
INTEGRATED CIRCUITS

DATA SHEET

UDA1355HStereo audio codec with SPDIF interface

Preliminary specification

2003 Apr 10

UDA1355H

CONTE	NTS	11	I ² C-BUS DESCRIPTION
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	FEATURES General Control IEC 60958 input IEC 60958 output Digital I/O interface ADC digital sound processing DAC digital sound processing GENERAL DESCRIPTION	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Characteristics Bit transfer Byte transfer Data transfer Register address Device address Start and stop conditions Acknowledgment Write cycle Read cycle
3 4 5 6	ORDERING INFORMATION QUICK REFERENCE DATA BLOCK DIAGRAM PINNING	12 12.1 12.2 12.3	REGISTER MAPPING Address mapping Read/write registers mapping Read registers mapping
7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	FUNCTIONAL DESCRIPTION IC control Microcontroller interface Clock systems IEC 60958 decoder IEC 60958 encoder Analog input Analog output Digital audio input and output Power-on reset	13 14 15 16 17 18 18.1 18.2 18.3	LIMITING VALUES THERMAL CHARACTERISTICS CHARACTERISTICS TIMING CHARACTERISTICS PACKAGE OUTLINE SOLDERING Introduction to soldering surface mount packages Reflow soldering Wave soldering
8 8.1 8.2 8.3 8.4 9 9.1	APPLICATION MODES Static mode pin assignment Static mode basic applications Microcontroller mode pin assignment Microcontroller mode applications SPDIF SIGNAL FORMAT SPDIF channel encoding SPDIF hierarchical layers	18.4 18.5 19 20 21 22	Manual soldering Suitability of surface mount IC packages for wave and reflow soldering methods DATA SHEET STATUS DEFINITIONS DISCLAIMERS PURCHASE OF PHILIPS I ² C COMPONENTS
9.3 10 10.1 10.2 10.3 10.4	Timing characteristics L3-BUS DESCRIPTION Device addressing Register addressing Data write mode Data read mode		

UDA1355H

1 FEATURES

1.1 General

- 2.7 to 3.6 V power supply
- Integrated digital interpolator filter and Digital-to-Analog Converter (DAC)
- · 24-bit data path in interpolator
- · No analog post filtering required for DAC
- Integrated Analog-to-Digital Converter (ADC), Programmable Gain Amplifier (PGA) and digital decimator filter
- 24-bit data path in decimator
- Master or slave mode for digital audio data I/O interface
- I²S-bus, MSB-justified, LSB-justified 16, 18, 20, and 24 bits formats supported on digital I/O interface.

1.2 Control

 Controlled by means of static pins or microcontroller (L3-bus or I²C-bus) interface.

1.3 IEC 60958 input

- On-chip amplifier for converting IEC 60958 input to CMOS levels
- · Supports level I, II and III timing
- Selectable IEC 60958 input channel, one of four
- Supports input frequencies from 28 to 96 kHz
- · Lock indication signal available on pin LOCK
- 40 status bits can be read for left and right channel via L3-bus or l2C-bus
- Channel status bits available via L3-bus or I²C-bus: lock, pre-emphasis, audio sample frequency, two channel Pulse Code Modulation (PCM) indication and clock accuracy
- Pre-emphasis information of incoming IEC 60958 bitstream available in register
- Detection of digital data preamble, such as AC3, available on pin in microcontroller mode.

1.4 IEC 60958 output

- CMOS output level converted to IEC 60958 output signal
- Full-swing digital signal, with level II timing using crystal oscillator clock
- 32, 44.1 and 48 kHz output frequencies supported in static mode

BITSTREAM CONVERSION

- 32, 44.1 and 48 kHz output frequencies (including double and half of these frequencies) supported in microcontroller mode
- Via microcontroller, 40 status bits can be set for left and right channel.

1.5 Digital I/O interface

- Supports sampling frequencies from 16 to 100 kHz
- Supported static mode:
 - I2S-bus format
 - LSB-justified 16 and 24 bits format
 - MSB-justified format.
- Supported microcontroller mode:
 - I²S-bus format
 - LSB-justified 16, 18, 20 or 24 bits format
 - MSB-justified format.
- BCK and WS signals can be slave or master, depending on application mode.

1.6 ADC digital sound processing

- Supports sampling frequencies from 16 to 100 kHz
- Analog front-end includes a 0 to +24 dB PGA in steps of 3 dB, selectable via microcontroller interface
- Digital independent left and right volume control of +24 to -63.5 dB in steps of 0.5 dB via microcontroller interface
- Bitstream ADC operating at 64f_s
- Comb filter decreases sample rate from 64f_s to 8f_s
- Decimator filter (8f_s to f_s) made of a cascade of three FIR half-band filters.

1.7 DAC digital sound processing

- Digital de-emphasis for 32, 44.1, 48 and 96 kHz audio sampling frequencies
- Automatic de-emphasis when using IEC 60958 to DAC
- Soft mute made of a cosine roll-off circuit selectable via pin MUTE or L3-bus interface

Stereo audio codec with SPDIF interface

UDA1355H

- · Programmable digital silence detector
- Interpolating filter (f_s to 64f_s or f_s to 128f_s) comprising a recursive and a FIR filter in cascade
- Selectable fifth-order noise shaper operating at 64f_s or third-order noise shaper operating at 128f_s (specially for low sampling frequencies, e.g. 16 kHz) generating bitstream for DAC
- Filter Stream DAC (FSDAC)
- In microcontroller mode:
 - Left and right volume control (for balance control)
 0 to -78 dB and -∞
 - Left and right bass boost and treble control
 - Optional resonant bass boost control
 - Mixing possibility of two data streams.

2 GENERAL DESCRIPTION

The UDA1355H is a single-chip IEC 60958 decoder and encoder with integrated stereo digital-to-analog converters and analog-to-digital converters employing bitstream conversion techniques.

The UDA1355H has a selectable one-of-four SPDIF input (accepting level I, II and III timing) and one SPDIF output

which can generate level II output signals with CMOS levels. In microcontroller mode the UDA1355H offers a large variety of possibilities for defining signal flows through the IC, offering a flexible analog, digital and SPDIF converter chip with possibilities for off-chip sound processing via the digital input and output interface.

A lock indicator is available on pin LOCK when the IEC 60958 decoder and the clock regeneration mechanism is in lock. By default the DAC output and the digital data interface output are muted when the decoder is not in lock.

The UDA1355H contains two clock systems which can run at independent frequencies, allowing to lock-on to an incoming SPDIF or digital audio signal, and in the mean time generating a stable signal by means of the crystal oscillator for driving, for example, the ADC or SPDIF output signal.

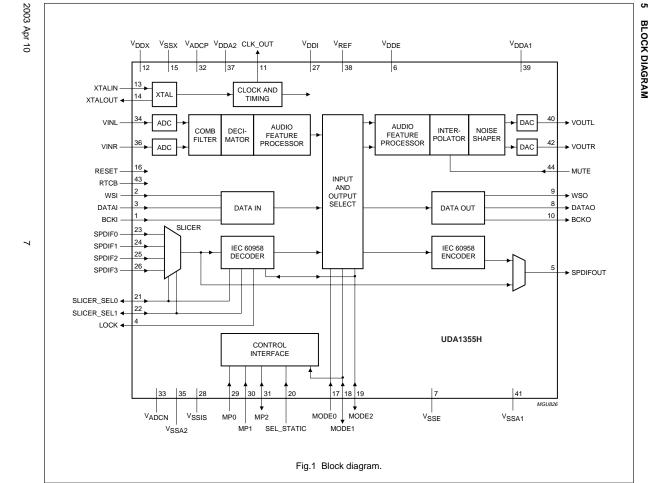
Using the crystal oscillator (which requires a 12.288 MHz crystal) and the on-chip low jitter PLL, all standard audio sampling frequencies (f_s = 32, 44.1 and 48 kHz including half and double these frequencies) can be generated.

3 ORDERING INFORMATION

TYPE		PACKAGE	VERSION		
NUMBER	NAME	DESCRIPTION	VERSION		
UDA1355H	QFP44	plastic quad flat package; 44 leads (lead length 1.3 mm); body $10 \times 10 \times 1.75$ mm	SOT307-2		

UDA1355H

4 QUICK REFERENCE DATA


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			'			1
V _{DDA1}	DAC supply voltage		2.7	3.0	3.6	V
V _{DDA2}	ADC supply voltage		2.7	3.0	3.6	V
V_{DDX}	crystal oscillator and PLL supply voltage		2.7	3.0	3.6	V
V_{DDI}	digital core supply voltage		2.7	3.0	3.6	٧
V _{DDE}	digital pad supply voltage		2.7	3.0	3.6	V
I _{DDA1}	DAC supply current	f _s = 48 kHz; power-on	_	4.7	_	mA
		f _s = 96 kHz; power-on	_	4.7	_	mA
		f _s = 48 kHz; power-down	_	1.7	_	μΑ
		f _s = 96 kHz; power-down	_	1.7	_	μΑ
I _{DDA2}	ADC supply current	f _s = 48 kHz; power-on	_	10.2	_	mA
		f _s = 96 kHz; power-on	_	10.4	_	mA
		f _s = 48 kHz; power-down	_	0.2	_	μΑ
		f _s = 96 kHz; power-down	_	0.2	_	μΑ
I _{DDX}	crystal oscillator and PLL	f _s = 48 kHz; power-on	_	0.9	_	mA
	supply current	f _s = 96 kHz; power-on	_	1.2	_	mA
I _{DDI}	digital core supply current	$f_s = 48 \text{ kHz}$; all on	_	18.2	_	mA
		f _s = 96 kHz; all on	_	34.7	_	mA
I _{DDE}	digital pad supply current	f _s = 48 kHz; all on	_	0.5	_	mA
		f _s = 96 kHz; all on	_	0.7	_	mA
T _{amb}	ambient temperature		-40	_	+85	°C
	log converter; f _i = 1 kHz; V _{DD}	_{A1} = 3.0 V	<u> </u>	1		-
V _{o(rms)}	output voltage (RMS value)		-	900	-	mV
ΔV_{o}	output voltage unbalance		_	0.1	_	dB
(THD+N)/S	total harmonic	IEC 60958 input; f _s = 48 kHz				
,	distortion-plus-noise to	at 0 dB	_	-88	_	dB
	signal ratio	at –20 dB	_	-75	_	dB
		at –60 dB; A-weighted	_	-37	_	dB
		IEC 60958 input; f _s = 96 kHz				
		at 0 dB	_	-83	_	dB
		at –60 dB; A-weighted	_	-37	_	dB
S/N	signal-to-noise ratio	IEC 60958 input; code = 0; A-weighted				
		f _s = 48 kHz	_	98	_	dB
		f _s = 96 kHz	_	96	_	dB
	channel separation	-5 -5 -11 -1		100	1	dB

UDA1355H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Analog-to-digital converter; f _i = 1 kHz; V _{DDA2} = 3.0 V						
V _i (rms)	input voltage (RMS value)	V _o = −1.16 dBFS digital output	_	1.0	-	٧
ΔV_i	input voltage unbalance		_	0.1	_	dB
(THD+N)/S	total harmonic	f _s = 48 kHz				
	distortion-plus-noise to	at 0 dB	_	-85	-	dB
	signal ratio	at -60 dB; A-weighted	_	-35	-	dB
		f _s = 96 kHz	85 35 - 97 - 95			
		at 0 dB	_	-85	_	dB
		at -60 dB; A-weighted	_	-35	_	dB
S/N	signal-to-noise ratio	code = 0; A-weighted				
		f _s = 48 kHz	_	97	_	dB
		f _s = 96 kHz	_	95	_	dB
$\alpha_{ t cs}$	channel separation		_	100	_	dB
External crysta	al					•
f _{xtal}	crystal frequency		_	12.288	_	MHz
C _{L(xtal)}	crystal load capacitor		_	10	_	pF
Device reset						
t _{rst}	reset time		_	250	-	μs
Power consum	ption					
P _{tot}	total power consumption	IEC 60958 input; f _s = 48 kHz				
		DAC in playback mode	_	74	_	mW
		DAC in Power-down mode	_	63	-	mW

Philips Semiconductors

Preliminary specification

Downloaded from Elcodis.com electronic components distributor

UDA1355H

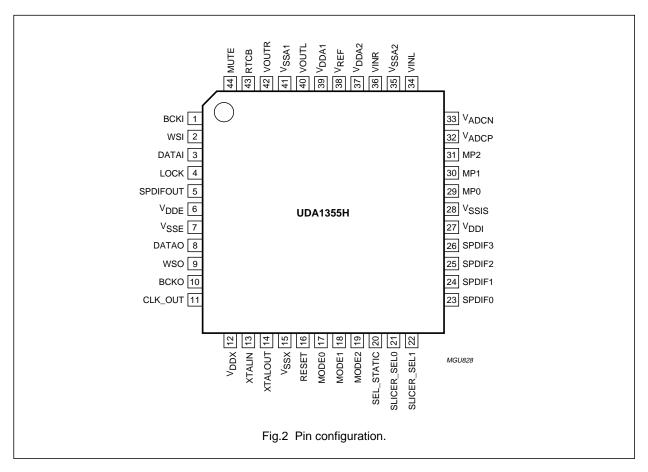
UDA1355H

6 PINNING

SYMBOL	PIN	PAD ⁽¹⁾	DESCRIPTION
BCKI	1	bpt4mtht5v	bit clock input (master or slave)
WSI	2	bpt4mtht5v	word select input (master or slave)
DATAI	3	iptht5v	digital data input
LOCK	4	op4mc	PLL lock indicator output
SPDIFOUT	5	op4mc	SPDIF output
V_{DDE}	6	vdde	digital pad supply voltage
V _{SSE}	7	vsse	digital pad ground
DATAO	8	ops5c	digital data output
WSO	9	bpt4mtht5v	word select output (master or slave)
ВСКО	10	bpt4mtht5v	bit clock output (master or slave)
CLK_OUT	11	op4mc	clock output; 256f _s or 384f _s
V_{DDX}	12	vddco	crystal oscillator and PLL supply voltage
XTALIN	13	apio	crystal oscillator input
XTALOUT	14	apio	crystal oscillator output
V _{SSX}	15	vssco	crystal oscillator and PLL ground
RESET	16	ipthdt5v	reset input
MODE0	17	apio	mode selection input 0 for static mode or microcontroller mode (grounded for I ² C-bus)
MODE1	18	bpts5tht5v	mode selection input 1 for static mode or AO address input and output for microcontroller mode
MODE2	19	bpts5tht5v	mode selection input 2 for static mode or U_RDY output for microcontroller mode
SEL_STATIC	20	apio	selection input for static mode, I ² C-bus mode or L3-bus mode
SLICER_SEL0	21	bpts5tht5v	SPDIF slicer selection input 0 for static mode and USER bit output for microcontroller mode
SLICER_SEL1	22	bpts5tht5v	SPDIF slicer selection input 1 for static mode and AC3 preamble detect output for microcontroller mode
SPDIF0	23	apio	SPDIF input 0
SPDIF1	24	apio	SPDIF input 1
SPDIF2	25	apio	SPDIF input 2
SPDIF3	26	apio	SPDIF input 3
V_{DDI}	27	vddi	digital core supply voltage
V _{SSIS}	28	vssis	digital core ground
MP0	29	apio	multi-purpose pin 0: frequency select for static mode, not used for microcontroller mode
MP1	30	iptht5v	multi-purpose pin 1: SFOR1 for static mode, SCL for I ² C-bus mode and L3CLOCK for L3-bus mode
MP2	31	iic400kt5v	multi-purpose pin 2: SFOR0 for static mode, SDA for I ² C-bus mode and L3DATA for L3-bus mode
V _{ADCP}	32	vddco	positive ADC reference voltage
V _{ADCN}	33	vssco	negative ADC reference voltage
715011		1	

UDA1355H

SYMBOL	PIN	PAD ⁽¹⁾	DESCRIPTION
VINL	34	apio	ADC left channel input
V _{SSA2}	35	vssco	ADC ground
VINR	36	apio	ADC right channel input
V_{DDA2}	37	vddco	ADC supply voltage
V_{REF}	38	apio	reference voltage for ADC and DAC
V _{DDA1}	39	vddco	DAC supply voltage
VOUTL	40	apio	DAC left channel output
V _{SSA1}	41	vssco	DAC ground
VOUTR	42	apio	DAC right channel output
RTCB	43	ipthdt5v	test control input
MUTE	44	iipthdt5v	DAC mute input


Note

1. See Table 1.

Table 1 Pad description

PAD	DESCRIPTION
iptht5v	input pad; push-pull; TTL with hysteresis; 5 V tolerant
ipthdt5v	input pad; push-pull; TTL with hysteresis; pull-down; 5 V tolerant
op4mc	output pad; push-pull; 4 mA output drive; CMOS
ops5c	output pad; push-pull; 5 ns slew rate control; CMOS
bpt4mtht5v	bidirectional pad; push-pull input; 3-state output; 4 mA output drive; TTL with hysteresis; 5 V tolerant
bpts5tht5v	bidirectional pad; push-pull input; 3-state output; 5 ns slew rate control; TTL with hysteresis; 5 V tolerant
iic400kt5v	I ² C-bus pad; 400 kHz I ² C-bus specification with open drain; 5 V tolerant
apio	analog pad; analog input or output
vddco	analog supply pad
vssco	analog ground pad
vdde	digital supply pad
vsse	digital ground pad
vddi	digital core supply pad
vssis	digital core ground pad

UDA1355H

7 FUNCTIONAL DESCRIPTION

7.1 IC control

The UDA1355H can be controlled either via static pins or via the microcontroller serial hardware interface being the I²C-bus with a clock up to 400 kHz or the L3-bus with a clock up to 2 MHz. It is recommended to use the microcontroller interface since this gives full access to all the IC features.

The two microcontroller interfaces only differ in interface format. The register addresses and features that can be controlled are identical for L3-bus mode and I²C-bus mode.

The UDA1355H can operate in three control modes:

- · Static mode with limited features
- · L3-bus mode with full featuring
- I²C-bus mode with full featuring.

The modes are selected via the 3-level pin SEL_STATIC according to Table 2.

Table 2 Control mode selection via pin SEL_STATIC

LEVEL	MODE
HIGH	static mode
MID	I ² C-bus mode
LOW	L3-bus mode

7.2 Microcontroller interface

The UDA1355H has a microcontroller interface and all the sound processing features and system settings can be controlled by the microcontroller.

The controllable settings are:

- Restoring L3-bus defaults
- Power-on settings for all blocks
- · Digital interface input and output formats
- · Volume settings for the decimator
- · PGA gain settings

Stereo audio codec with SPDIF interface

UDA1355H

- Set two times 40 bits of channel status bits of the SPDIF output
- Select one of four SPDIF input sources
- · Enable digital mixer inside interpolator
- · Control mute and mixer volumes of digital mixer
- Selection of filter mode and settings of treble and bass boost for the interpolator (DAC) section
- · Volume settings of interpolator
- Selection of soft mute via cosine roll-off (only effective in L3-bus control mode) and bypass of auto mute
- · Selection of de-emphasis
- Enable and control of digital mixer inside interpolator.

The readable settings are:

- · Mute status of interpolator
- · PLL lock and adaptive lock
- Two times 40 bits of channels status bits of the SPDIF input signal.

7.3 Clock systems

The UDA1355H has two clock systems.

The first system uses an external crystal of 12.288 MHz to generate the audio related system clocks. Only a crystal with a frequency of 12.288 MHz is allowed.

The second system is a PLL which locks on the SPDIF or incoming digital audio signal (e.g. I²S-bus) and recovers the system clock.

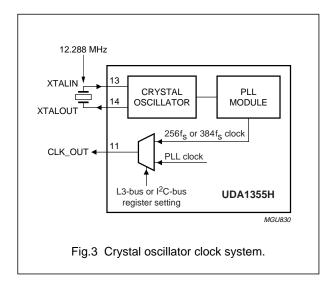
7.3.1 CRYSTAL OSCILLATOR CLOCK SYSTEM

The crystal oscillator and the on-chip PLL and divider circuit can be used to generate internal and external clock signals related to standard audio sampling frequencies (such as 32, 44.1 and 48 kHz including half and double of these frequencies).

The audio frequencies supported in either microcontroller mode or static mode are given in Table 3.

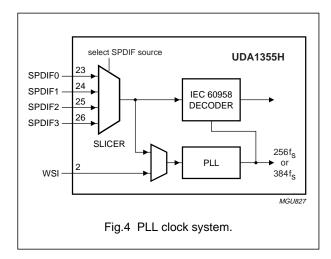
Table 3 Output frequencies

	OUTPUT F	REQUENCY	
BASIC AUDIO FREQUENCY	MICRO- CONTROLLER MODE	STATIC MODE	
32 kHz	256 × 16 kHz		
	384 × 16 kHz		
	256 × 32 kHz	256 × 32 kHz	
	384 × 32 kHz		
	256 × 64 kHz		
	384 × 64 kHz		
44.1 kHz	256 × 22.05 kHz		
	384 × 22.05 kHz		
	256 × 44.1 kHz	256 × 44.1 kHz	
	384 × 44.1 kHz		
	256 × 88.2 kHz		
	384 × 88.2 kHz		
48 kHz	256 × 24 kHz		
	384 × 24 kHz		
	256 × 48 kHz	256 × 48 kHz	
	384 × 48 kHz		
	256 × 96 kHz		
	384 × 96 kHz		


Remarks:

- If an application mode is selected which does not need a crystal oscillator, the crystal oscillator cannot be omitted. The reason is that the interpolator switches to the crystal clock when an SPDIF input signal is removed. This switch prevents the noise shaper noise from moving inside the audio band as the PLL gradually decreases in frequency.
- If no accurate output frequency is needed, the crystal can be replaced with a resonator.
- Instead of the crystal, a 12.288 MHz system clock can be applied to pin XTALIN.

The block diagram of the crystal oscillator and the PLL circuit is given in Fig.3.


Stereo audio codec with SPDIF interface

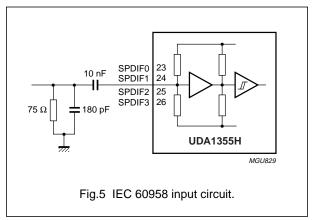
UDA1355H

7.3.2 PLL CLOCK SYSTEM

The PLL locks on the incoming digital data of the SPDIF or WS input signal. The PLL recovers the clock from the SPDIF or WSI signal and removes jitter to produce a stable system clock (see Fig.4).

7.3.3 WORD SELECTION DETECTION CIRCUIT

This circuit is clocked by the 12.288 MHz crystal oscillator clock and generates a Word Selection (WS) detection signal. If the WS detector does not detect any WS edge, defined as 7 times LOW and 7 times HIGH, then the WS detection signal is LOW. This information can be used to set the clock for the noise shaper in the interpolator. This will prevent noise shaper noise in the audio band.


7.3.4 CLOCK OUTPUT

The UDA1355H has a clock output pin (pin CLK_OUT), which can be used to drive other audio devices in the system. In microcontroller mode the output clock is 256f_s or 384f_s. In static mode the output clock is 256 times 32, 44.1 and 48 kHz.

The source of the output clock is either the crystal oscillator or the PLL, depending on the selected application and control mode.

7.4 IEC 60958 decoder

The UDA1355H IEC 60958 decoder can select one of four SPDIF input channels. An on-chip amplifier with hysteresis amplifies the SPDIF input signal to CMOS level, making it possible to accept both analog and digital SPDIF signals (see Fig.5).

7.4.1 AUDIO DATA

From the incoming SPDIF bitstream 24 bits of data for the left and right channel are extracted.

There is a hard mute (not a cosine roll-off mute) if the IEC 60958 decoder is out of lock or detects bi-mark phase encoding violations. The lock indicator and the key channel status bits are accessible in L3-bus mode.

The UDA1355H supports the following sample frequencies and data rates, including half and double of these frequencies:

- f_s = 32 kHz; resulting in a data rate of 2.048 Mbit/s
- f_s = 44.1 kHz; resulting in a data rate of 2.8224 Mbit/s
- f_s = 48 kHz; resulting in a data rate of 3.072 Mbit/s.

UDA1355H

7.4.2 CHANNEL STATUS AND USER BITS

As well as the data bits there are several IEC 60958 key channel status bits:

- Pre-emphasis and audio sampling frequency bits
- Two channel PCM indicator bits
- · Clock accuracy bits.

In total 40 status bits per channel are recovered from the incoming IEC 60958 bitstream. These are readable via the microcontroller interface.

User bits, which can contain a large variety of data, such as CD text, are output to pin SLICER_SEL0 (see Table 4). In microcontroller mode this signal contains the raw user bits extracted from the SPDIF bitstream. Signal U_RDY gives a pulse on pin MODE2 each time there is a new user bit available. Both signals can be used by an external microcontroller to grab and decode the user bits.

Table 4 Signal names in microcontroller mode

PIN NAME	SIGNAL NAME
SLICER_SEL0	USER
MODE2	U_RDY
SLICER_SEL1	AC3

7.4.3 DIGITAL DATA

Audio and digital data can be transmitted in the SPDIF bitstream. The PCM channel status bit should be set to logic 1 if the SPDIF bitstream is carrying digital data instead of audio data, but in practice it proves that not all equipment handles these channel status bits properly.

In the UDA1355H, digital data is detected via bit PCM, or via the sync bytes as specified by IEC. These sync bytes are two sync words, F872H and 4E1FH (two subframes) preceded by four or more subframes filled with zeros. Signal AC3 is kept HIGH for 4096 frames when the UDA1355H detects this burst preamble. Signal AC3 is present on pin SLICER_SEL1 in microcontroller mode (see Table 4).

7.5 IEC 60958 encoder

When using the crystal oscillator clock, the IEC 60958 encoder output is a full-swing digital signal with level II timing.

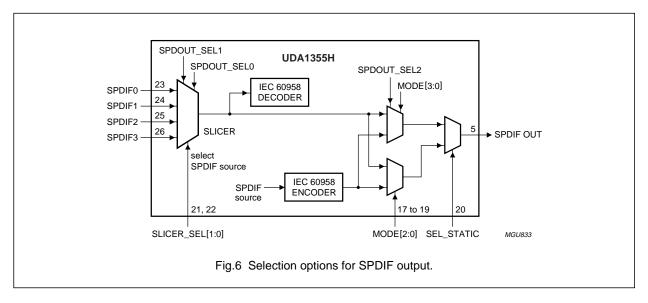
When the recovered clock from the PLL is used the IEC 60958 encoder will function correctly but will not meet level II timing requirements.

7.5.1 STATIC MODE

All user and channel status bits are set to logic 0. This is default value specified by IEC.

In static mode 0 and 2, the selected SPDIF input channel can be looped through to pin SPDIFOUT (see Fig.6).

7.5.2 MICROCONTROLLER MODE


Two times 40 channel status bits can be set. Default value for each status bit is logic 0. When setting the channel status bits, it is possible to set only the left channel status bits and have the bits copied to the right channel.

The procedure of writing the channel status bits is as follows:

- 1. Set bit SPDO_VALID = 0 to prevent immediately sending the status bits during writing.
- Set bit I_r_copy = 1 if the right channel needs the same status bits as the left channel or set bit I_r_copy = 0 if the right channel needs different status bits to the left channel.
- 3. Write the left and right channel status bits.
- 4. Set bit SPDO_VALID = 1 after writing all channel status bits to the register. Starting from the next SPDIF block the IEC 60958 encoder will use the new status bits.

In microcontroller modes 2 and 13, the selected SPDIF input channel can be looped through to pin SPDIFOUT (see Fig.6).

UDA1355H

7.6 Analog input

7.6.1 ADC

The analog input is equipped with a Programmable Gain Amplifier (PGA) which can be controlled via the microcontroller interface. The control range is from 0 to 24 dB gain in 3 dB steps independent for the left and right channels.

In applications in with a 2 V (RMS) input signal, a 12 k Ω resistor must be used in series with the input of the ADC. The 12 k Ω resistor forms a voltage divider together with the internal ADC resistor and ensures that the voltage, applied to the input of the IC, never exceeds 1 V (RMS). In the application for a 2 V (RMS) input signal, the PGA must be set to 0 dB. When a 1 V (RMS) input signal is applied to the ADC in the same application, the PGA gain must be set to 6 dB.

An overview of the maximum input voltages allowed with and without an external resistor and the PGA gain setting is given in Table 5.

Table 5 Maximum input voltage; $V_{DD} = 3 \text{ V}$

EXTERNAL RESISTOR (12 kΩ)	PGA GAIN SETTING	MAXIMUM INPUT VOLTAGE
Present	0 dB	2 V (RMS)
	6 dB	1 V (RMS)
Absent	0 dB	1 V (RMS)
	6 dB	0.5 V (RMS)

7.6.2 DECIMATION

The decimation from 64f_s is performed in two stages: comb filter and decimation filter. The first stage realizes a

fourth-order $\frac{\sin x}{x}\,$ characteristic with a decimation factor

of eight. The second stage consists of three half-band filters each decimating by a factor of two. Table 6 shows the characteristics.

Table 6 Decimation filter characteristics

ITEM	CONDITIONS	VALUE (dB)
Pass-band ripple	0 to 0.45f _s	±0.02
Stop band	>0.55f _s	-60
Dynamic range	0 to 0.45f _s	140
Overall gain from ADC	DC; $V_I = 0 dB$;	-1.16
input to digital output	note 1	

Note

1. The output is not 0 dB when $V_{l(rms)} = 1 \text{ V at } V_{DD} = 3 \text{ V}$. This is because the analog components can spread over the process. When there is no external resistor, the -1.16 dB scaling prevents clipping caused by process mismatch.

In the ADC path there are left and right independent digital volume controls with a range from +24 to -63.5 dB and $-\infty$ dB. This volume control is also used as a digital linear mute that can be used to prevent plops when powering-up or powering down the ADC front path.

UDA1355H

7.6.3 DC FILTERING

In the decimator there are two digital DC blocking circuits.

The first blocking circuit is in front of the volume control to remove DC bias from the ADC output. The DC bias is added in the ADC to prevent audio band Idle tones occurring in the noise shaper. With the DC components removed, a signal gain of 24 dB can be achieved.

The second blocking circuit removes the DC components introduced by the decimator stage.

7.6.4 OVERLOAD DETECTION

Bit OVERFLOW = 1 when the output data in the left or right channel is larger than -1.16 dB of the maximum possible digital swing. This condition is set for at least $512f_s$ cycles (that is 11.6 ms at $f_s = 44.1$ kHz). This time-out is reset for each infringement.

7.7 Analog output

7.7.1 AUDIO FEATURE PROCESSOR

The audio feature processor provides automatic de-emphasis for the IEC 60958 bitstream. In microcontroller mode all features are available and there is a default mute on start up.

7.7.2 INTERPOLATING FILTER

The digital filter interpolates from 1f_s to 64f_s, or from 1f_s to 128f_s, by cascading a half-band filter and a FIR filter.

The stereo interpolator has the following basic features:

- 24-bit data path
- Mixing of two channels:
 - To prevent clipping inside the core, there is an automatic signal level correction of –6 dB scaling before mixing and +6 dB gain after digital volume control
 - Position of mixing can be set before or after bass boost and treble
 - Master volume control and mute with independent left and right channel settings for balance control
 - Independently left and right channel de-emphasis, volume control and mute (no left or right)
 - Output of the mixer is to the I²S-bus or IEC 60958 decoder.
- Full FIR filter implementation for all the upsampling filters
- Integrated digital silence detection for left and right channels with selectable silence detection time

 Support for 1f_s and 2f_s input data rate and 192 kHz audio via I²S-bus.

The stereo interpolator has the following sound features:

- Linear volume control using 14-bit coefficients with 0.25 dB steps: range 0 to −78 dB and −∞ dB; hold for master volume and mixing volume control
- A cosine roll-off soft mute with 32 coefficients; each coefficient is used for four samples, in total 128 samples are needed to fully mute or de-mute (approximately 3 ms at f_s = 44.1 kHz)
- Independent selectable de-emphasis for 32, 44.1, 48 and 96 kHz for both channels
- Treble is the selectable positive gain for high frequencies. The edge frequency of the treble is fixed and depends on the sampling frequency. Treble can be set independently for left and right channel with two settings:
 - f_c = 1.5 kHz; f_s = 44.1 kHz; 0 to 6 dB gain range with 2 dB steps
 - f_c = 3 kHz; f_s = 44.1 kHz; 0 to 6 dB gain range with 2 dB steps.
- Normal bass boost is the selectable positive gain for low frequencies. The edge frequency of the bass boost is fixed and depends on the sampling frequency. Normal bass boost can be set independently for the left and right channel with two sets:
 - f_c = 250 Hz; f_s = 44.1 kHz; 0 to 18 dB gain range with 2 dB steps
 - f_c = 300 Hz; f_s = 44.1 kHz; 0 to 24 dB gain range with 2 dB steps.
- Resonant bass boost optional function is selected if bit BASS_SEL = 1. When selected, the characteristics are determined by six 14-bit coefficients. Resonant bass boost controls the left and right channel with the same characteristics. When resonant bass boost is selected, the treble control also changes to a single control for both channels following the gain setting of the left channel

A software program is available for users to generate the required six 14-bit coefficients by entering the desired centre frequency (f_c), positive or negative peak gain, sampling frequency (f_s) and shape factor (see Figs 7 and 8).

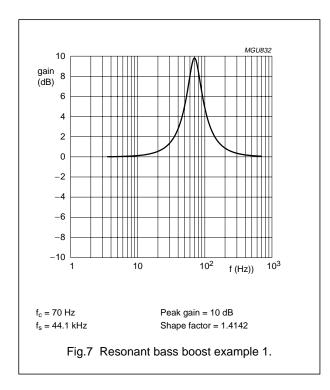
Stereo audio codec with SPDIF interface

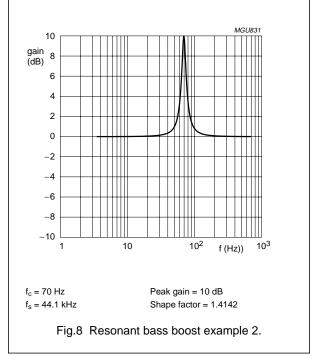
UDA1355H

 Table 7
 Interpolation filter characteristics

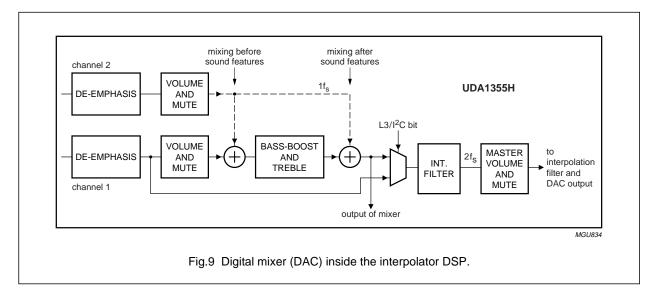
ITEM	CONDITIONS	VALUE (dB)
Pass-band ripple	0 to 0.45f _s	±0.035
Stop band	>0.55f _s	-60
Dynamic range	0 to 0.4535f _s	140

7.7.3 DIGITAL MIXER


The UDA1355H has a digital mixer inside the interpolator. The digital mixer can be used as a cross over or a selector. A functional block diagram of the mixer mode is shown in Fig.9. This mixer can be used in microcontroller mode only.


The UDA1355H can be set to the mixer mode by setting bit MIX = 1. In the mixer mode, there are three volume and

mute controls available: for source 1, for source 2 and for the master (sum) signal. All three volume ranges can be controlled in 0.25 dB steps.


To prevent clipping inside the mixer, the signals are scaled with –6 dB before mixing, therefore the sum of the two signals is always equal to or lower than 0 dB. After the mixing there is a 6 dB gain in the master volume control. This means that at the analog output the signal can clip, but the clipping can be undone by decreasing the master volume control.

The output of the mixer is available via the I²S-bus output or via the SPDIF output. The output signal of the mixer is scaled to a maximum of 0 dB, so the digital output can never clip.

UDA1355H

7.7.4 DIGITAL SILENCE DETECTOR

The UDA1355H is equipped with a digital silence detector. This detects whether a certain amount of consecutive samples are 0. The number of samples can be set with bits SD_VALUE[1:0] to 3200, 4800, 9600 or 19600 samples.

The digital silence detection status can be read via the microcontroller interface.

7.7.5 Noise shaper (DAC)

The noise shaper shifts in-band quantization noise to frequencies above the audio band. The noise shaper output is converted into an analog signal using a Filter Stream Digital-to-Analog Converter (FSDAC). This noise shaping technique enables high signal-to-noise ratios to be achieved.

The UDA1355H is equipped with two noise shapers:

- A third-order noise shaper operating at 128fs. Which is used at low sampling frequencies (8 to 16 kHz) to prevent noise shaper noise shifting into the audio band for the fifth-order noise shaper
- A fifth-order noise shaper operating at 64f_s. Which is used at high sampling frequencies (from 32 kHz upwards).

When the noise shaper changes, the clock to the FSDAC changes and the filter characteristic of the FSDAC also changes. The effect on the roll of is compensated by selecting the filter matching speed and order of the noise shaper.

7.7.6 FILTER STREAM DAC

The FSDAC is a semi digital reconstruction filter that converts the 1-bit data bitstream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the operational amplifier output. In this way, very high signal-to-noise performance and low clock jitter sensitivity are achieved. A post filter is not needed due to the inherent filter function of the FSDAC. On-chip amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output. The output voltage of the FSDAC scales proportionally with the supply voltage.

7.7.7 DAC MUTE

17

The DAC and interpolator can be muted by setting pin MUTE to a HIGH level. The output signal is muted to zero via a cosine roll-off curve and the DAC is powered down. When pin MUTE is at LOW level the signal rise follows the same cosine curve.

To prevent plops in case of changing inputs, clock to the DAC or application modes, a special mute circuit for the DAC is implemented (see Table 8).

In all application modes in which the DAC is active the DAC can be muted by pin MUTE. The microcontroller mute bits and pin MUTE act as an OR function.

2003 Apr 10

UDA1355H

Table 8 Muting to prevent plopping

OCCASION		BIT		DE MUTE CONDITION			
OCCASION	MT1	MT2	мтм	DE-MUTE CONDITION			
Input selection							
Select channel 1 source	Х	_	_	no mute after selection			
Select channel 2 source	_	х	_	no mute after selection			
Select chip mode		•					
PLL is source for the DAC	_	_	х	wait until PLL is locked again			
Crystal is source for the DAC	_	_	х	no mute after selection			
Select between microcontroller mod	e and static	mode					
PLL is source for the DAC	_	_	х	wait until PLL is locked again			
Crystal is source for the DAC	_	_	х	no mute after selection			
Audio features							
Select noise shaper order	_	_	х	no mute after selection			
Select FSDAC output polarity	_	_	х	no mute after selection			
Select SPDIF input	_	_	х	PLL is locked again			
Select mixer	-	_	_	no mute needed			
Select mixer position	_	_	_	no mute needed			
Select crystal clock source	-		х	no mute after selection			

7.8 Digital audio input and output

The selection of the digital audio input and output formats and master or slave modes differ for static and microcontroller mode.

In master mode, when $256f_s$ output clock is selected and the digital interface is master, the BCK output clock will be $64f_s$. In case $384f_s$ output clock is selected, the BCK output clock will be $48f_s$.

In the static mode the digital audio input formats are:

- I²S-bus
- · LSB-justified; 16 bits
- LSB-justified; 24 bits
- · MSB-justified.

The digital audio output formats are:

- I²S-bus
- · MSB-justified.

In the microcontroller mode, the following formats are independently selectable:

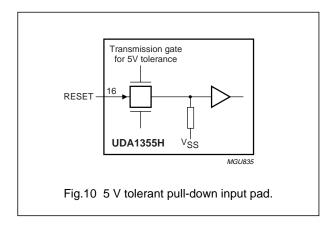
- I²S-bus
- · LSB-justified; 16 bits

• LSB-justified; 18 bits

LSB-justified; 20 bits

. LSB-justified; 24 bits

• MSB-justified.


7.9 Power-on reset

The UDA1355H has a dedicated reset pin with an internal pull-down resistor. In this way a Power-on reset circuit can be made with a capacitor and a resistor at pin RESET. The external resistor is needed since the pad is 5 V tolerant. This means that there is a transmission gate in series with the input and the resistor inside the pad cannot be seen from the outside world (see Fig.10).

The reset timing is determined by the external pull-down resistor and the external capacitor which is connected to pin RESET. At Power-on reset, all the digital sound processing features and the system controlling features are set to the default setting of the microcontroller mode. Since the bit controlling the clock of the synchronous registers is set to enable, the synchronous registers are also reset.

Stereo audio codec with SPDIF interface

UDA1355H

The clock should be running during the reset time. When no clock can be guaranteed in microcontroller mode, a soft reset should be given when the system is running by writing to register 7FH.

8 APPLICATION MODES

In this chapter the application modes for static mode and microcontroller mode are described.

The UDA1355H can be controlled by static pins, the L3-bus or I²C-bus interface. Due to the limitations imposed by the pin count, only basic functions are available in static mode. For optimum use of the UDA1355H features, the microcontroller mode is strongly recommended.

There are 11 application modes available in the static mode and 14 application modes in microcontroller mode. The application modes are explained in the two sections: Section 8.2 explains the application modes 0 to 10. Section 8.4 explains the more advanced features of modes 0 to 10 and modes 12 to 14 available in the microcontroller mode.

8.1 Static mode pin assignment

The default values for all non-pin controlled settings are identical to the start-up defaults from the microcontroller mode. Whether BCK and WS are master or slave depends on the selected application mode.

Table 9 defines the pin functions in static mode.

Table 9 Static mode pin assignment

PIN	STATIC MODE SYMBOL	LEVEL	DESCRIPTION
4	LOCK	LOW	IEC 60958 decoder out of lock (when SPDIF input) or clock regeneration out of lock (I ² S-bus input)
		HIGH	IEC 60958 decoder in lock (when SPDIF input) or clock regeneration in lock (I ² S-bus input)
16	RESET	LOW	normal operation
		HIGH	reset
17, 18, 19	MODE0, MODE1, MODE2	П	select application mode; see Table 10
20	SEL_STATIC	HIGH	static pin control
		LOW	microcontroller mode
22, 21	SLICER_SEL1,	LOW, LOW	IEC 60958 input from pin SPDIF0
	SLICER_SEL0	LOW, HIGH	IEC 60958 input from pin SPDIF1
		HIGH, LOW	IEC 60958 input from pin SPDIF2
		HIGH, HIGH	IEC 60958 input from pin SPDIF3
29	FREQ_SEL	LOW	select 44.1 kHz sampling frequency for the crystal oscillator, note 1
		MID	select 32 kHz sampling frequency for the crystal oscillator, note 1
		HIGH	select 48 kHz sampling frequency for the crystal oscillator, note 1

Stereo audio codec with SPDIF interface

UDA1355H

PIN	STATIC MODE SYMBOL	LEVEL	DESCRIPTION
30, 31	SFOR1, SFOR0	LOW, LOW	set I ² S-bus format for digital data input and output interface
		LOW, HIGH	set LSB-justified 16 bits format for digital data input interface and MSB-justified format for digital data output interface
		HIGH, LOW	set LSB-justified 24 bits format for digital data input interface and MSB-justified format for digital data output interface
		HIGH, HIGH	set MSB-justified format for digital data input and output interface
44	MUTE	LOW	normal operation
		HIGH	mute active

Note

1. FPLL 256fs is output from pin CLKOUT in PLL locked static mode.

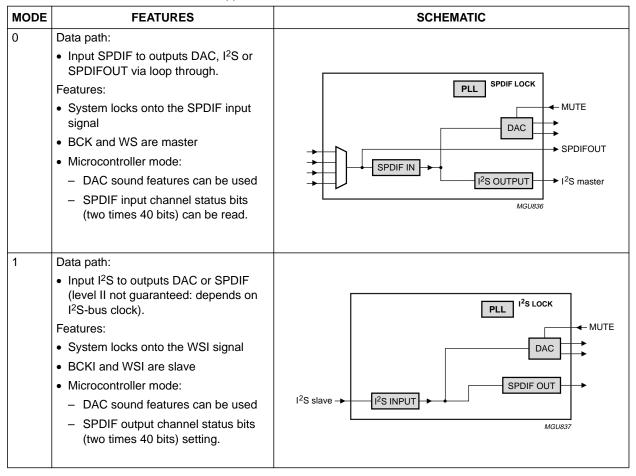
8.2 Static mode basic applications

The static application modes are selected with the pins MODE2, MODE1 and MODE0, with pin MODE0 being a 3-level pin. In Table 10, the encoding of the pins MODE[2:0] is given.

Table 10 Static mode basic applications

	MODE S	ELECTIO	N PINS ⁽¹⁾	CLOCK ⁽²⁾						PLL
MODE	MODE2	MODE1	MODE0	SPDIF INPUT	SPDIF OUTPUT	ADC	DAC	I ² S-BUS INPUT SLAVE	I ² S-BUS OUTPUT MASTER	LOCKS ON INPUT
0	L	L	L	PLL	PLL	_	PLL	-	PLL	SPDIF
1	L	L	М	_	PLL	_	PLL	PLL	-	I ² S-bus
2	L	L	Н	PLL	PLL	_	PLL	PLL	PLL	SPDIF
3	L	Н	L	_	xtal	xtal	_	-	xtal	_
4	L	Н	М	ı	xtal	xtal	xtal	xtal	xtal	_
5	L	Н	Н	ı	xtal	xtal	xtal	xtal	xtal	_
6	Н	L	L	ı	PLL	xtal	PLL	PLL	xtal	I ² S-bus
7	Н	L	М	PLL	xtal	xtal	PLL	ı	xtal	SPDIF
8	Н	L	Н	1	xtal	xtal	PLL	PLL	xtal	I ² S-bus
9	Н	Н	Ĺ	PLL	xtal	_	xtal	xtal	PLL	SPDIF
10	Н	Н	М	PLL	xtal	_	PLL	xtal	PLL	SPDIF
11	Н	Н	Н		not used					

Notes


- 1. In column mode selection pins means:
 - L: pin at 0 V; M: pin at half V_{DDD} ; H: pin at V_{DDD} .
- 2. In column clock means:

xtal: the clock is based on the crystal oscillator; PLL: the clock is based on the PLL.

UDA1355H

The first 11 application modes are given in this section. Schematic diagrams of these application modes are given in Table 11. In this table the basic features are mentioned and also the extra features in case of microcontroller mode are given. It should be noted that the blocks running at the crystal clock (XTAL) are marked unshaded while the blocks running at the PLL clock are shaded.

Table 11 Overview of static mode basic applications

UDA1355H

MODE	FEATURES	SCHEMATIC
3	Data path: Input SPDIF to outputs I ² S or SPDIFOUT via loop through Input I ² S to output DAC. Features: Possibility to process input SPDIF via I ² S-bus using an external DSP and then to output DAC System locks onto the SPDIF input signal I ² S input and output with BCK and WS are master Microcontroller mode: see Section 8.4. Data path: Input ADC to outputs I ² S or SPDIF. Features: Crystal oscillator generates the clocks Microcontroller mode: PGA gain setting Volume control in decimator setting SPDIF output channel status bits	PLL SPDIF LOCK MUTE DAC SPDIF IN I ² S INPUT I ² S slave I ² S master EXTERNAL DSP (e.g. equalizing, spatializing) (SAA7715) MGUB38
4	Data path: Input ADC to output I ² S Input I ² S to outputs DAC or SPDIF. Features: Possibility to process input ADC via I ² S-bus using a external DSP and then to outputs DAC or SPDIF Crystal oscillator generates the clocks I ² S input and output with BCK and WS are master Microcontroller mode: see Section 8.4.	XTAL ADC DAC SPDIF OUT 12S INPUT 12S master I2S master

UDA1355H

MODE	FEATURES	SCHEMATIC
5	Data path: Input ADC to outputs I ² S or SPDIF Input I ² S to output DAC. Features: Possibility to process input ADC via I ² S-bus using an external DSP and then to output DAC Crystal oscillator generates the clocks I ² S input and output with BCK and WS are master Microcontroller mode: see Section 8.4.	ADC ADC DAC SPDIF OUT I ² S INPUT I ² S Slave I ² S master EXTERNAL DSP (e.g. equalizing, spatializing) (SAA7715) MGU841
6	Data path: Input ADC to output I ² S Input I ² S to outputs DAC or SPDIF (level II not guaranteed: depends on I ² S-bus clock). Features: Possibility to process input ADC via I ² S-bus using an external DSP and then to outputs DAC or SPDIF Crystal oscillator generates the clocks for input ADC and output I ² S WSI is slave WSO is master Microcontroller mode: see Section 8.4.	ADC ADC SPDIF OUT I ² S INPUT I ² S Slave I ² S Master EXTERNAL DSP (SAA7715) MGUB42

UDA1355H

MODE	FEATURES	SCHEMATIC
7	 Data path: Input SPDIF to output DAC Input ADC to outputs SPDIF or I²S. Features: Crystal oscillator generates the clocks for outputs SPDIF and I²S PLL locks onto the SPDIF input signal WS of I²S output is master Microcontroller mode: Decimator features can be used DAC sound features can be used SPDIF input channel status bits (two times 40 bits) can be read SPDIF output channel status bits (two times 40 bits) setting. 	ADC DAC SPDIF LOCK SPDIF OUT SPDIF OUT 12S OUTPUT MGUB43
8	 Data path: Input ADC to outputs SPDIF or I²S Input I²S to output DAC. Features: Possibility to process input ADC, via I²S-bus using an external DSP and then to output DAC Crystal oscillator generates the clocks for outputs SPDIF and I²S WSI is slave WSO master Microcontroller mode: Decimator features can be used DAC sound features can be used SPDIF output channel status bits (two times 40 bits) setting. 	ADC ADC ADC DAC SPDIF OUT 12S INPUT 12S slave 12S master EXTERNAL DSP (e.g. Sample Rate Convertor) (SAA7715) MGU844

UDA1355H

MODE	FEATURES	SCHEMATIC
9	 Data path: Input SPDIF to output I²S Input I²S to outputs DAC or SPDIF. Features: Possibility to process input SPDIF, via I²S-bus using an external DSP and then to outputs DAC or SPDIF BCK and WS being master for both I²S input and output (different clocks) Input I²S to outputs DAC and SPDIF; BCK and WS being master; clocks based on crystal oscillator Microcontroller mode: DAC sound features can be used SPDIF output channel status bits (two times 40) setting. 	SPDIF IN SPDIF OUT I ² S INPUT I ² S Slave I ² S master EXTERNAL DSP (e.g. Sample Rate Convertor) (SAA7715) MGUB45
10	 Data path: Input SPDIF to output DAC or I²S Input I²S-bus to output SPDIF. Features: Possibility to process input SPDIF, via I²S-bus using an external DSP and then to output SPDIF Input SPDIF to outputs I²S and DAC; locking onto the SPDIF input signal; BCK and WS being master Input I²S to output SPDIF; BCK and WS being master; clocks are generated by the crystal oscillator Microcontroller mode: DAC sound features can be used SPDIF input channel status bits (two times 40) can be read SPDIF output channel status bits (two times 40) setting. 	SPDIF IN SPDIF OUT I ² S INPUT I ² S Slave I ² S Save I ² S master EXTERNAL DSP (e.g. Sample Rate Convertor) (SAA7715) MGU846
11	Not used	
12	See microcontroller mode	
13	See microcontroller mode	
14	See microcontroller mode	
15	Not used	

UDA1355H

8.3 Microcontroller mode pin assignment

In microcontroller mode all features become available, such as volume control, PGA gain and mixing (in some modes). The pin functions are defined in Table 12.

Table 12 Microcontroller mode pin assignment

PIN	SYMBOL L3-BUS	SYMBOL I ² C-BUS	LEVEL	DESCRIPTION
4	LOCK	LOCK	LOW	FPLL and SPDIF are out of LOCK
			HIGH	FPLL in lock when SPDIF is not used; FPLL or SPDIF in lock when SPDIF is used
16	RESET	RESET	LOW	normal operation
			HIGH	reset
17	no function	no function	LOW	connect to ground
18	A0	A0	_	A0 address input/output bit (for microcontroller register)
19	U_RDY	U_RDY	LOW	user bit stable
			HIGH	new user bit
20	SEL_STATIC	SEL_STATIC	MID	I ² C-bus mode
			LOW	L3-bus mode
			HIGH	static mode
21	USER	USER	1	user bit output (new bit every SPDIF sub-frame)
22	AC3	AC3	LOW	no I ² S-bus data preamble detected
			HIGH	I ² S-bus data preamble detected
29	L3MODE	no function	_	L3MODE for L3-bus mode; no function for I ² C-bus
30	L3CLOCK	SCL	-	L3CLOCK for L3-bus mode or SCL for I ² C-bus mode
31	L3DATA	SDA	-	L3DATA for L3-bus mode or SDA for I ² C-bus mode
44	MUTE	MUTE	LOW	no mute
			HIGH	mute active

UDA1355H

8.4 Microcontroller mode applications

In Table 13, the encoding of bits MODE[3:0] in the microcontroller mode is given.

Table 13 Microcontroller mode applications

	MODE BITS			CLO	CK ⁽¹⁾			PLL
MODE	MODE[3:0]	SPDIF INPUT	SPDIF OUTPUT	ADC	DAC	I ² S-BUS INPUT SLAVE	I ² S-BUS OUTPUT MASTER	LOCKS ON INPUT
0	0000	PLL	PLL	_	PLL	-	PLL	SPDIF
1	0001	-	PLL	_	PLL	PLL	-	I ² S
2	0010	PLL	PLL	PLL	PLL	PLL	PLL	SPDIF
3	0011	-	xtal	xtal	-	-	xtal	-
4	0100	-	xtal	xtal	xtal	xtal	xtal	-
5	0101	-	xtal	xtal	xtal	xtal	xtal	-
6	0110	-	PLL	xtal	PLL	PLL	xtal	I ² S
7	0111	PLL	xtal	xtal	PLL	_	xtal	SPDIF
8	1000	-	xtal	xtal	PLL	PLL	xtal	I ² S
9	1001	PLL	xtal	xtal	xtal	xtal	PLL	SPDIF
10	1010	PLL	xtal	PLL	PLL	xtal	PLL	SPDIF
11	1011		not used					
12	1100	PLL	xtal	xtal	PLL	PLL	xtal	SPDIF
13	1101	PLL	PLL	xtal	PLL	PLL	xtal	SPDIF
14	1110	-	PLL	PLL	PLL	PLL	PLL	I ² S
15	1111				not used			

Note

xtal: the clock is based on the crystal oscillator; PLL: the clock is based on the PLL.

^{1.} In column clock means:

UDA1355H

In the microcontroller mode, more features are available. The application modes are given in Table 14. Some modes are the same in terms of data path as for the static mode. These modes are already explained in Section 8.2. Some modes are combined into one mode (like modes 4 and 5).

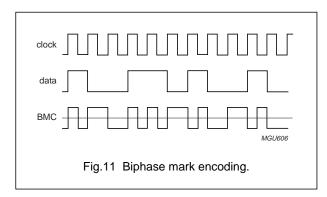
Table 14 Overview of microcontroller modes

MODE	FEATURE	SCHEMATIC
0	See static mode	
1	See static mode	
2	Data path: Inputs ADC, I ² S and SPDIF to outputs DAC, I ² S or SPDIF. Features: All clocks are related to the SPDIF clock I ² S input and output have master BCK and WS SPDIF input channel status bits (two times 40) can be read Output SPDIF supported but the timing not according to level II: depends on I ² S-bus clock Output SPDIFOUT loop through can be selected with independent SPDIF input channel select.	SPDIF LOCK ADC ADC SPDIF IN SPDIF OUT SPDIF OUT SPDIF OUT OUT I'2S OUTPUT I'2S master EXTERNAL DSP (e.g. equalizing, spatializing) (SAA7715) MGU847
3 4+5	See static mode Data path: Inputs ADC and I ² S to outputs DAC, I ² S or SPDIF. Features: Mode 4 and 5 are combined in microcontroller mode Crystal oscillator generates the clocks I ² S input and output have master BCK and WS SPDIF output channel status bits (two times 40) setting.	ADC ADC SPDIF OUT I ² S INPUT I ² S slave I ² S master EXTERNAL DSP (e.g. equalizing, spatializing) (SAA7715) MGU848

UDA1355H

MODE	FEATURE	SCHEMATIC
6	See static mode	
7	See static mode	
8	See static mode	
9	Data path: Inputs ADC and I ² S to outputs DAC or SPDIF Input SPDIF to output I ² S. Features: Input SPDIF to output I ² S with BCK and WS being master; the clocks for this are recovered from the SPDIF input signal The rest of the clocks are generated by the crystal oscillator SPDIF input channel status bits (two times 40) can be read SPDIF output channel status bits (two times 40) setting	SPDIF IN SPDIF OUT SPDIF OUT I'2S INPUT I'2S Slave I'2S master EXTERNAL DSP (e.g. Sample Rate Convertor)
10	 Possibility to process input SPDIF, via I²S-bus using an external DSP and then to outputs DAC or SPDIF. Data path: Inputs ADC and SPDIF to outputs DAC or I²S Input I²S to output SPDIF. Features: BCK and WS are master SPDIF input channel status bits (two times 40) can be read SPDIF output channel status bits (two times 40) setting Possibility to process inputs ADC or SPDIF, via I²S-bus using an external DSP and then to output SPDIF. 	SPDIF LOCK ADC ADC ADC SPDIF IN SPDIF OUT I ² S INPUT I ² S OUTPUT I ² S Master EXTERNAL DSP (e.g. Sample Rate Convertor) (SAA7715) MGU850
11	Not used	

UDA1355H

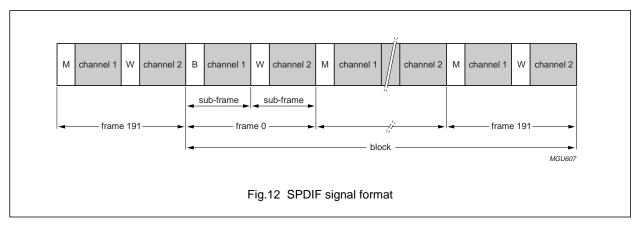

MODE	FEATURE	SCHEMATIC
12	 Data path: Input ADC to outputs I²S or SPDIF Inputs I²S and SPDIF to output DAC. Features: BCK and WS of I²S output are master Inputs SPDIF and I²S to output DAC with mixing/selection possibility; clocks are generated from SPDIF input signal, and BCK and WS are master SPDIF input channel status bits (two times 40) can be read SPDIF output channel status bits (two times 40) setting. 	ADC MUTE ADC DAC SPDIF IN SPDIF OUT I ² S slave I ² S INPUT I ² S Master
13	Data path: Input ADC to output I ² S Inputs I ² S and SPDIF to outputs DAC or SPDIF. Features BCK and WS being master SPDIF input channel status bits (two times 40) can be read Output SPDIF supported but the timing not according to level II Output SPDIFOUT loop through can be selected with independent SPDIF input channel select.	ADC ADC ADC ADC DAC SPDIF IN SPDIF OUT OUT I ² S Slave I ² S INPUT MGU852
14	 Data path: Inputs ADC and I²S to outputs DAC SPDIF and I²S. Features: All clocks are related to WS signal of I²S-bus input Master BCK and WS for I²S output; slave BCK and WS for I²S input SPDIF output channel status bits (two times 40) can be set; level II timing depends on the I²S-bus clocks. 	PLL I ² S LOCK ADC ADC DAC SPDIF OUT I ² S OUTPUT I ² S master
15	Not used	

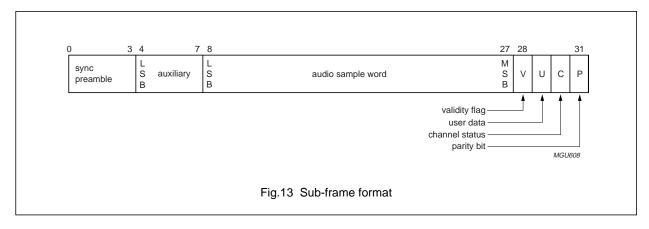
UDA1355H

9 SPDIF SIGNAL FORMAT

9.1 SPDIF channel encoding

The digital signal is coded using Biphase Mark Code (BMC), which is a kind of phase modulation. In this scheme, a logic 1 in the data corresponds to two zero-crossings in the coded signal, and a logic 0 to one zero-crossing. An example of the encoding is given in Fig.11.




9.2 SPDIF hierarchical layers

The SPDIF signal format is shown in Fig.12. A PCM signal is transmitted in sequential blocks. Each block consists of 192 frames. Each frame contains two sub-frames, one for each channel. Each subframe is preceded by a preamble. There are three types of preambles: B, M and W. Preambles can be spotted easily in an SPDIF bitstream because these sequences never occur in the channel parts of a valid SPDIF bitstream.

The sub-frame format is represented by Fig.13. A sub-frame contains a single audio sample word which may be 24 bits wide, a validity bit which indicates whether the sample is valid, a bit containing user data, a bit indicating the channel status and a parity bit for this sub-frame.

The data bits 31 to 4 in each sub-frame are encoded using a BMC scheme. The sync preamble contains a violation of the BMC scheme and can be detected. Table 15 indicates the values of the preambles.

UDA1355H

Table 15 Preambles

PRECEDING	CHANNEL CODING					
STATE	0	1				
В	11101000	00010111				
M	11100010	00011101				
W	11100100	00011011				

9.3 Timing characteristics

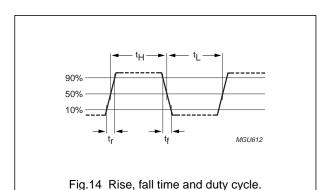
9.3.1 Frequency requirements

The SPDIF specification IEC 60958 supports three levels of clock accuracy:

- Level I high accuracy: Tolerance of transmitting sampling frequency shall be within 50 × 10⁻⁶
- Level II, normal accuracy: All receivers should receive a signal of 1000 × 10⁻⁶ of nominal sampling frequency
- Level III, variable pitch shifted clock mode: A deviation of 12.5% of the nominal sampling frequency is possible.

The UDA1355H inputs support level I, II, and III as specified by the IEC 60958 standard.

9.3.2 RISE AND FALL TIMES


Rise and fall times (see Fig.14) are defined as:

Rise time =
$$\frac{t_r}{t_L + t_H} \times 100\%$$

Fall time =
$$\frac{t_f}{t_L + t_H} \times 100\%$$

Rise and fall times should be in the range:

- 0% to 20% when the data bit is a logic 1
- 0% to 10% when the data bits are two succeeding logic 0.

9.3.3 DUTY CYCLE

The duty cycle (see Fig.14) is defined as:

Duty cycle =
$$\frac{t_H}{t_L + t_H} \times 100\%$$

The duty cycle should be in the range:

- 40% to 60% when the data bit is a logic 1
- 45% to 55% when the data bits are two succeeding logic 0.

10 L3-BUS DESCRIPTION

The exchange of data and control information between the microcontroller and the UDA1355H is accomplished through a serial hardware L3-bus interface comprising the following pins:

- MP0: mode line with signal L3MODE
- MP1: clock line with signal L3CLOCK
- MP2: data line with signal L3DATA.

The exchange of bytes in L3-bus mode is LSB first.

The L3-bus format has two modes of operation:

- · Address mode
- · Data transfer mode.

The address mode is used to select a device for a subsequent data transfer. The address mode is characterized by L3MODE being LOW and a burst of 8 pulses on L3CLOCK, accompanied by 8 bits (see Fig.15). The data transfer mode is characterized by L3MODE being HIGH and is used to transfer one or more bytes representing a register address, instruction or data.

Basically two types of data transfers can be defined:

- · Write action: data transfer to the device
- Read action: data transfer from the device.

10.1 Device addressing

The device address consists of one byte with:

- Data Operating Mode (DOM) bits 0 and 1 representing the type of data transfer (see Table 16)
- Address bits 2 to 7 representing a 6-bit device address.

Stereo audio codec with SPDIF interface

UDA1355H

Table 16 Selection of data transfer

DOM	BITS	TRANSFER			
BIT 0	BIT 1	IKANSFER			
0	0	not used			
1	0	not used			
0	1	write data or prepare read			
1	1	read data			

The device address of the UDA1355H is given in Table 17, being the first 6 bits of the device address byte. The address can be set one of two by using pin MODE1 (pin A0 in microcontroller mode).

Table 17 L3-bus device address

MSB		ADDRESS						
0	0	0	0	1	A0			

Remark: When using the device address, there is often misunderstanding. This is caused by the fact that the data is sent LSB first. This means that when we use the device address in, for example the Philips L3-bus/ 12 C-bus bithacker', we have to use the address like LSB \rightarrow MSB. For the UDA1355H this means that the device address to be used is either 10H (010000) or 30H (110000).

10.2 Register addressing

After sending the device address, including Data Operating Mode (DOM) bits indicating whether the information is to be read or written, one data byte is sent using bit 0 to indicate whether the information will be read or written and bits 1 to 7 for the destination register address.

Basically there are three methods for register addressing:

- Addressing for write data: bit 0 is logic 0 indicating a write action to the destination register, followed by bits 1 to 7 indicating the register address (see Fig.15)
- Addressing for prepare read: bit 0 is logic 1 indicating that data will be read from the register (see Fig.16)
- Addressing for data read action: in this case the device returns a register address prior to sending data from that register. When bit 0 is logic 0, the register address is valid; in case bit 0 is logic 1 the register address is invalid.

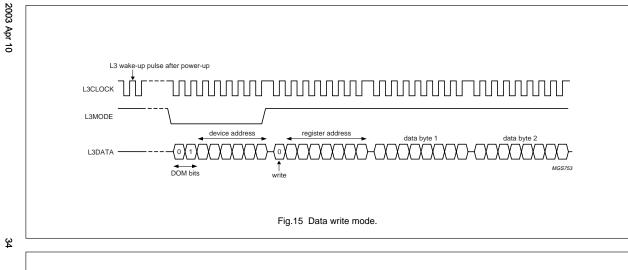
10.3 Data write mode

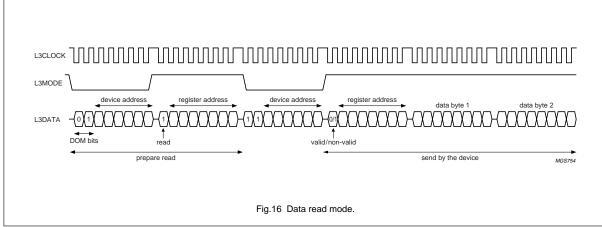
The data write mode is explained in the signal diagram of Fig.15.

For writing data to a device, 4 bytes must be sent (see Table 18):

- Byte 1 starting with 01 for signalling the write action to the device, followed by the device address
- Byte 2 starting with 0 for signalling the write action, followed by 7 bits indicating the destination address in binary format with A6 being the MSB and A0 being the LSB
- Byte 3 with bit D15 being the MSB
- Byte 4 with bit D0 being the LSB.

It should be noted that each time a new destination register address needs to be written, the device address must be sent again.


10.4 Data read mode


For reading data from the device, first a prepare read must be done and then data read. The data read mode is explained in the signal diagram of Fig.16.

For reading data from a device, the following 6 bytes are involved (see Table 19):

- Byte 1 with the device address including 01 for signalling the write action to the device
- Byte 2 is sent with the register address from which data needs to be read. This byte starts with 1, which indicates that there will be a read action from the register, followed again by 7 bits for the destination address in binary format with A6 being the MSB and A0 being the LSB
- Byte 3 with the device address including 11 is sent to the device. The 11 indicates that the device must write data to the microcontroller
- Byte 4, sent by the device to the bus, with the (requested) register address and a flag bit indicating whether the requested register was valid (bit is logic 0) or invalid (bit is logic 1)
- Byte 5, sent by the device to the bus, with the data information in binary format with D15 being the MSB
- Byte 6, sent by the device to the bus, with the data information in binary format with D0 being the LSB.

Preliminary specification

Stereo audio codec with SPDIF interface

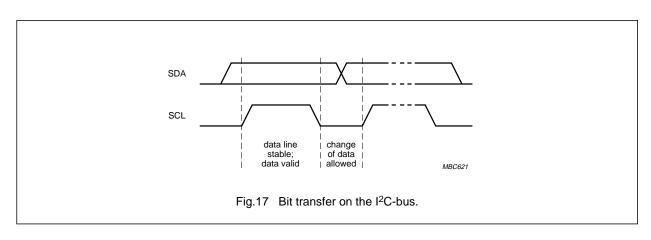
UDA1355H

Table 18 L3-bus write data

вуте	L3-BUS MODE	ACTION	FIRST IN TIME					LAST IN TIME		
	L3-B03 MODE		BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7
1	address	device address	0	1	A0	1	0	0	0	0
2	data transfer	register address	0	A6	A5	A4	A3	A2	A1	A0
3	data transfer	data byte 1	D15	D14	D13	D12	D11	D10	D9	D8
4	data transfer	data byte 2	D7	D6	D5	D4	D3	D2	D1	D0

Table 19 L3-bus read data

вуте	L3-BUS MODE	ACTION	FIRST IN TIME					LAST IN TIME		
	L3-BU3 MODE		BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7
1	address	device address	0	1	A0	1	0	0	0	0
2	data transfer	register address	1	A6	A5	A4	A3	A2	A1	A0
3	address	device address	1	1	A0	1	0	0	0	0
4	data transfer	register address	0 or 1	A6	A5	A4	A3	A2	A1	A0
5	data transfer	data byte 1	D15	D14	D13	D12	D11	D10	D9	D8
6	data transfer	data byte 2	D7	D6	D5	D4	D3	D2	D1	D0


11 I2C-BUS DESCRIPTION

11.1 Characteristics

The bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a Serial Data Line (SDA) and a Serial Clock Line (SCL). Both lines must be connected to the supply voltage (V_{DD}) via a pull-up resistor when connected to the output stages of a microcontroller. For a 400 kHz IC the recommendation for this type of bus from Philips Semiconductors must be followed (e.g. up to loads of 200 pF on the bus a pull-up resistor can be used, between 200 to 400 pF a current source or switched resistor must be used). Data transfer can only be initiated when the bus is not busy.

11.2 Bit transfer

One data bit is transferred during each clock pulse (see Fig.17). The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals. The maximum clock frequency is 400 kHz. To be able to run on this high frequency all the inputs and outputs connected to this bus must be designed for this high speed I²C-bus according the Philips specification.

Stereo audio codec with SPDIF interface

UDA1355H

11.3 Byte transfer

Each byte (8 bits) is transferred with the MSB first (see Table 20).

Table 20 Byte transfer

MSB			В	IT			LSB
7	6	5	4	3	2	1	0

11.4 Data transfer

A device generating a message is a transmitter; a device receiving a message is the receiver. The device that controls the message is the master and the devices which are controlled by the master are the slaves.

11.5 Register address

The register addresses in the I²C-bus mode are the same as in the L3-bus mode.

11.6 Device address

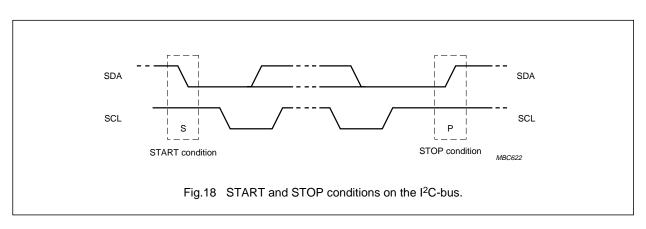
Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The device address can be one of two, being set by bit A0 which corresponds to pin MODE1.

The UDA1355H acts as a slave receiver or a slave transmitter. Therefore, the clock signal SCL is only an input signal. The data signal SDA is a bidirectional line. The UDA1355H slave address is shown in Table 21.

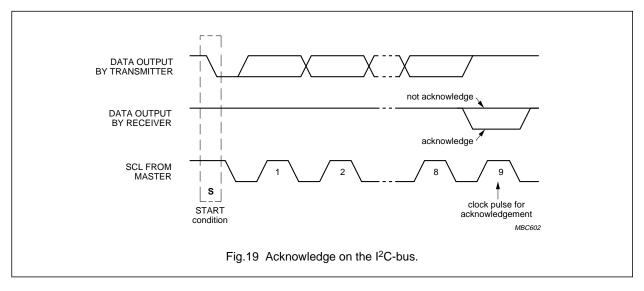
Table 21 I²C-bus slave address

DEVICE ADDRESS							R/W
A6	6 A5 A4 A3 A2 A1 A0						-
0	0	1	1	0	1	A0	0/1

11.7 Start and stop conditions


Both data and clock line will remain HIGH when the bus in not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as a start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as a stop condition (P); (see Fig.18).

11.8 Acknowledgment


The number of data bits transferred between the start and stop conditions from the transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit (see Fig.19). At the acknowledge bit the data line is released by the master and the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

UDA1355H

11.9 Write cycle

The write cycle is used to write groups of two bytes to the internal registers for the digital sound feature control and system setting. It is also possible to read these locations for chip status information.

The I²C-bus configuration for a write cycle is shown in Table 22. The write cycle is used to write the data to the internal registers. The device and register addresses are one byte each, the setting data is always a couple of two bytes.

The format of the write cycle is as follows:

- 1. The microcontroller starts with a start condition (S).
- 2. The first byte (8 bits) contains the device address 0011010 and a logic 0 (write) for the R/W bit.
- This is followed by an acknowledge (A) from the UDA1355H.

- After this the microcontroller writes the 8-bit register address (ADDR) where the writing of the register content of the UDA1355H must start.
- The UDA1355H acknowledges this register address (A).
- The microcontroller sends two bytes data with the Most Significant (MS) byte first and then the Least Significant (LS) byte. After each byte an acknowledge is followed from the UDA1355H.
- If repeated groups of two bytes are transmitted, then the register address is auto incremented. After each byte an acknowledge is followed from the microcontroller.
- Finally, the UDA1355H frees the I²C-bus and the microcontroller can generate a stop condition (P).

Table 22 Master transmitter writes to the UDA1355H registers in the I²C mode.

	DEVICE ADDRESS	R/W		REGISTER ADDRESS			DAT	A 1		DA	ATA	2 ⁽¹⁾		Г	DATA	A n ⁽¹⁾		
S	0011010	0	Α	ADDR	Α	MS1	Α	LS1	Α		Α		Α	MSn	Α	LSn	Α	Р
	acknowledge from UDA1355H																	

Note

1. Auto increment of register address.

Philips Semiconductors

Preliminary specification

T T

2003 Apr

11.10 Read cycle

The read cycle is used to read the data values from the internal registers. The I^2C -bus configuration for a read cycle is shown in Table 23

The format of the read cycle is as follows:

- 1. The microcontroller starts with a start condition (S).
- 2. The first byte (8 bits) contains the device address 0011010 and a logic 0 (write) for the R/\overline{W} bit.
- 3. This is followed by an acknowledge (A) from the UDA1355H.
- 4. After this microcontroller writes the 8-bit register address (ADDR) where the reading of the register content of the UDA1355H must start.
- 5. The UDA1355H acknowledges this register address (A).
- 6. Then the microcontroller generates a repeated start (Sr).
- Then the microcontroller generates the device address 0011010 again, but this time followed by a logic 1 (read) of the R\overline{W} bit. An acknowledge
 (A) follows from the UDA1355H.
- 8. The UDA1355H sends two bytes data with the Most Significant (MS) byte first and then the Least Significant (LS) byte. After each byte an acknowledged follows from the microcontroller.
- 9. If repeated groups of two bytes are transmitted, then the register address is auto incremented. After each byte an acknowledge follows from the microcontroller.
- 10. The microcontroller stops this cycle by generating a Negative Acknowledge (NA).
- 11. Finally, the UDA1355H frees the I²C-bus and the microcontroller can generate a stop condition (P).

 $\textbf{Table 23} \ \ \text{Master transmitter reads from the UDA1355H registers in the } \ l^2 \text{C-bus mode}$

	DEVICE ADDRESS	R/W		REGISTER ADDRESS			DEVICE ADDRESS	R/W			DAT	ΓA 1			DAT	4 2 (*	1)		DAT	A n ⁽¹⁾		
S	0011010	0	Α	ADDR	Α	Sr	0011010	1	Α	MS1	Α	LS1	Α		Α		Α	MSn	Α	LSn	NA	Р
	acknowledge from UDA1355H												ac	kno	wle	dge	fror	n mast	er			

Note

1. Auto increment of register address.

UDA1355H

UDA1355H

12 REGISTER MAPPING

In this chapter the register addressing of the microcontroller interface of the UDA1355H is given. In Section 12.1, the mapping of the readable and writable registers is given. The explanation of the register definitions are explained in Sections 12.2 and 12.3.

12.1 Address mapping

Table 24 Register map settings

ADDRESS	R/W	DESCRIPTION
System setti	ngs	
00H	R/W	crystal clock power-on setting; crystal clock and PLL divider settings; MODE and WS detector settings; clock output setting
01H	R/W	I ² S-bus output format settings
02H	R/W	I ² S-bus input format settings
03H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
04H	R/W	analog power and clock settings
Interpolator		
10H	R/W	master volume control settings
11H	R/W	mixer volume settings
12H	R/W	sound feature and bass boost and treble settings
13H	R/W	gain select; de-emphasis and mute settings
14H	R/W	DAC polarity; noise shaper selection; mixer; source selection; silence detector and interpolator oversampling settings
18H	R	mute and silence detector status read-out
19H	R/W	resonant bass boost coefficient k1 setting
1AH	R/W	resonant bass boost coefficient km setting
1BH	R/W	resonant bass boost coefficient a1 setting
1CH	R/W	resonant bass boost coefficient a2 setting
1DH	R/W	resonant bass boost coefficient b1 setting
1EH	R/W	resonant bass boost coefficient b2m setting
Decimator		
20H	R/W	ADC gain settings
21H	R/W	ADC mute and PGA gain settings;
22H	R/W	ADC polarity and DC cancellation settings
28H	R	mute status and overflow ADC read-out
SPDIF input		
30H	R/W	SPDIF power control and SPDIF input settings
40H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
59H	R	SPDIF LOCK; bit error information and SPDIF encoder output status read-out
5AH	R	SPDIF input status bits 15 to 0 left channel read-out
5BH	R	SPDIF input status bits 31 to 16 left channel read-out
5CH	R	SPDIF input status bits 39 to 32 left channel read-out

UDA1355H

ADDRESS	R/W	DESCRIPTION
5DH	R	SPDIF input status bits 15 to 0 right channel read-out
5EH	R	SPDIF input status bits 31 to 16 right channel read-out
5FH	R	SPDIF input status bits 39 to 32 right channel read-out
SPDIF outpu	ıt	
50H	R/W	SPDIF output valid; left to right channel status bit copy; power control and SPDIF output selection setting
51H	R/W	SPDIF output status bits 39 to 24 left channel setting
52H	R/W	SPDIF output status bits 23 to 8 left channel setting
53H	R/W	SPDIF output status bits 7 to 0 left channel setting
54H	R/W	SPDIF output status bits 39 to 24 right channel setting
55H	R/W	SPDIF output status bits 23 to 8 right channel setting
56H	R/W	SPDIF output status bits 7 to 0 right channel setting
60H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
61H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
62H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
63H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
64H	R/W	reserved for manufacturers evaluation and should be kept untouched for normal operation
Device ID		
7EH	R	device ID; version
Software res	et	
7FH	R/W	restore L3-bus defaults

12.2 Read/write registers mapping

12.2.1 System settings

Table 25 Register address 00H

BIT	15	14	13	12	11	10	9	8
Symbol	EXPU	_	PON_XTAL PLL	XTL_DIV4	XTL_DIV3	XTL_DIV2	XTL_DIV1	XTL_DIV0
Default	0	0	1	0	1	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	MODE3	MODE2	MODE1	MODE0	ws_detct_EN	ws_detct_set	CLKOUT_ SEL1	CLKOUT_ SEL0
Default	0	0	1	0	1	0	1	0

UDA1355H

Table 26 Description of register bits (address 00H)

BIT	SYMBOL	DESCRIPTION
15	EXPU	EXPU. Bit EXPU is reserved for manufacturers evaluation and should be kept untouched for normal operation of UDA1355H.
14	-	reserved
13	PON_XTALPLL	Power control crystal oscillator and PLL. If this bit is logic 0, then the crystal oscillator and PLL are turned off; if this bit is logic 1, then the crystal oscillator and PLL are running.
12 to 8	XTL_DIV[4:0]	Crystal oscillator clock divider setting. Value to select the sampling frequency and the system clock output frequency ($256f_s$ or $384f_s$). When $256f_s$ is selected, the master BCKI and BCKO clock frequency of digital interface running with crystal oscillator clock will be $64f_s$; when $384f_s$ is selected, it will be $48f_s$ (see Table 27).
7 to 4	MODE[3:0]	Microcontroller application mode setting. Value to select the microcontroller application mode (see Table 28).
3	ws_detct_EN	Word select detector enable. If this bit is logic 0, then WS detector is disabled; if this bit is logic 1, then WS detector is enabled.
2	ws_detct_set	Word select detector limit setting. If this bit is logic 0, then the lower frequency limit of the WS detector is 4095 clock cycles (3 kHz); if this bit is logic 1, then the lower frequency limit of the WS detector is 2047 clock cycles (6 kHz).
1 and 0	CLKOUT_SEL[1:0]	Clock output select. If these bits are 00 or 10, then the BCKI and BCKO clock frequency of digital interface running with FPLL clock will be 64f _s ; otherwise, it will be 48f _s . The selection between 256f _s and 384f _s for the crystal clock output is set via the bits XTL_DIV[4:0]:
		00 = FPLL clock 256f _s
		01 = FPLL clock 384f _s
		10 = crystal clock
		11 = crystal clock

Table 27 Crystal oscillator output frequencies

XTL_DIV4	XTL_DIV3	XTL_DIV2	XTL_DIV1	XTL_DIV0	OUTPUT RATE
Based on 32 kH	z				
0	0	0	0	0	256 × 16 kHz
0	0	0	0	1	384 × 16 kHz
0	0	0	1	0	256 × 32 kHz
0	0	0	1	1	384 × 32 kHz
0	0	1	0	0	256 × 64 kHz
0	0	1	0	1	384 × 64 kHz
Based on 44.1 k	Hz				
0	0	1	1	0	256 × 22.05 kHz
0	0	1	1	1	384 × 22.05 kHz
0	1	0	0	0	256 × 44.1 kHz
0	1	0	0	1	384 × 44.1 kHz
0	1	0	1	0	256 × 88.2 kHz
0	1	0	1	1	384 × 88.2 kHz

UDA1355H

XTL_DIV4	XTL_DIV3	XTL_DIV2	XTL_DIV1	XTL_DIV0	OUTPUT RATE
Based on 48 kH	Z				
0	1	1	0	0	256 × 24 kHz
0	1	1	0	1	384 × 24 kHz
0	1	1	1	0	256 × 48 kHz
0	1	1	1	1	384 × 48 kHz
1	0	0	0	0	256 × 96 kHz
1	0	0	0	1	384 × 96 kHz

Table 28 Application mode selection

MODE3	MODE2	MODE1	MODE0	FUNCTION
0	0	0	0	mode 0
0	0	0	1	mode 1
0	0	1	0	mode 2
0	0	1	1	mode 3
0	1	0	0	mode 4
0	1	0	1	mode 5
0	1	1	0	mode 6
0	1	1	1	mode 7
1	0	0	0	mode 8
1	0	0	1	mode 9
1	0	1	0	mode 10
1	0	1	1	mode 11
1	1	0	0	mode 12
1	1	0	1	mode 13
1	1	1	0	mode 14
1	1	1	1	mode 15

Table 29 Register address 01H

BIT	15	14	13	12	11	10	9	8
Symbol	_	-	_	_	-	_	_	MUTE_DAO
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	PON_DIGO	_	DIGOUT1	DIGOUT0	_	SFORO2	SFORO1	SFORO0
Default	1	0	1	0	0	0	0	0

UDA1355H

Table 30 Description of register bits (address 01H)

BIT	SYMBOL	DESCRIPTION					
15 to 9	_	reserved					
8	MUTE_DAO	Digital mute setting. If this bit is logic 0, then the digital output is not muted; if this bit is logic 1, then the digital output is muted.					
7	PON_DIGO	ower control digital output. If this bit is logic 0, then the digital output is in Power-down ode; if this bit is logic 1, then the digital output is in power-on mode. The registers have eir own clock, which means that there cannot be a dead-lock situation.					
6	_	reserved					
5 and 4	DIGOUT[1:0]	Input selector for digital output. Value to select the input signal for the digital output. The default input will be chosen if in an application an invalid data signal is selected:					
		00 = ADC input					
		01 = digital input					
		10 = IEC 60958 input					
		11 = interpolator mixer output					
3	_	reserved					
2 to 0	SFORO[2:0]	Digital output format. Value to set the digital output format:					
		$000 = I^2S$ -bus					
		001 = LSB-justified; 16 bits					
		010 = LSB-justified; 18 bits					
		011 = LSB-justified; 20 bits					
		100 = LSB-justified; 24 bits					
		101 = MSB-justified					
		110 = not used; output is default value					
		111 = not used; output is default value					

Table 31 Register address 02H

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	_	_	-	_	-	-
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	PON_DIGI	_	_	_	-	SFORI2	SFORI1	SFORI0
Default	1	0	0	0	0	0	0	0

Table 32 Description of register bits (address 02H)

BIT	SYMBOL	DESCRIPTION
15 to 8	_	reserved
7	PON_DIGI	Power control digital input. If this bit is logic 0, then the digital input is in Power-down mode; if this bit is logic 1, then the digital input is in power-on mode. The registers have their own clock, which means that there cannot be a dead-lock situation.
6 to 3	_	reserved

UDA1355H

BIT	SYMBOL	DESCRIPTION
2 to 0	SFORI[2:0]	Digital input format. Value to set the digital input format:
		$000 = I^2S$ -bus
		001 = LSB-justified; 16 bits
		010 = LSB-justified; 18 bits
		011 = LSB-justified; 20 bits
		100 = LSB-justified; 24 bits
		101 = MSB-justified
		110 = not used; input is default value
		111 = not used; input is default value

Table 33 Register address 04H

BIT	15	14	13	12	11	10	9	8
Symbol	PON_DAC	_	_	_	_	PON_ADCL	PON_ADCR	PON_ADC_bias
Default	1	0	0	0	0	1	1	1

BIT	7	6	5	4	3	2	1	0
Symbol	DACLK_OFF	DACLK_AUTO	_	_	-	EN_DEC	_	EN_INT
Default	0	0	0	0	0	1	0	1

Table 34 Description of register bits (address 04H)

BIT	SYMBOL	DESCRIPTION
15	PON_DAC	Power control DAC. If this bit is logic 0, then the DAC is in Power-down mode; if this bit is logic 1, then the DAC is in power-on mode. This bit is only connected to the DAC input and is not combined with mute status or other signals.
14 to 11	_	reserved
10	PON_ADCL	Power control ADC left channel. Value to set power on the ADC left channel (see Table 35).
9	PON_ADCR	Power control ADC right channel. Value to set power on the ADC right channel (see Table 35).
8	PON_ADC_bias	Power control ADC bias. Value to set power on the ADCs (see Table 35).
7	DACLK_OFF	DAC clock enable. If this bit is logic 0, then the DAC clock is disabled; if this bit is logic 1, then the DAC clock is enabled.
6	DACLK_AUTO	DAC clock auto function. If this bit is logic 0, then the DAC clock auto function is disabled; if this bit is logic 1, then the DAC clock auto function is enabled. If the FPLL is unlocked, the interpolator will be muted and the DAC clock is automatically disabled.
5 to 3	_	reserved
2	EN_DEC	Decimator and ADC clock enable. If this bit is logic 0, then the clock to decimator and ADC is disabled; if this bit is logic 1, then the clock to decimator and ADC is running.
1	-	reserved
0	EN_INT	Interpolator clock enable. If this bit is logic 0, then the clock to interpolator and FSDAC is disabled; if this bit is logic 1, then the clock to the interpolator and FSDAC is running.

UDA1355H

Table 35 ADC power control

PON_ADC_BIAS	PON_ADCR	PON_ADCL DESCRIPTION			
0	Х	X	no power on both ADCs		
1	0	0 no power on both ADCs			
1	1	0	only power on right channel ADC		
1	0	1	only power on left channel ADC		
1	1	1	power on both ADCs		

12.2.2 INTERPOLATOR

Table 36 Register address 10H

BIT	15	14	13	12	11	10	9	8
Symbol	MVCL_7	MVCL_6	MVCL_5	MVCL_4	MVCL_3	MVCL_2	MVCL_1	MVCL_0
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	MVCR_7	MVCR_6	MVCR_5	MVCR_4	MVCR_3	MVCR_2	MVCR_1	MVCR_0
Default	0	0	0	0	0	0	0	0

Table 37 Description of register bits (address 10H)

BIT	SYMBOL	DESCRIPTION
15 to 8	MVCL_[7:0]	Master volume setting left channel. Value to program the left channel master volume attenuation. The range is 0 dB to -78 dB and ∞ dB (see Table 38).
7 to 0	MVCR_[7:0]	Master volume setting right channel. Value to program the right channel master volume attenuation. The range is 0 dB to -78 dB and ∞ dB (see Table 38).

Table 38 Master volume setting left and right channel

MVCL_7	MVCL_6	MVCL_5	MVCL_4	MVCL_3	MVCL_2	MVCL_1	MVCL_0	VOLUME (dB)
MVCR_7	MVCR_6	MVCR_5	MVCR_4	MVCR_3	MVCR_2	MVCR_1	MVCR_0	VOLUME (db)
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	-0.25
0	0	0	0	0	0	1	0	-0.5
0	0	0	0	0	0	1	1	-0.75
0	0	0	0	0	1	0	0	-1
:	:	:	:	:	:	:	:	:
1	1	0	0	1	1	0	0	-51
1	1	0	0	1	1	0	1	-51.25
1	1	0	0	1	1	1	0	-51.5
1	1	0	0	1	1	1	1	-51.75
1	1	0	1	0	0	0	0	-52

UDA1355H

MVCL_7	MVCL_6	MVCL_5	MVCL_4	MVCL_3	MVCL_2	MVCL_1	MVCL_0	VOLUME (dB)
MVCR_7	MVCR_6	MVCR_5	MVCR_4	MVCR_3	MVCR_2	MVCR_1	MVCR_0	VOLUME (db)
1	1	0	1	0	1	0	0	-54
1	1	0	1	1	0	0	0	-56
:	:	:	:	:	:	:	:	:
1	1	1	0	1	1	0	0	-66
1	1	1	1	0	0	0	0	-69
1	1	1	1	0	1	0	0	-72
1	1	1	1	1	0	0	0	-78
1	1	1	1	1	1	0	0	-∞

Table 39 Register address 11H

BIT	15	14	13	12	11	10	9	8
Symbol	VC2_7	VC2_6	VC2_5	VC2_4	VC2_3	VC2_2	VC2_1	VC2_0
Default	1	1	1	1	1	1	1	1

BIT	7	6	5	4	3	2	1	0
Symbol	VC1_7	VC1_6	VC1_5	VC1_4	VC1_3	VC1_2	VC1_1	VC1_0
Default	0	0	0	0	0	0	0	0

Table 40 Description of register bits (address 11H)

BIT	SYMBOL	DESCRIPTION
15 to 8	VC2_[7:0]	Mixer volume setting channel 2. Value to program channel 2 mixer volume attenuation. The range is 0 dB to -72 dB and ∞ dB (see Table 41).
7 to 0	VC1_[7:0]	Mixer volume setting channel 1. Value to program channel 1 mixer volume attenuation. The range is 0 dB to -72 dB and ∞ dB (see Table 41).

Table 41 Mixer volume setting channel 1 and 2

VC2_7	VC2_6	VC2_5	VC2_4	VC2_3	VC2_2	VC2_1	VC2_0	VOLUME (dB)	
VC1_7	VC1_6	VC1_5	VC1_4	VC1_3	VC1_2	VC1_1	VC1_0	VOLUME (db)	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	-0.25	
0	0	0	0	0	0	1	0	-0.5	
0	0	0	0	0	0	1	1	-0.75	
0	0	0	0	0	1	0	0	_1	
:	:	:	:	:	:	:	:	:	
1	0	1	1	0	1	0	0	-45	
1	0	1	1	0	1	0	1	-45.25	
1	0	1	1	0	1	1	0	-45.5	
1	0	1	1	0	1	1	1	-45.75	
1	0	1	1	1	0	0	0	-46	

UDA1355H

VC2_7	VC2_6	VC2_5	VC2_4	VC2_3	VC2_2	VC2_1	VC2_0	VOLUME (AD)
VC1_7	VC1_6	VC1_5	VC1_4	VC1_3	VC1_2	VC1_1	VC1_0	VOLUME (dB)
1	0	1	1	1	1	0	0	-48
1	1	0	0	0	0	0	0	-50
:	:	•	• •	:	:	:	:	:
1	1	0	1	0	1	0	0	-60
1	1	0	1	1	0	0	0	-63
1	1	0	1	1	1	0	0	-66
1	1	1	0	0	0	0	0	-72
1	1	1	0	0	1	0	0	-∞
:	:	•	• •	:	:	:	:	:
1	1	1	1	1	1	0	0	-∞

Table 42 Register address 12H

BIT	15	14	13	12	11	10	9	8
Symbol	M1	M0	TRL1	TRL0	BBL3	BBL2	BBL1	BBL0
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	BB_OFF	BB_FIX	TRR1	TRR0	BBR3	BBR2	BBR1	BBR0
Default	0	0	0	0	0	0	0	0

 Table 43 Description of register bits (address 12H)

BIT	SYMBOL	DESCRIPTION
15 and 14	M[1:0]	Sound feature mode. Value to program the sound processing filter sets (modes) of bass boost and treble:
		00 = flat set
		01 = minimum set
		10 = minimum set
		11 = maximum set
13 and 12	TRL[1:0]	Treble settings left. Value to program the left channel treble setting. Both left and right channels will follow the left channel setting when bit BASS_SEL = 1. The used filter set is selected with the sound feature mode bits M1 and M2 (see Table 44).
11 to 8	BBL[3:0]	Normal bass boost settings left. Value to program the left bass boost settings. The used filter set is selected by the sound feature mode bits M1 and M2 (see Table 45).
7	BB_OFF	Resonant bass boost. If this bit is logic 0 then the resonant bass boost is enabled; if this bit is logic 1 then the resonant bass boost is disabled.

UDA1355H

BIT	SYMBOL	DESCRIPTION
6	BB_FIX	Resonant bass boost coefficient. If this bit is logic 0 then the resonant bass boost coefficient is finished loading; if this bit is logic 1 then the resonant bass boost coefficient is loading to register.
5 and 4	TRR[1:0]	Treble settings right. Value to program the right treble setting. The used filter set is selected by the sound feature mode bits M1 and M2 (see Table 44).
3 to 0	BBR[3:0]	Normal bass boost settings right. Value to program the right bass boost settings. The used filter set is selected by the sound feature mode bits M1 and M2 (see Table 45).

Table 44 Treble settings

TRL1	TRL0	FLAT SET (dB)	MIN. SET (dB)	MAX. SET (dB)	
TRR1	TRR0	PLAI SEI (UB)	MIN. SET (UB)	WAX. SET (UB)	
0	0	0	0	0	
0	1	0	2	2	
1	0	0	4	4	
1	1	0	6	6	

Table 45 Normal bass boost settings; note 1

BBL3	BBL2	BBL1	BBL0	FLAT SET (dB)	MINI CET (AD)	MAX SET (dB)	
BBR3	BBR2	BBR1	BBR0	FLAISEI (GB)	MIN SET (dB)	WAA SET (UB)	
0	0	0	0	0	0	0	
0	0	0	1	0	2	2	
0	0	1	0	0	4	4	
0	0	1	1	0	6	6	
0	1	0	0	0	8	8	
0	1	0	1	0	10	10	
0	1	1	0	0	12	12	
0	1	1	1	0	14	14	
1	0	0	0	0	16	16	
1	0	0	1	0	18	18	
1	0	1	0	0	18	20	
1	0	1	1	0	18	22	
1	1	0	0	0	18	24	
1	1	0	1	0	18	24	
1	1	1	0	0	18	24	
1	1	1	1	0	18	24	

Note

1. The bass boost setting is only effective when bit $BASS_SEL = 0$.

UDA1355H

Table 46 Register address 13H

BIT	15	14	13	12	11	10	9	8
Symbol	_	MTM	GS	MIXGAIN	MT2	DE2_2	DE2_1	DE2_0
Default	0	0	0	0	1	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	MTNS1	MTNS0	WS_SEL	DE_SW	MT1	DE1_2	DE1_1	DE1_0
Default	0	0	0	0	0	0	0	0

Table 47 Description of register bits (address 13H)

BIT	SYMBOL	DESCRIPTION
15	-	reserved
14	MTM	Master mute. If this bit is logic 0 then there is no master mute or the master de-mute is in progress; if this bit is logic 1 then the master mute is in progress or muted.
13	GS	Gain select. See Table 48.
12	MIXGAIN	Mixer gain select. See Tables 48 and 49.
11	MT2	Channel 2 mute. If this bit is logic 0 then channel 2 is not muted or the de-mute is in progress; if this bit is logic 1 then channel 2 is muted or the muting is in progress.
10 to 8	DE2_[2:0]	De-emphasis setting for channel 2. See Table 50.
7 and 6	MTNS[1:0]	Interpolator mute. Selection:
		00 = no mute
		01 = if no WS signal is detected, the noise shaper of the interpolator mute
		1x = the noise shaper of the interpolator mute
5	WS_SEL	WS signal select. If this bit is logic 0 then WS_DET is selected for the WS detection; if this bit is logic 1 then FPLL is selected for the WS detection.
4	DE_SW	De-emphasis select. If this bit is logic 0 then SPDIF pre-emphasis information is selected; if this bit is logic 1 then the de-emphasis setting is selected.
3	MT1	Channel 1 mute. If this bit is logic 0 then channel 1 is not muted or the de-mute is in progress; if this bit is logic 1 then channel 1 is muted or the muting is in progress.
2 to 0	DE1_[2:0]	De-emphasis setting for channel 1. See Table 50.

Table 48 DAC gain setting

GS	MIX ⁽¹⁾	MIX_GAIN	DAC GAIN (dB)
0	X ⁽²⁾	X ⁽²⁾	0
1	0	0	6
1	1	0	0
1	0	1	6
1	1	1	6

Notes

- 1. See Table 52.
- 2. X = don't care

Stereo audio codec with SPDIF interface

UDA1355H

Table 49 Mixer gain setting

MIX ⁽¹⁾	MIX_GAIN	MIXER OUTPUT GAIN
1	0	DAC output gain is set to 0 dB and mixer signal output gain is set –6 dB
1	1	DAC output gain and mixer signal output gain are set to 0 dB

Note

1. See Table 52.

Table 50 De-emphasis setting for the incoming signal

DE2_2	DE2_1	DE2_0	FUNCTION
DE1_2	DE1_1	DE1_0	FUNCTION
0	0	0	off
0	0	1	32 kHz
0	1	0	44.1 kHz
0	1	1	48 kHz
1	0	0	96 kHz

Table 51 Register address 14H

BIT	15	14	13	12	11	10	9	8
Symbol	DA_POL_	SEL_NS	MIX_POS	MIX	DAC_CH2_	DAC_CH2_	DAC_CH1_	DAC_CH1_
	INV				SEL1	SEL0	SEL1	SEL0
Default	0	1	0	0	1	1	0	1

BIT	7	6	5	4	3	2	1	0
Symbol	SILENCE	SDET_ON	SD_ VALUE1	SD_ VALUE0	BASS_SEL	BYPASS	OS_IN1	OS_IN0
Default	0	0	0	0	0	0	0	0

Table 52 Description of register bits (address 14H)

BIT	SYMBOL	DESCRIPTION
15	DA_POL_INV	DAC polarity control. If this bit is logic 0 then the DAC output is not inverted; if this bit is logic 1 then the DAC output is inverted.
14	SEL_NS	Select noise shaper. If this bit is logic 0 then the third order noise shaper is selected; if this bit is logic 1 then the fifth order noise shaper is selected.
13	MIX_POS	Mixer position. Mixing is done before or after the sound processing unit (see Table 53).
12	MIX	Mixer. If this bit is logic 0 then the mixer is disabled; if this bit is logic 1 then the mixer is enabled (see Tables 48, 49 and 53).
11 and 10	DAC_CH2_SEL[1:0]	DAC channel 2 input selection. Value to select the input mode to channel 2 of the interpolator (see Table 54).
9 and 8	DAC_CH1_SEL[1:0]	DAC channel 1 input selection. Value to select the input mode to channel 1 of the interpolator (see Table 54).

UDA1355H

BIT	SYMBOL	DESCRIPTION
7	SILENCE	Silence detector overrule. Value to force the DAC output to silence. This will give a plop at the output of the DAC because of mismatch in offsets and the DC offset added to the signal in the interpolator itself. If this bit is logic 0 then there is no overruling and the FSDAC silence switch setting depends on the silence detector circuit and on the status of bit MTM; if this bit is logic 1 then there is overruling and the FSDAC silence switch is activated independent of the status of the digital silence detector circuit or the status of bit MTM.
6	SDET_ON	Silence detector enable. If this bit is logic 0 then the silence detection circuit is disabled; if this bit is logic 1 then the silence detection circuit is enabled.
5 and 4	SD_VALUE[1:0]	Silence detector setting. Value to program the silence detector. The number of zero samples counted before the silence detector signals whether there has been digital silence:
		00 = 3200 samples
		01 = 4800 samples
		10 = 9600 samples
		11 = 19200 samples
3	BASS_SEL	Bass boost select. If this bit is logic 0 then the normal bass boost function is selected; if this bit is logic 1 then the resonant bass boost function is selected.
2	BYPASS	Mixer bypass mode. If this bit is logic 0 then the mixer is in mixer mode; if this bit is logic 1 then the mixer is in mixer bypass mode.
1 and 0	OS_IN[1:0]	Oversampling ratio select. Value to select the oversampling input mode. This mode is only for I ² S-bus input:
		00 = single speed input; normal input; mixing possible
		01 = double speed input; after first half-band filter; no mixing possible but volume and mute still possible
		10 = quad speed input; in front of noise shaper; no mixing possible; no volume control possible
		11 = reserved.

Table 53 Mixer signal control signals

MIX	MIX_POS	FUNCTION
0	X ⁽¹⁾	this is the default setting: no mixing, volume of channel 1 is forced to 0 dB and volume of channel 2 is forced to −∞ dB
1	0	mixing is done before the sound processing; input signals are automatically scaled by 6 dB in order to prevent clipping during adding; after the addition, the 6 dB scaling is compensated
1	1	mixing is done after the sound processing; input signals are automatically scaled in order to prevent clipping during adding

Note

1. X = don't care

Stereo audio codec with SPDIF interface

UDA1355H

Table 54 Data source selector DAC channel 1 and 2; note 1

DAC_CH2_SEL1	DAC_CH2_SEL0	DATA OUTPUT DAC			
DAC_CH1_SEL1	DAC_CH1_SEL0	DATA OUTPUT DAC			
0	0	ADC input			
0	1	I ² S-bus input			
1	0	IEC 60958 input			
1	1	I ² S-bus input			

Note

1. The change of the data source will take place only when the mix mode is turned on (bit MIX = 1). The channel 2 input selection is valid only when the channel 1 data source is correct.

Table 55 Register addresses 19H, 1AH, 1BH, 1CH, 1DH and 1EH

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	BASS_x_13	BASS_x_12	BASS_x_11	BASS_x_10	BASS_x_9	BASS_x_8
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	BASS_x_7	BASS_x_6	BASS_x_5	BASS_x_4	BASS_x_3	BASS_x_2	BASS_x_1	BASS_x_0
Default	0	0	0	0	0	0	0	0

Table 56 Description of register bits (addresses 19H, 1AH, 1BH, 1CH, 1DH and 1EH)

BIT	SYMBOL	DESCRIPTION
15 and 14	_	reserved
13 to 0	BASS_x_[13:0]	Resonant bass boost coefficient x. Six 14-bit registers are used as the filter coefficients to specify the bass boost characteristics. The six coefficients are k1, km, a1, a2, b1 and b2m. A software program is available for users to generate these six 14-bit coefficients by entering the desired centre frequency, peak gain, sampling frequency and shape factor (default flat response).

12.2.3 DECIMATOR SETTINGS

Table 57 Register address 20H

BIT	15	14	13	12	11	10	9	8
Symbol	MA_ DECL7	MA_ DECL6	MA_ DECL5	MA_ DECL4	MA_ DECL3	MA_ DECL2	MA_ DECL1	MA_ DECL0
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	MA_ DECR7	MA_ DECR6	MA_ DECR5	MA_ DECR4	MA_ DECR3	MA_ DECR2	MA_ DECR1	MA_ DECR0
Default	0	0	0	0	0	0	0	0

Stereo audio codec with SPDIF interface

UDA1355H

Table 58 Description of register bits (address 20H)

BIT	SYMBOL	DESCRIPTION
15 to 8	MA_DECL[7:0]	ADC volume setting left channel. Value to program the ADC gain setting for the left channel. The range is from $+24$ to -63 dB and $-\infty$ dB (see Table 59).
7 to 0	MA_DECR[7:0]	ADC volume setting right channel. Value to program the ADC gain setting for the right channel. The range is from $+24$ to -63 dB and $-\infty$ dB (see Table 59).

Table 59 ADC volume control settings

MA_ DECL7	MA_ DECL6	MA_ DECL5	MA_ DECL4	MA_ DECL3	MA_ DECL2	MA_ DECL1	MA_ DECL0	CAIN (dB)
MA_ DECR7	MA_ DECR6	MA_ DECR5	MA_ DECR4	MA_ DECR3	MA_ DECR2	MA_ DECR1	MA_ DECR0	GAIN (dB)
0	0	1	1	0	0	0	0	+24.0
0	0	1	0	1	1	1	1	+23.5
0	0	1	0	1	1	1	0	+23.0
:	•	:	• •	•	•	• •	:	:
0	0	0	0	0	0	1	0	+1.0
0	0	0	0	0	0	0	1	+0.5
0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	-0.5
:	:	:	• •	•	•	• •	:	:
1	0	0	0	0	1	0	0	-62.0
1	0	0	0	0	0	1	1	-62.5
1	0	0	0	0	0	1	0	-63.0
1	0	0	0	0	0	0	1	-63.5
1	0	0	0	0	0	0	0	-∞

Table 60 Register address 21H

BIT	15	14	13	12	11	10	9	8
Symbol	MT_ADC	-	_	_	PGA_GAIN_ CTRLL3	PGA_GAIN_ CTRLL2	PGA_GAIN_ CTRLL1	PGA_GAIN_ CTRLL0
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	_	_	_	_	PGA_GAIN_ CTRLR3	PGA_GAIN_ CTRLR2	PGA_GAIN_ CTRLR1	PGA_GAIN_ CTRLR0
Default	0	0	0	0	0	0	0	0

UDA1355H

Table 61 Description of register bits (address 21H)

BIT	SYMBOL	DESCRIPTION
15	MT_ADC	Mute ADC. If this bit is logic 0 then the ADC is not muted; if this bit is logic 1 then the ADC is muted.
14 to 12	_	reserved
11 to 8	PGA_GAIN_CTRLL[3:0]	PGA gain control left channel. Value to program the gain of the left input amplifier. There are nine settings (see Table 62).
7 to 4	-	reserved
3 to 0	PGA_GAIN_CTRLR[3:0]	PGA gain control right channel. Value to program the gain of the right input amplifier. There are nine settings (see Table 62).

Table 62 ADC input amp PGA gain settings

PGA_GAIN_ CTRLL3	PGA_GAIN_ CTRLL2	PGA_GAIN_ CTRLL1	PGA_GAIN_ CTRLL0	CAIN (AD)
PGA_GAIN_ CTRLR3	PGA_GAIN_ CTRLR2	PGA_GAIN_ CTRLR1	PGA_GAIN_ CTRLR0	GAIN (dB)
0	0	0	0	0
0	0	0	1	3
0	0	1	0	6
0	0	1	1	9
0	1	0	0	12
0	1	0	1	15
0	1	1	0	18
0	1	1	1	21
1	0	0	0	24

Table 63 Register address 22H

BIT	15	14	13	12	11	10	9	8
Symbol	1	1	_	ADCPOL_INV	1	_	_	_
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	_	1	1	_	1	-	DC_SKIP	HP_EN_DEC
Default	0	0	0	0	0	0	1	1

Table 64 Description of register bits (address 22H)

BIT	SYMBOL	DESCRIPTION
15 to 13		reserved
12	_	ADC polarity control. If this bit is logic 0 then the ADC input is not inverted; if this bit is logic 1 then the ADC input is inverted.

Stereo audio codec with SPDIF interface

UDA1355H

BIT	SYMBOL	DESCRIPTION
11 to 2	_	reserved
1	DC_SKIP	DC filter skip. If this bit is logic 0 then the DC filter is enabled; if this bit is logic 1 then the DC filter is disabled. The DC filter is at the output of the comb filter just before the decimator. This DC filter compensates for the DC offset added in the ADC (to remove idle tones from the audio band). This DC offset must not be amplified in order to prevent clipping.
0	HP_EN_DEC	High-pass enable. If this bit is logic 0 then the high-pass is disabled; if this bit is logic 1 then the high-pass is enabled. The high-pass is a DC filter which is at the output of the decimation filter (running at f_s).

12.2.4 SPDIF INPUT SETTINGS

Table 65 Register address 30H

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	_	_	_	_	_	_
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	_	-	_	PON_SPDI	_	-	SLICER_SEL1	SLICER_SEL0
Default	0	0	0	1	0	0	0	0

Table 66 Description of register bits (address 30H)

BIT	SYMBOL	DESCRIPTION
15 to 5	_	reserved
4	PON_SPDI	Power control SPDIF input. If this bit is logic 0 then the SPDIF input is switched to Power-down mode; if this bit is logic 1 then the SPDIF input is switched to power-on mode.
3 and 2	_	reserved
1 and 0	SLICER_SEL[1:0]	SPDIF source select. Value to select an IEC 60958 input channel:
		00 = IEC 60958 input from pin SPDIF0
		01 = IEC 60958 input from pin SPDIF1
		10 = IEC 60958 input from pin SPDIF2
		11 = IEC 60958 input from pin SPDIF3

UDA1355H

12.2.5 SPDIF OUTPUT SETTINGS

Table 67 Register address 50H

BIT	15	14	13	12	11	10	9	8
Symbol	-	_	1	_	_	_	_	SPDO_ VALID
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	_	L_r_copy	-	PON_SPDO	DIS_SPDO	SPDOUT_SEL2	SPDOUT_SEL1	SPDOUT_SEL0
Default	0	1	0	1	0	1	0	0

Table 68 Description of register bits (address 50H)

BIT	SYMBOL	DESCRIPTION
15 to 9	_	reserved
8	SPDO_VALID	SDPDIF output valid. If this bit is logic 0 then the SPDIF output is invalid; if this bit is logic 1 then the SPDIF output is valid.
7	_	reserved
6	L_r_copy	SPDIF channel status copy. If this bit is logic 0 then the status bits of the left channel are not copied to the right channel; if this bit is logic 1 then the status bits of the left channel are copied to the right channel.
5	_	reserved
4	PON_SPDO	Power control of SPDIF output. If this bit is logic 0 then the SPDIF output is switched to Power-down mode; if this bit is logic 1 then the SPDIF output is switched to power-on mode.
3	DIS_SPDO	SPDIF encoder enable. If this bit is logic 0 then the SPDIF encoder is enabled; if this bit is logic 1 then the SPDIF encoder is disabled.
2 to 0	SPDOUT_SEL[2:0]	SPDIF output source selector. Value to select the input source for SPDIF output. The selection option to select the SPDIF input just after the slicer was already there. Added is an independent selection of the input signals SPDIF0 to SPDIF3:
		000 = ADC
		$001 = I^2S$ -bus input
		010 = not used
		011 = interpolator mix output
		100 = SPDIF0 loop through
		101 = SPDIF1 loop through
		110 = SPDIF2 loop through
		111 = SPDIF3 loop through

UDA1355H

Table 69 Register addresses 51H (left) and 54H (right)

BIT	15	14	13	12	11	10	9	8
Symbol	SPDO_							
	BIT39	BIT38	BIT37	BIT36	BIT35	BIT34	BIT33	BIT32
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	SPDO_							
	BIT31	BIT30	BIT29	BIT28	BIT27	BIT26	BIT25	BIT24
Default	0	0	0	0	0	0	0	0

Table 70 Register addresses 52H (left) and 55H (right)

BIT	15	14	13	12	11	10	9	8
Symbol	SPDO_ BIT23	SPDO_ BIT22	SPDO_ BIT21	SPDO_ BIT20	SPDO_ BIT19	SPDO_ BIT18	SPDO_ BIT17	SPDO_ BIT16
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	SPDO_ BIT15	SPDO_ BIT14	SPDO_ BIT13	SPDO_ BIT12	SPDO_ BIT11	SPDO_ BIT10	SPDO_ BIT9	SPDO_ BIT8
	DITIO	DIII4	DITIS	DITIZ	DITT	DITIU	ынэ	DIIO
Default	0	0	0	0	0	0	0	0

Table 71 Register addresses 53H (left) and 56H (right)

BIT	15	14	13	12	11	10	9	8
Symbol	-	-	_	-	-	-	-	_
Default	0	0	0	0	0	0	0	0

BIT	7	6	5	4	3	2	1	0
Symbol	SPDO_ BIT7	SPDO_ BIT6	SPDO_ BIT5	SPDO_ BIT4	SPDO_ BIT3	SPDO_ BIT2	SPDO_ BIT1	SPDO_ BIT0
Default	0	0	0	0	0	0	0	0

Table 72 Description of register bits

BIT	SYMBOL	DESCRIPTION
39 to 36	SPDO_BIT[39:36]	reserved
35 to 33	SPDO_BIT[35:33]	Word length. Value indicating the word length (see Table 73).
32	SPDO_BIT[32]	Audio sample word length. Value to signal the maximum audio sample word length. If bit 32 is logic 0, then the maximum length is 20 bits; if bit 32 is logic 1, then the maximum length is 24 bits (see Table 73).
31 to 30	SPDO_BIT[31:30]	reserved

UDA1355H

BIT	SYMBOL	DESCRIPTION
29 to 28	SPDO_BIT[29:28]	Clock accuracy. Value indicating the clock accuracy:
		00 = level II
		01 = level I
		10 = level III
		11 = reserved
27 to 24	SPDO_BIT[27:24]	Sample frequency. Value indicating the sampling frequency:
		0000 = 44.1 kHz
		0001 = 48 kHz
		0010 = 32 kHz
		other states = reserved
23 to 20	SPDO_BIT[23:20]	Channel number. Value indicating the channel number (see Table 74).
19 to 16	SPDO_BIT[19:16]	Source number. Value indicating the source number (see Table 75).
15 to 8	SPDO_BIT[15:8]	General information. Value indicating general information (see Table 76).
7 to 6	SPDO_BIT[7:6]	Mode. Value indicating mode 0:
		00 = mode 0
		other states = reserved
5 to 3	SPDO_BIT[5:3]	Audio sampling. Value indicating the type of audio sampling (linear PCM). For bit SPDO_BIT1 = 0:
		000 = two audio samples without pre-emphasis
		001 = two audio samples with 50/15 μs pre-emphasis
		010 = reserved (two audio samples with pre-emphasis)
		011 = reserved (two audio samples with pre-emphasis)
		other states = reserved
2	SPDO_BIT2	Software copyright. Value indicating software for which copyright is asserted or not. If this bit is logic 0, then copyright is asserted; if this bit is logic 1, then no copyright is asserted.
1	SPDO_BIT1	Audio sample word. Value indicating the type of audio sample word. If this bit is logic 0, then the audio sample word represents linear PCM samples; if this bit is logic 1, then the audio sample word is used for other purposes.
0	SPDO_BIT0	Channel status. Value indicating the consumer use of the status block. This bit is logic 0.

Table 73 Word length

SPDO_BIT32	SPDO_BIT35	SPDO_BIT34	SPDO_BIT33	WORD LENGTH
0	0	0	0	not indicated
0	0	0	1	16 bits
0	0	1	0	18 bits
0	0	1	1	reserved
0	1	0	0	19 bits
0	1	0	1	20 bits
0	1	1	0	17 bits
0	1	1	1	reserved

UDA1355H

SPDO_BIT32	SPDO_BIT35	SPDO_BIT34	SPDO_BIT33	WORD LENGTH
1	0	0	0	indicated
1	0	0	1	20 bits
1	0	1	0	22 bits
1	0	1	1	reserved
1	1	0	0	23 bits
1	1	0	1	24 bits
1	1	1	0	21 bits
1	1	1	1	reserved

Table 74 Channel number

SPDO_BIT23	SPDO_BIT22	SPDO_BIT21	SPDO_BIT20	CHANNEL NUMBER
0	0	0	0	don't care
0	0	0	1	A (left for stereo transmission)
0	0	1	0	B (right for stereo transmission)
0	0	1	1	С
0	1	0	0	D
0	1	0	1	E
0	1	1	0	F
0	1	1	1	G
1	0	0	0	Н
1	0	0	1	1
1	0	1	0	J
1	0	1	1	К
1	1	0	0	L
1	1	0	1	M
1	1	1	0	N
1	1	1	1	0

Table 75 Source number

SPDO_BIT19	SPDO_BIT18	SPDO_BIT17	SPDO_BIT16	SOURCE NUMBER
0	0	0	0	don't care
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10

UDA1355H

SPDO_BIT19	SPDO_BIT18	SPDO_BIT17	SPDO_BIT16	SOURCE NUMBER
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Table 76 General information

SPDO_BIT[15:8]	FUNCTION
00000 000	general
Lxxxx 001	laser optical products
Lxxxx 010	digital-to-digital converters and signal processing products
Lxxxx 011	magnetic tape or disc based products
Lxxxx 100	broadcast reception of digitally encoded audio signals with video signals
Lxxxx 110	broadcast reception of digitally encoded audio signals without video signals
Lxxxx 101	musical instruments, microphones and other sources without copyright information
Lxx00 110	analog-to-digital converters for analog signals without copyright information
Lxx10 110	analog-to-digital converters for analog signals which include copyright information in the form of Cp- and L-bit status
Lxxx1 000	solid state memory based products
L1000 000	experimental products not for commercial sale
Lxxxx 111	reserved
Lxxx0 000	reserved, except 000 0000 and 000 0001L

12.3 Read registers mapping

12.3.1 INTERPOLATOR

Table 77 Register address 18H

BIT	15	14	13	12	11	10	9	8
Symbol	-	_	_	_	_	-	_	_

BIT	7	6	5	4	3	2	1	0
Symbol	_	SDETR2	SDETL2	SDETR1	SDETL1	MUTE_STATE_M	MUTE_STATE_CH2	MUTE_STATE_CH1

Stereo audio codec with SPDIF interface

UDA1355H

Table 78 Description of register bits (address 18H)

BIT	SYMBOL	DESCRIPTION
15 to 7	_	reserved
6	SDETR2	Silence detector channel 2 right. If this bit is logic 0 then there is no silence detection for the right input of channel 2; if this bit is logic 1 then there is silence detection for the right input of channel 2.
5	SDETL2	Silence detector channel 2 left. If this bit is logic 0 then there is no silence detection for the left input of channel 2; if this bit is logic 1 then there is silence detection for the left input of channel 2.
4	SDETR1	Silence detector channel 1 right. If this bit is logic 0 then there is no silence detection for the right input of channel 1; if this bit is logic 1 then there is silence detection for the right input of channel 1.
3	SDETL1	Silence detector channel 1 left. If this bit is logic 0 then there is no silence detection for the left input of channel 1; if this bit is logic 1 then there is silence detection for the left input of channel 1.
2	MUTE_STATE_M	Mute status interpolator. If this bit is logic 0 then the interpolator is not muted; if this bit is logic 1 then the interpolator is muted.
1	MUTE_STATE_CH2	Mute status channel 2. If this bit is logic 0 then the interpolator channel 2 is not muted; if this bit is logic 1 then the interpolator channel 2 is muted.
0	MUTE_STATE_CH1	Mute status channel 1. If this bit is logic 0 then the interpolator channel 1 is not muted; if this bit is logic 1 then the interpolator channel 1 is muted.

12.3.2 DECIMATOR

Table 79 Register address 28H

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	_	_	_	_	_	-
BIT	7	_	-		•	0	4	_
D11	<i>'</i>	ס	5	4	3	2	1	0

Table 80 Description of register bits (address 28H)

BIT	SYMBOL	DESCRIPTION
15 to 3	_	reserved
2	MT_ADC_stat	Mute status decimator. If this bit is logic 0 then the decimator is not muted; if this bit is logic 1 then the decimator is muted.
1	_	reserved
0	OVERFLOW	Overflow decimator. If this bit is logic 0 then there is no overflow in the decimator (digital level above –1.16 dB.); if this bit is logic 1 then there is an overflow in the decimator.

Stereo audio codec with SPDIF interface

UDA1355H

12.3.3 SPDIF INPUT

Table 81 Register address 59H

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	_	_	_	_	_	SPDO_STATUS

BIT	7	6	5	4	3	2	1	0
Symbol	_	_	_	_	_	_	B_ERR	SPDIF_LOCK

Table 82 Description of register bits (address 59H)

BIT	SYMBOL	DESCRIPTION
15 to 9	_	reserved
8	SPDO_STATUS	SPDIF encoder output status. If this bit is logic 0 then the SPDIF encoder output is enabled; if this bit is logic 1 then the SPDIF encoder output is disabled.
7 to 2	_	reserved
1	B_ERR	Bit error detection. If this bit is logic 0 then there is no biphase error; if this bit is logic 1 then there is a biphase error.
0	SPDIF_LOCK	SPDIF lock indicator. If this bit is logic 0 then the SPDIF decoder block is not in lock; if this bit is logic 1 then the SPDIF decoder block is in lock.

Table 83 Register address 5CH (left) and 5FH (right); note 1

BIT	15	14	13	12	11	10	9	8
Symbol	_	_	_	_	-	_	_	-

BIT	7	6	5	4	3	2	1	0
Symbol	SPDI_							
	BIT39	BIT38	BIT37	BIT36	BIT35	BIT34	BIT33	BIT32

Note

1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.

Table 84 register addresses 5BH (left) and 5EH (right); note 1

BIT	15	14	13	12	11	10	9	8
Symbol	SPDI_							
	BIT31	BIT30	BIT29	BIT28	BIT27	BIT26	BIT25	BIT24

BIT	7	6	5	4	3	2	1	0
Symbol	SPDI_							
	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16

Note

1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.

Stereo audio codec with SPDIF interface

UDA1355H

Table 85 register address 5AH (left) and 5DH (right); see note 1

BIT	15	14	13	12	11	10	9	8
Symbol	SPDI_							
	BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8

BIT	7	6	5	4	3	2	1	0
Symbol	SPDI_							
	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0

Note

1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.

13 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltage referenced to ground.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage	note 1	2.7	5.0	V
T _{stg}	storage temperature		-65	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{esd}	electrostatic discharge voltage	Human Body Model (HBM); note 2	-3000	+3000	V
		Machine Model (MM); note 3	-250	+250	V
I _{lu(prot)}	latch-up protection current	T _{amb} = 125 °C; V _{DD} = 3.6 V	_	100	mA
I _{sc(DAC)}	short-circuit current of DAC	T _{amb} = 0 °C;V _{DD} = 3 V; note 4			
		output short-circuit to V _{SSA1}	_	20	mA
		output short-circuit to V _{DDA1}	_	100	mA

Notes

- 1. All V_{DD} and V_{SS} connections must be made to the same power supply.
- 2. JEDEC class 2 compliant.
- 3. JEDEC class B compliant.
- 4. DAC operation after short-circuiting cannot be guaranteed.

14 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	70	K/W

UDA1355H

15 CHARACTERISTICS

 V_{DD} = 3.0 V; T_{amb} = 25 °C; R_L = 5 k Ω ; all voltages referenced to ground; unless otherwise specified; note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies				•		
V _{DDA1}	DAC supply voltage		2.7	3.0	3.6	V
V_{DDA2}	ADC supply voltage		2.7	3.0	3.6	V
V _{DDX}	crystal oscillator and PLL supply voltage		2.7	3.0	3.6	V
V_{DDI}	digital core supply voltage		2.7	3.0	3.6	V
V_{DDE}	digital pad supply voltage		2.7	3.0	3.6	V
I _{DDA1}	DAC supply current	f _s = 48 kHz; power-on	_	4.7	_	mA
		f _s = 96 kHz; power-on	_	4.7	_	mA
		f _s = 48 kHz; power-down	_	1.7	_	μΑ
		f _s = 96 kHz; power-down	_	1.7	_	μΑ
I _{DDA2}	ADC supply current	f _s = 48 kHz; power-on	_	10.2	_	mA
		f _s = 96 kHz; power-on	_	10.4	_	mA
		f _s = 48 kHz; power-down	_	0.2	_	μΑ
		f _s = 96 kHz; power-down	_	0.2	_	μΑ
I _{DDX}	crystal oscillator and PLL	f _s = 48 kHz; power-on	_	0.9	_	mA
	supply current	f _s = 96 kHz; power-on	_	1.2	_	mA
I _{DDI}	digital core supply current	f _s = 48 kHz; all on	_	18.2	_	mA
		f _s = 96 kHz; all on	_	34.7	_	mA
I _{DDE}	digital pad supply current	f _s = 48 kHz; all on	_	0.5	_	mA
		f _s = 96 kHz; all on	_	0.7	_	mA
Digital input	pins		·			•
V _{IH}	HIGH-level input voltage		0.8V _{DD}	_	V _{DD} + 0.5	V
V _{IL}	LOW-level input voltage		-0.5	_	+0.2V _{DD}	V
V _{hys(RESET)}	hysteresis on pin RESET		_	0.8	_	V
الرا	input leakage current		_	_	2	μΑ
C _i	input capacitance		_	_	10	pF
Digital outpo	ut pins		<u>'</u>	•	•	<u>'</u>
V _{OH}	HIGH-level output voltage	I _{OH} = -2 mA	0.85V _{DD}	_	_	V
V _{OL}	LOW-level output voltage	I _{OL} = 2 mA	_	_	0.4	V
I _{L(max)}	maximum output load (nominal)		_	3	_	mA
R _{pu}	pull-up resistance		16	33	78	kΩ
R _{pd}	pull-down resistance		16	33	78	kΩ
3-level input	pins	1		1	-1	1
V _{IH}	HIGH-level input voltage		0.9V _{DD}	_	V _{DD}	V
V _{IM}	MID-level input voltage		0.4V _{DD}	_	0.6V _{DD}	V
V _{IL}	LOW-level input voltage		0	_	0.5	V

UDA1355H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference v	oltage			•		
V_{REF}	reference voltage on pin REF	with respect to V _{SSA}	0.45V _{DD}	0.5V _{DD}	0.55V _{DD}	V
Digital-to-an	alog converter			•		•
V _{o(rms)}	output voltage (RMS value)		_	900	_	mV
ΔV_{o}	output voltage unbalance		_	0.1	_	dB
(THD+N)/S	total harmonic	IEC 60958 input; f _s = 48 kHz				
	distortion-plus-noise to	at 0 dB	_	-88	_	dB
	signal ratio	at –20 dB	_	-75	_	dB
		at –60 dB; A-weighted	_	-37	_	dB
		IEC 60958 input; f _s = 96 kHz				
		at 0 dB	_	-83	_	dB
		at –60 dB; A-weighted	_	-37	_	dB
S/N	signal-to-noise ratio	IEC 60958 input; code = 0; A-weighted				
		f _s = 48 kHz	_	98	_	dB
		f _s = 96 kHz	_	96	_	dB
$\alpha_{\sf cs}$	channel separation	f _i = 1 kHz tone	_	100	_	dB
R _L	load resistance		3	_	_	kΩ
C _L	load capacitance	note 2	_	1-	200	pF
 R _o	output resistance		_	0.13	3.0	Ω
I _{o(max)}	maximum output current	(THD + N)/S < 0.1%; R _L = 5 kΩ	_	tbf	_	mA
Analog-to-di	igital converter		!	!	•	'
V _{ADCP}	positive ADC reference voltage		_	V _{DDA2}	_	V
V _{ADCN}	negative ADC reference voltage		_	0.0	_	V
V _i (rms)	input voltage (RMS value)	V _o = −1.16 dBFS digital output	_	1.0	-	V
ΔV_i	input voltage unbalance		_	0.1	_	dB
(THD+N)/S	total harmonic	f _s = 48 kHz				
	distortion-plus-noise to	at 0 dB	_	-85	_	dB
	signal ratio	at –60 dB; A-weighted	_	-35	_	dB
		f _s = 96 kHz				
		at 0 dB	_	-85	_	dB
		at –60 dB; A-weighted	_	-35	_	dB
S/N	signal-to-noise ratio	code = 0; A-weighted				
		f _s = 48 kHz	_	97	_	dB
		f _s = 96 kHz	_	95	_	dB
αcs	channel separation		_	100	_	dB

UDA1355H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IEC 60958 inputs						
V _{i(p-p)}	input voltage (peak-to-peak value)		0.2	0.5	3.3	V
R _i	input resistance		_	6	_	kΩ
V _{hys}	hysteresis voltage		_	40	_	mV
I _{DD(diff)}	I _{DD(DAC,input)} /I _{DD(DAC,no input)}		_	tbf	_	_
Power consu	ımption					
P _{tot}	total power consumption	IEC 60958 input; f _s = 48 kHz				
		DAC in playback mode	_	74	_	mW
		DAC in Power-down mode	_	63	_	mW

Notes

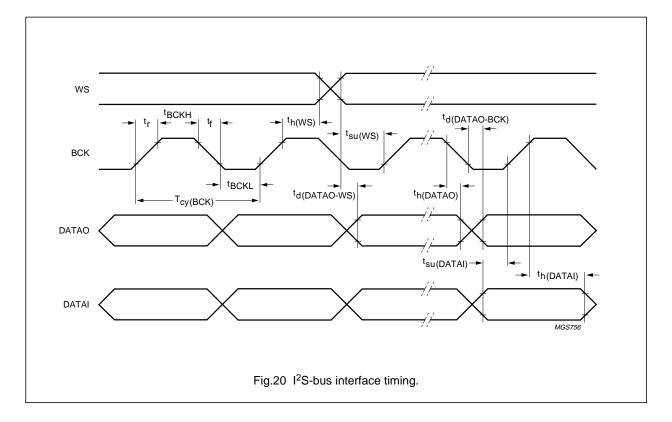
- 1. All power supply pins (V_{DD} and V_{SS}) must be connected to the same external power supply unit.
- 2. When the DAC must drive a higher capacitive load (above 50 pF), then a series resistor of 100Ω must be used in order to prevent oscillations in the output.

16 TIMING CHARACTERISTICS

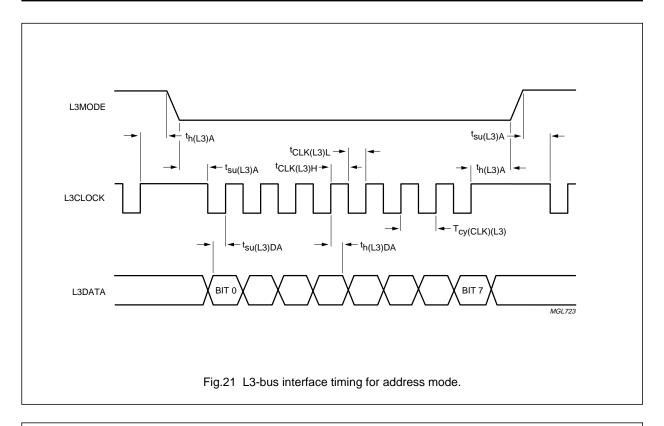
 V_{DD} = 2.7 to 3.6 V; T_{amb} = –20 to +85 °C; R_L = 5 $k\Omega;$ unless otherwise specified.

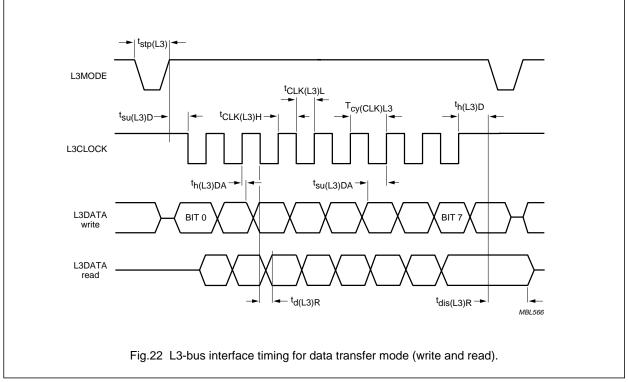
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Device reset			<u>'</u>	<u>'</u>	•	
t _{rst}	reset time		_	250	-	μs
PLL lock time	,		•	•		•
t _{lock}	time-to-lock	f _s = 32 kHz	-	85.0	_	ms
		f _s = 44.1 kHz	_	63.0	_	ms
		f _s = 48 kHz	-	60.0	-	ms
		f _s = 96 kHz	_	40.0	_	ms
I ² S-bus interface (S	see Fig.20)					
T _{cy(BCK)}	bit clock period		1/ _{128fs}	_	_	ms
t _{BCKH}	bit clock HIGH time		30	_	-	ns
t _{BCKL}	bit clock LOW time		30	_	-	ns
t _r	rise time		_	_	20	ns
t _f	fall time		_	_	20	ns
t _{su(DATAI)}	data input set-up time		10	_	-	ns
t _{h(DATAI)}	data input hold time		10	_	-	ns
t _{d(DATAO-BCK)}	data output to bit clock delay		-	_	30	ns
t _{d(DATAO-WS)}	data output to word select delay		-	_	30	ns
t _{h(DATAO)}	data output hold time		0	_	_	ns
t _{su(WS)}	word select set-up time		10	_	_	ns
t _{h(WS)}	word select hold time		10	_	-	ns

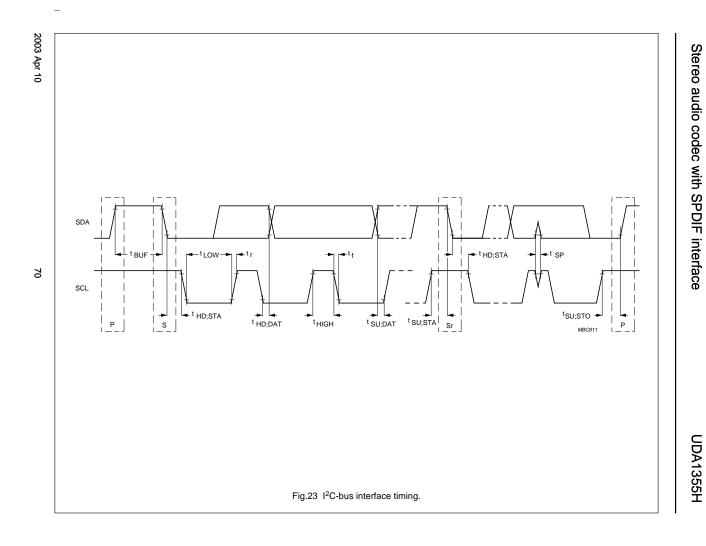
UDA1355H


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
L3-bus interface (se	ee Figs 21 and 22)					
t _r	rise time	note 1	_	<u> </u>	10	ns/V
t _f	fall time	note 1	_	-	10	ns/V
T _{cy(CLK)L3}	L3CLOCK cycle time	note 2	500	-	_	ns
t _{CLK(L3)H}	L3CLOCK HIGH time	note 2	250	-	_	ns
t _{CLK(L3)L}	L3CLOCK LOW time	note 2	250	-	_	ns
t _{su(L3)A}	L3MODE set-up time in address mode		190	-	-	ns
t _{h(L3)A}	L3MODE hold time in address mode		190	-	-	ns
t _{su(L3)D}	L3MODE set-up time in data transfer mode		190	-	-	ns
t _{h(L3)D}	L3MODE hold time in data transfer mode		190	-	-	ns
t _{stp(L3)}	L3MODE stop time in data transfer mode		190	-	-	ns
t _{su(L3)DA}	L3DATA set-up time in address and data transfer mode		190	_	-	ns
t _{h(L3)DA}	L3DATA hold time in address and data transfer mode		30	_	_	ns
t _{d(L3)R}	L3DATA delay time in data transfer mode		0	-	50	ns
t _{dis(L3)R}	L3DATA disable time for read data		0	_	50	ns
I ² C-bus interface (s	ee Fig.23)		•			
f _{SCL}	SCL clock frequency		0	_	400	kHz
t _{LOW}	SCL LOW time		1.3	_	_	μs
t _{HIGH}	SCL HIGH time		0.6	_	_	μs
t _r	rise time SDA and SCL	note 3	20 + 0.1C _b	-	300	ns
t _f	fall time SDA and SCL	note 3	20 + 0.1C _b	-	300	ns
t _{HD;STA}	hold time START condition	note 4	0.6	-	-	μs
t _{SU;STA}	set-up time repeated START		0.6	-	-	μs
t _{SU;STO}	set-up time STOP condition		0.6	_	_	μs
t _{BUF}	bus free time	between a STOP and START condition	1.3	-	_	μs
t _{SU;DAT}	data set-up time		100	_	_	ns

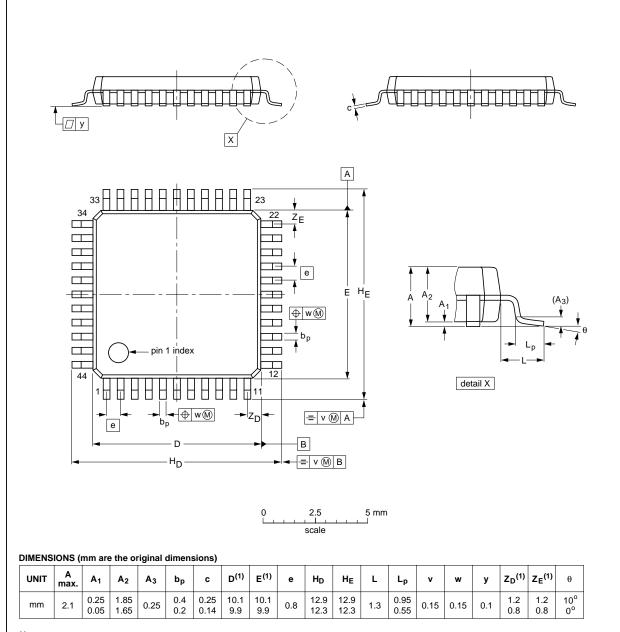
UDA1355H


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{HD;DAT}	data hold time		0	_	_	μs
t _{SP}	pulse width of spikes	note 5	0	_	50	ns
C _L	load capacitance	for each bus line	_	_	400	pF


Notes


- 1. In order to prevent digital noise interfering with the L3-bus communication, the rise and fall times should be as small as possible.
- 2. When the sampling frequency is below 32 kHz, the L3CLOCK cycle must be limited to $\frac{1}{64fs}$ cycle.
- 3. C_b is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.
- 4. After this period, the first clock pulse is generated.
- 5. To be suppressed by the input filter.

UDA1355H



UDA1355H

17 PACKAGE OUTLINE

QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm

SOT307-2

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ICCUIE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT307-2					97-08-01 03-02-25	

UDA1355H

18 SOLDERING

18.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

18.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferably be kept:

- below 220 °C for all the BGA packages and packages with a thickness ≥ 2.5mm and packages with a thickness <2.5 mm and a volume ≥350 mm³ so called thick/large packages
- below 235 °C for packages with a thickness <2.5 mm and a volume <350 mm³ so called small/thin packages.

18.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

18.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

UDA1355H

18.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ⁽¹⁾	SOLDERIN	G METHOD
PACKAGE	WAVE	REFLOW ⁽²⁾
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ⁽³⁾	suitable
PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended ⁽⁶⁾	suitable

Notes

- For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

UDA1355H

19 DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

20 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

21 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

UDA1355H

22 PURCHASE OF PHILIPS I2C COMPONENTS

Purchase of Philips I^2C components conveys a license under the Philips' I^2C patent to use the components in the I^2C system provided the system conforms to the I^2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

under patent- or other industrial or intellectual property rights.

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license

Printed in The Netherlands

753503/01/pp**76**

Date of release: 2003 Apr 10

Document order number: 9397 750 09925

Let's make things better.

Philips Semiconductors

