 3 \mathrm{~V}$
Low Voltage Reset	VCLR	1.1	-	2.4	V	
Quiescent Current	IDD	-	-	200	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN=VSS or VDD, } \\ & \text { VDD=5V } \\ & \text { OUTPUT:OPEN } \end{aligned}$

- Electrical characteristics

BD7851FP (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	VDD	4.5	-	5.5	V	
Input high-level Voltage	VIH	$0.8 \times \mathrm{Vcc}$	-	-	V	
Input low-level Voltage	VIL	-	-	$0.2 \times \mathrm{Vcc}$	V	
Output high-level Voltage	Vor	Vcc-0.5	-	-	V	$\mathrm{IOH}=-1 \mathrm{~mA}$
Output low-level Voltage	Vol	-	-	0.5	V	$\mathrm{IOL}=1 \mathrm{~mA}$
Quiescent Current	Icc	-	0.7	1.0	mA	$\begin{aligned} & \mathrm{R}=13 \mathrm{k} \Omega \\ & \text { OUT1~OUT16:OFF } \end{aligned}$
		-	1.8	3.0	mA	$\begin{aligned} & \mathrm{R}=1.3 \mathrm{k} \Omega \\ & \text { OUT1~OUT16:OFF } \end{aligned}$
		-	4.0	6.5	mA	$\begin{aligned} & \mathrm{R}=13 \mathrm{k} \Omega \\ & \text { OUT1~OUT16:ON } \end{aligned}$
		-	30	40	mA	$\begin{aligned} & \mathrm{R}=1.3 \mathrm{k} \Omega \\ & \text { OUT1~OUT16:ON } \end{aligned}$
Reference Current Output Current (including the equation between each bit)	Iolc1	48	55	62	mA	Vout $=2.0 \mathrm{~V}, \mathrm{R}=1.3 \mathrm{k} \Omega$
	Iolc2	5.0	5.9	6.8	mA	Vout $=2.0 \mathrm{~V}, \mathrm{R}=13 \mathrm{k} \Omega$
Equation between each bit of Reference Current Output Current	Δ iolc	-	± 1	± 6	\%	$\begin{aligned} & \text { VouTn }=2.0 \mathrm{~V}, \mathrm{R}=1.3 \mathrm{k} \Omega \\ & \text { (1bit: } \mathrm{ON} \text {) } \end{aligned}$
Change rate of reference current output current for output voltage	I $\triangle \mathrm{Vcc}$	-	± 1	± 6	\%/V	$\begin{aligned} & \text { Vout }=2.0 \text { to } 3.0 \mathrm{~V} \text {, } \\ & \mathrm{R}=1.3 \mathrm{k} \Omega \end{aligned}$
Output Leak Current	IOH	-	0.01	0.8	$\mu \mathrm{A}$	Vout $=10 \mathrm{~V}$

BU2152FS (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	VIH	2.0	-	-	V	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$
Input low-level Voltage	VIL	-	-	0.6	V	Vdd $=5 \mathrm{~V}$
Output high-level Voltage	VOH	Vdd-1.5	-	-	V	$\mathrm{IOH}=-25 \mathrm{~mA}$
		VdD-1.0	-	-		$\mathrm{IOH}=-15 \mathrm{~mA}$
		Vdd-0.5	-	-		$\mathrm{IOH}=-10 \mathrm{~mA}$
Output low-level Voltage	Vol	-	-	1.5	V	$\mathrm{loL}=25 \mathrm{~mA}$
		-	-	1.0		IOL=15mA
		-	-	0.8		IoL=10mA
Quiescent Current	IdDSt	-	-	5	$\mu \mathrm{A}$	VIL=Vss, VIH=VdD
Input high-level Current	IIH	-	-	1	$\mu \mathrm{A}$	
Input low-level Current	IIL	-	-	1	$\mu \mathrm{A}$	

-Block diagram

BU2050F

BU2092F/BU2092FV

BU2099FV

BD7851FP

BU2152FS

-Operating description

(1) Data clear

When the reset terminal (CLR, CLB) is set to " L ", the content of all latch circuits are set to " H ", and all parallel outputs are initialised.
(For model with reset terminal only)
(2) Data transfer

Serial data is sequentially input to the shift register during the rise of the clock time (strobe signal is not active). When the strobe signal is active, the content of the shift register are transferred to the latch circuit.
(3) Cascade connection

Serial input data is output from the serial output through the shift register, regardless of the strobe signal.
(except for
BU2092F/BU2092FV)

(*${ }^{*} \mathrm{C} 1$ must be placed as close to the terminal as possible.)
Fig. 1

OInterfaces

(

【BU2050F】

- Pin descriptions

Pin No.	Pin Name	Function
1	P3	Parallel Data Output
2	P4	
3	P5	
4	Vss	GND
5	P6	Parallel Data Output
6	P7	
7	P8	
8	DATA	Serial Data Input
9	CLK	Clock Signal Input
10	$\overline{\text { STB }}$	Strobe Signal Input In case of " L ", the data of shift register outputs. In case of "H", all parallel outputs and data of latch circuit do not change.
11	$\overline{C L R}$	Reset Signal Input In case of " L ", the data of latch circuit reset, and all parallel output (P1~P8) can be L. Normally $\overline{C L R}=\mathrm{H}$
12	P1	Parallel Data output
13	P2	
14	VDD	Power Supply

- Timing chart

Fig. 2

1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 8 data bits into the DATA pin.
2. Pn parallel output data of the shift register is set after the $8^{\text {th }}$ clock by the STB.
3. Since the STB is level latch, data is retained in the " L " section and renewed in the " H " section of the STB.
[Function explanation]

- A latch circuit has the reset function, which is common in all bits. In case of $\overline{C L R}$ terminal is "L", the latch circuit is reset non-synchronously without the other input condition, and all parallel output can be "L".
- A serial data inputted from DATA terminal is read in shift register with synchronized rising of clock. In case of $\overline{\text { STB }}$ is "L" ($\overline{C L R}$ is " H "), transmit the data which read in the shift register to latch circuit, and outputs from the parallel data output terminal ($\mathrm{P} 1 \sim \mathrm{P} 8$).
In case of $\overline{S T B}$ is " H ", all parallel outputs and the data of latch do not change.
-Switching characteristics (Unless otherwise specified, VDD=4.5 to $5.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Condition
		Min.	Typ.	Max.		
Set up time (DATA-CLK)	$\mathrm{t}_{\text {SD }}$	20	-	-	ns	-
Hold time (DATA-CLK)	t_{HD}	20	-	-	ns	-
Set up time ($\overline{\text { STB }}-\mathrm{CLK}$)	$\mathrm{tsstb}^{\text {d }}$	30	-	-	ns	-
Hold time ($\overline{\text { STB }}-\mathrm{CLK}$)	$\mathrm{t}_{\text {HSTB }}$	30	-	-	ns	-
Propagation ($\overline{\mathrm{CLR}}-\mathrm{P} 1 \sim \mathrm{P} 8$)	tPDPCK	-	-	100	ns	P1~P8 terminal load 20pF or less
Propagation ($\overline{\mathrm{STB}}-\mathrm{P} 1 \sim \mathrm{P} 8$)	$\mathrm{t}_{\text {PDPSTB }}$	-	-	80	ns	P1~P8 terminal load 20pF or less
Propagation ($\overline{\mathrm{CLR}}-\mathrm{P} 1 \sim \mathrm{P} 8$)	tPDPCLR	-	-	80	ns	P1~P8 terminal load 20pF or less
Maximum clock frequency	$\mathrm{f}_{\text {max }}$	5	-	-	MHz	-

-Switching Time Test Waveform

【BU2092F/BU2092FV】

- Pin descriptions

Pin No.	Pin Name	I/O	Function		
1	$V_{\text {SS }}$	-	GND		
2	DATA	I	Serial Data Input		
3	CLOCK	I	Shift clock of DATA (Rising Edge Trigger)		
4	LCK	1	Latch clock of DATA (Rising Edge Trigger)		
$\begin{aligned} & 5 \sim 11 \\ & 14 \sim 18 \end{aligned}$	Q0~Q11	O	Parallel Data Output (Nch Open Drain FET)		
			Latch Data	L	H
			Output FET	ON	OFF
12, 13	N.C.	-	Non connected		
17	$\overline{\mathrm{OE}}$	1	Output Enable ("H" level : output FET is OFF)		
18	$V_{D D}$	-	Power Supply		

- Timing chart

Note) Diagram shows a status where a pull-up resistor is connected to output.
Fig. 4

1. After the power is turned on and the voltage is stabilized, LCK should be activated, after clocking 12 data bits into the DATA terminal.
2. Qx parallel output data of the shift register is set after the $12^{\text {th }}$ clock by the LCK.
3. Since the LCK is a label latch, data is retained in the " L " section and renewed in the " H " section of the LCK.
4. Data retained in the internal latch circuit is output when the $\overline{\mathrm{OE}}$ is in the " L " section.
[Truth Table]

Input				Function
CLOCK	DATA	LCK	$\overline{\mathrm{OE}}$	
\times	\times	\times	H	Output (Q0~Q11) Disable
\times	\times	\times	L	Output (Q0~Q11) Enable
5	L	\times	\times	Store " L " in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)
\uparrow	H	\times	\times	Store " H " in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)
z	\times	\times	\times	The data of shift register has no change.
\times	\times	5	\times	The data of shift register is transferred to the storage register.
\times	\times	z	\times	The data of storage register has no change.

-Switching characteristics (Unless otherwise specified, Vdd=5V, Vss=0V, $\mathbf{T a = 2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit		Condition
		Min.	Typ.	Max.		$\mathrm{V} D \mathrm{D}(\mathrm{V})$	
Minimum Clock Pulse Width	tw	1000	-	-	ns	3	-
		500	-	-	ns	5	
Minimum Latch Pulse Width (LCK)	$\stackrel{\mathrm{tw}}{(\mathrm{LCK})}$	1000	-	-	ns	3	-
		500	-	-	ns	5	
Setup Time (LCK \rightarrow CLOCK)	ts	400	-	-	ns	3	-
		200	-	-	ns	5	
Setup Time (DATA \rightarrow CLOCK)	tsu	400	-	-	ns	3	-
		200	-	-	ns	5	
Hold Time$\text { (CLOCK } \rightarrow \text { DATA) }$	th	400	-	-	ns	3	-
		200	-	-	ns	5	
Propagation (LCK \rightarrow OUTPUT Qx)	$\begin{gathered} \text { tPLZ } \\ \text { (LCK) } \end{gathered}$	-	90	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	55	-	ns	5	
	$\begin{gathered} \mathrm{tPZL} \\ \text { (LCK) } \end{gathered}$	-	115	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	50	-	ns	5	
Propagation $(\overline{\mathrm{OE}} \rightarrow$ OUTPUT QX)	tPLZ	-	70	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	45	-	ns	5	
	tPZL	-	80	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	35	-	ns	5	

-Switching Time Test Circuit

Fig. 5

【BU2092F/BU2092FV】

-Switching Time Test Waveforms

Fig. 6

【BU2099FV】

- Pin descriptions

Pin No.	Pin Name	I/O	Function		
1	$V_{\text {ss }}$	-	GND		
2	N.C.	-	Non connected		
3	DATA	I	Serial Data Input		
4	CLOCK	1	Shift clock of Shift register (Rising Edge Trigger)		
5	LCK	1	Latch clock of Storage register (Rising Edge Trigger)		
6~17	$\begin{aligned} & \text { Q0~Q11 } \\ & (\mathrm{Qx}) \end{aligned}$	O	Parallel Data Output (Nch Open Drain FET)		
			Latch Data	L	H
			Output FET	ON	OFF
18	SO	0	Serial Data Output		
19	$\overline{\mathrm{OE}}$	1	Output Enable Control Input * $\overline{\mathrm{E}}$ pin is pulled down to Vss.		
20	$V_{D D}$	-	Power Supply		

- Timing chart

CLOCK

LCK
$\overline{\mathrm{OE}}$

Fig. 7

1. After the power is turned on and the voltage is stabilized, LCK should be activates, after clocking 12 data bits into the DATA terminal.
2. Qx parallel output data of the shift register is set after the $12^{\text {th }}$ clock by the LCK.
3. Since the LCK is a label latch, data is retained in the "L" section and renewed in the "H" section of the LCK.
4. Data retained in the internal latch circuit is output when the $\overline{\mathrm{OE}}$ is in the " L " section.
5. The final stage data of the shift register is output to the SO by synchronizing with the rise time of the CLOCK.
[Truth Table]

Input				Function
CLOCK	DATA	LCK	OE	
\times	\times	\times	H	All the output data output "H" with pull-up.
\times	\times	\times	L	The Q0~Q11 output can be enable and output the data of storage register.
5	L	\times	\times	Store "L" in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)
5	H	\times	\times	Store " H " in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)
I	\times	\times	\times	The data of shift register has no change. SO outputs the final stage data of shift register with synchronized falling edge of CLOCK, not controlled by $\overline{\mathrm{OE}}$.
\times	\times	F	\times	The data of shift register is transferred to the storage register.
\times	\times	L	\times	The data of storage register has no change.

[^0]
【BU2099FV】

-Switching characteristics (Unless otherwise specified, VdD=5V, Vss=0V, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit		Condition
		Min.	Typ.	Max.		$\operatorname{Vdd}(\mathrm{V})$	
Minimum Clock Pulse Width (CLOCK)	tw	1000	-	-	ns	3	-
		500	-	-	ns	5	
Minimum Latch Pulse Width (LCK)	$\begin{gathered} \mathrm{t}_{\mathrm{W}} \\ (\mathrm{LCK}) \end{gathered}$	1000	-	-	ns	3	-
		500	-	-	ns	5	
Setup Time (LCK \rightarrow CLOCK)	t_{s}	400	-	-	ns	3	-
		200	-	-	ns	5	
Setup Time (DATA \rightarrow CLOCK)	$t_{\text {su }}$	400	-	-	ns	3	-
		200	-	-	ns	5	
Hole Time (CLOCK \rightarrow DATA)	$t_{\text {H }}$	400	-	-	ns	3	-
		200	-	-	ns	5	
Propagation (SO)	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	-	-	500	ns	3	-
		-	-	250	ns	5	-
Propagation $(\mathrm{LCK} \rightarrow \mathrm{QX})$ *	$\begin{gathered} \mathrm{t}_{\mathrm{PLZ}} \\ (\mathrm{LCK}) \end{gathered}$	-	360	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	170	-	ns	5	
	$\begin{gathered} \mathrm{t}_{\mathrm{PZL}} \\ (\mathrm{LCK}) \end{gathered}$	-	260	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	175	-	ns	5	
Propagation (QE \rightarrow QX) *	$t_{\text {PLZ }}$	-	115	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	85	-	ns	5	
	$t_{\text {PZL }}$	-	175	-	ns	3	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	65	-	ns	5	
Noise Pulse Suppression Time (LCK) *	t	-	30		ns	-	-
		-	20		ns	-	

*Reference value

Olnput Voltage Test Circuit

-Switching Time Test Circuit

Fig. 9

【BU2099FV】

-Output Voltage Test Circuit

Test condition
VoL1 : Set all data "L". SW1="ON", SW2="3", SW3="1"~"12"
VoL2 : Set output data " L " to SO and SW4 is positioned to " 2 ", then voltage is measured at IOL2
VOH : Set output data " H " to SO and SW4 is positioned to " 1 ", then voltage is measured at IOH.

Fig. 10

-Switching Time Test Waveforms

Fig. 11

【BD7851FP】

-Pin descriptions

Pin No.	Pin Name	Function
1	GND	Ground
2	R_Iref	Reference Current Output Current setting
3	LATCH	Latch Signal Input
4	S_IN	Serial Data Input
$5 \sim 15$	OUT16 \sim OUT6	Reference Current Output
16	P_GND	Ground for Driver
$17 \sim 21$	OUT5 \sim OUT1	Reference Current Output
22	SOUT	Serial Data Output
23	CLOCK	Clock Input
24	$\overline{\text { ENABLE }}$	ENABLE
25	VCC	VCc

- Timing chart

Fig. 12

1. After the power is turned on and the voltage is stabilized, LATCH should be activated, after clocking 16 data bits into the S_IN terminal.
2. OUTn parallel output data of the shift register is set after the $16^{\text {th }}$ clock by the LATCH.
3. The final stage data of the shift register is outputted to the SOUT by synchronizing with the rise time of the CLOCK.
4. Since the LATCH is a label latch, data is retained in the " L " section and renewed in the " H " section of the LATCH.
5. Data retained in the internal latch circuit is outputted when the $\overline{\operatorname{ENABLE}}$ is in the " L " section. When the $\overline{\mathrm{ENABLE}}$ is in the " H " section, data is fixed in the " H " section.

【BD7851FP】
-Timing characteristics (Unless otherwise specified, $\mathrm{Vcc}=\mathbf{5 V}, \mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Condition
		Min.	Typ.	Max.		
Frequency CLOCK	fclk	-	-	10	MHz	
Pulse Width CLOCK	$\mathrm{t}_{\text {wh }}$	20	50	-	ns	CLOCK
Pulse Width LATCH	$\mathrm{t}_{\text {wh }}$	40	50	-	ns	LATCH
Pulse Width ENABLE	$\mathrm{t}_{\text {w }}$	30	-	-	ns	ENABLE
Rise Time / Fall Time	$\mathrm{tr}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	-	30	100	ns	CLOCK
Setup Time	tsu	30	50	-	ns	S_IN-CLOCK
		30	50	-		LATCH-CLOCK
Hold Time	t_{n}	30	50	-	ns	S_IN-CLOCK
		30	50	-		LATCH-CLOCK
Rise Time	t_{r}	-	300	-	ns	OUTn
		-	-	50		SOUT
Fall Time	t_{f}	-	300	-	ns	OUTn
		-	-	50		SOUT
Propagation	$\mathrm{t}_{\mathrm{pLH}}$	-	400	650	ns	$\begin{aligned} & \text { CLK-SOUT, LATCH } \\ & \text { ENABLE-OUTn } \end{aligned}$
	$\mathrm{t}_{\mathrm{pHL}}$	-	300	400		CLK-SOUT, LATCH ENABLE-OUTn

- Reference Current of Output Current


```
[Condition]
Vcc=5.0V, Vo=5.0V,Ta=25
```

* This is a data for the standard sample, not guaranteed the characteristic.

Fig. 13

* Notes the increase of consumption current Icc, in case sets the voltage of VOUT lower. See the graph above.

Fig. 14

【BD7851FP】

- Test Circuit 1

Fig. 15

- Test Circuit 2

* R=51 Ω (note : R_Iref=1.3k) , C=15pF

Fig. 16

【BD7851FP】

-Switching Time Test Waveforms

Fig. 17

【BU2152FS】

-Pin descriptions

Pin No.	Pin Name	I/O	Function
1	$V_{S S}$	-	Ground
2	CLK	I	Clock Input
3	V $_{\text {SS }}$	-	Ground
4	DATA	I	Serial Data Input
$5 \sim 28$	P1~P24	O	Parallel Data Output
29	SO	O	Cascade Output
30	STB	I	Strobe Signal Input active "L"
31	CLB	I	Clear Signal Input active "L"
32	V $_{\text {DD }}$	-	Power Supply

- Timing chart

Fig. 18

1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 24 data bits into the DATA terminal.
2. Pn parallel output data of the shift register is set after the $24^{\text {th }}$ clock by the LCK.
3. Since the STB is a label latch, data is retained in the " H " section and renewed in the " L " section of the STB.
4. The final stage data of the shift register is outputted to the SO by synchronizing with the rise time of the CLOCK.
[Truth Table]

Input			Function
CLK	STB	CLB	
\times	\times	L	All the data of the latch circuit are set to "H" (data of shift register does not change), all the parallel outputs are " H ".
5	H	H	Serial data of DATA pin are latched to the shift register. At this time, the data of the latch circuit does not change.
L			The data of the shift register are transferred to the latch circuit, and the data of the latch circuit are outputted from the parallel output pin.
\uparrow	L		The data of the shift register shifts 1 bit, and the data of the latch circuit and parallel output also change.

【BU2152FS】

-Switching characteristics (Unless otherwise specified, VdD=2.7 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Condition
		Min.	Typ.	Max.		
Maximum Clock Frequency	$\mathrm{f}_{\text {MAX }}$	5	-	-	MHz	
Setup Time 1	$\mathrm{t}_{\text {SU1 }}$	20	-	-	ns	DATA-CLK
Hold Time 1	$\mathrm{t}_{\text {HD1 }}$	20	-	-	ns	CLK-DATA
Setup Time 2	$\mathrm{t}_{\text {SU2 }}$	30	-	-	ns	STB-CLK
Hold Time 2	$\mathrm{t}_{\text {HD2 }}$	30	-	-	ns	CLK-STB
Setup Time 3	$\mathrm{t}_{\text {SU3 }}$	30	-	-	ns	CLB-CLK
Hold Time 3	$\mathrm{t}_{\text {HD3 }}$	30	-	-	ns	CLK-CLB
Setup Time 4	$\mathrm{t}_{\text {SU4 }}$	30	-	-	ns	STB-CLB
Hold Time 4	$\mathrm{t}_{\text {HD4 }}$	30	-	-	ns	CLB-STB
Output Delay Time 1*	$\mathrm{t}_{\text {PD1 }}$	-	-	100	ns	CLK-P1~P24
Output Delay Time 2*	$\mathrm{t}_{\text {PD2 }}$	-	-	80	ns	STB-P1~P24
Output Delay Time 3*	$\mathrm{t}_{\text {PD3. }}$	-	-	80	ns	CLB-P1~P24

*50pF of load is attached.

- Switching characteristic conditions

OSetup/Hold Time (DATA-CLOCK, STB-CLOCK, CLB-CLOCK)

Fig. 19 Switching characteristic conditions 1
OOutput Delay Time (CLOCK-P1~P24)

OOutput Delay Time (STB-P1~P24)

O Output Delay Time (CLB-P1~P24)

Fig. 20 Switching characteristic conditions 2

- Notes for use

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.
2. Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.
3. Power supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.
4. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.
5. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
6. Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.
7. Actions in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
8. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.

9. Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.
10. Unused input terminals

Connect all unused input terminals to VDD or VSS in order to prevent excessive current or oscillation. Insertion of a resistor ($100 \mathrm{k} \Omega$ approx.) is also recommended.

-Ordering part number

Part No.

Part No. 2050
2092
2099
7851
2152

Package
F : SOP14
: SOP18
FV : SSOP-B20
FP : HSOP25
FS : SSOP-A32

Packaging and forming specification E2: Embossed tape and reel

SOP14

<Tape and Reel information>
$\left.\begin{array}{|l|l|}\hline \text { Tape } & \text { Embossed carrier tape } \\ \hline \text { Quantity } & 2500 \text { pcs } \\ \hline \begin{array}{l}\text { Direction } \\ \text { of feed }\end{array} & \begin{array}{l}\text { E2 } \\ \text { (The direction is the 1pin of product is at the upper left when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}\end{array}\right)$

SOP18

(Unit : mm)
<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000 pcs
Direction of feed	E2 $\left(\begin{array}{l}\text { The direction is the 1pin of product is at the upper left when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}\right.$

SSOP-B20

HSOP25

SSOP-A32

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

[^0]: * The Q0~Q11 output have a Nch open drain Tr. The Tr is ON when data from shift register is " L ", and Tr is OFF when data is " H ".

