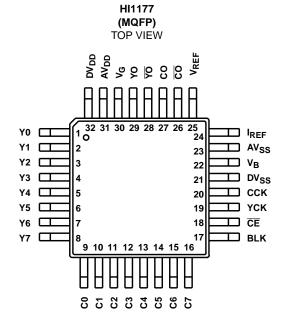


Data Sheet January 1999 File Number 4114.2

8-Bit, 40MSPS, 2-Channel D/A Converter

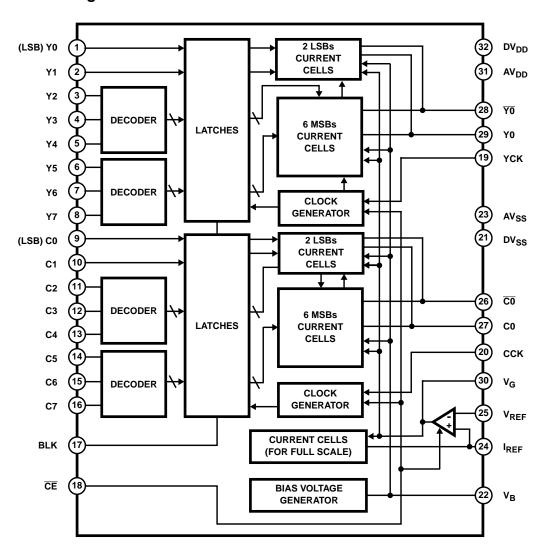

The HI1177 is a dual 8-bit CMOS digital-to-analog converter. It has input/output equivalent to 2 channels of Y and C for video use or I and Q for modulators.

The HI1177 is available in the industrial temperature range and is supplied in a 32 lead plastic metric quad flatpack (MQFP) package.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.	
HI1177JCQ	-40 to 85	32 Ld MQFP	Q32.7x7-S	

Pinout


Features

• Resolution
Maximum Conversion Speed 40MHz
YC 2-Channel Input/Output
• Differential Linearity Error
• Low Power Consumption
Power Supply
Power-Down Mode
Low Glitch Noise
Direct Replacment for Sony CXD1177

Applications

- I/Q Modulation
- YC Video
- · Digital TV
- · Wireless Transmitters

Functional Block Diagram

Pin Descriptions

NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
1 to 8	Y0 to Y7	o DV _{DD}	Digital Input.
9 to 16	C0 to C7	10 DV _{SS}	
17	BLK	17 DV _{DD} DV _{SS}	Blanking pin. No signal at "H" (Output 0V). Output condition at "L".

6 <u>intersil</u>

Pin Descriptions (Continued)

NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
22	V _B	DV _{DD} DV _{DD} 22 DV _{SS}	Connect a capacitor of about 0.1μF.
19	YCK	OV _{DD}	Clock pin. Moreover all input pins are
20	CLK	19 DV _{SS}	TTL-CMOS compatible.
21	DV _{SS}		Digital GND.
23	AV _{SS}		Analog GND.
18	CE	18 DV _{DD}	Chip enable pin. No signal (Output 0V) at "H" and minimizes power consumption.
24	I _{REF}	AV _{DD} Q AV _{DD}	Connect a resistance 16 times "16R" that of output resistance value "R".
25	V_{REF}		Set full scale output value.
30	V_{G}	AV _{DD} Q ⁽²⁴⁾	Connect a capacitor of about 0.1μF.
31	AV _{DD}	25 AV _{SS} 30 AV _{SS}	Analog V _{DD} .
27	СО	AV _{DD} Ŷ	Current output pin. Voltage output can be ob-
29	YO		tained by connecting a resistance.
26	CO		Inverted current output pin. Normally dropped
28	ΫŌ	AV _{SS} AV _{SS} AV _{SS} AV _{SS}	to analog GND.
32	DV_DD		Digital V _{DD} .

Absolute Maximum Ratings $T_A = 25^{\circ}C$

Supply Voltage, V _{DD}		
Input Voltage, V _{IN}		V_{DD} to V_{SS}
Output Current (For Each Channel) Jour	(mA to 15mA

Operating Conditions
Supply Voltage
AV _{DD} , AV _{SS} 4.75V to 5.25\
DV _{DD} , DV _{SS}
Reference Input Voltage, V _{REF}
Clock Pulse Width
t _{PW1}
t _{PW0} 12.5ns (Min
Temperature Range, TOPR40°C to 85°C

Thermal Information

Thermal Resistance (Typical, Note 7)	θ_{JA} (°C/W)
MQFP Package	122
Maximum Junction Temperature (Plastic Package)	150 ⁰ C
Maximum Storage Temperature Range65	5 ⁰ C to 150 ⁰ C
Maximum Lead Temperature (Soldering 10s)	300°C
(MQFP - Lead Tips Only)	

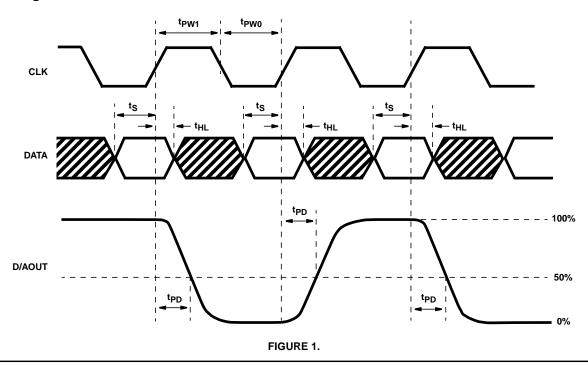
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $f_{CLK} = 40 MHz$, $V_{DD} = 5 V$, $R_{OUT} = 200 \Omega$, $V_{REF} = 2.0 V$, $T_A = 25 ^{o}C$

PARAMETER		SYMBOL	TEST CONDITIONS	TEST LEVEL OR NOTES	MIN	TYP	MAX	UNITS
Resolution		n			-	8	-	bit
Maximum Conve	ersion Speed	f _{MAX}			40	-	-	MHz
Linearity Error		EL			-2.5	-	2.5	LSB
Differential Linea	arity Error	E _D			-0.3	-	0.3	LSB
Full Scale Outpu	ut Voltage	V _{FS}			1.9	2.0	2.2	V
Full Scale Outpu	ut Ratio	F _{SR}		Note 1	0	1.5	3	%
Full Scale Output Current		I _{FS}			-	10	15	mA
Offset Output Voltage		Vos			-	-	1	mV
Power Supply Current		I _{DD}	14.3MHz, at Color Bar Data Input		-	-	32	mA
Digital Input High Level		l _{IH}			-	-	5	μΑ
Current	Low Level	I _{IL}			-5	-	-	μΑ
Setup Time		ts			5	-	-	ns
Hold Time		t _H			10	-	-	ns
Propagation Delay Time		t _{PD}			-	10	-	ns
Glitch Energy		GE	$R_{OUT} = 75\Omega$		-	30	-	pV-s
Cross Talk		СТ	1MHz Sin Wave Output		-	57	-	dB


NOTE:

1. Full scale output ratio = $\frac{\text{Full-scale voltage of channel}}{\text{Average of the full-scale voltage of the channels}} (-1) x 100 (\%) .$

I/O Correspondence Table (Output Full Scale Voltage: 2V)

INPUT CODE						OUTPUT VOLTAGE		
MS	В					LS	SB	
1	1	1	1	1	1	1	1	2.0V
				•				
1	0	0	0	0	0	0	0	1.0V
				•				
0	0	0	0	0	0	0	0	0V

Timing Diagram

Test Circuits

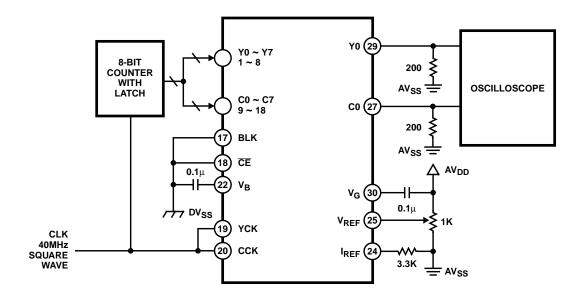


FIGURE 2. MAXIMUM CONVERSION

Test Circuits (Continued)

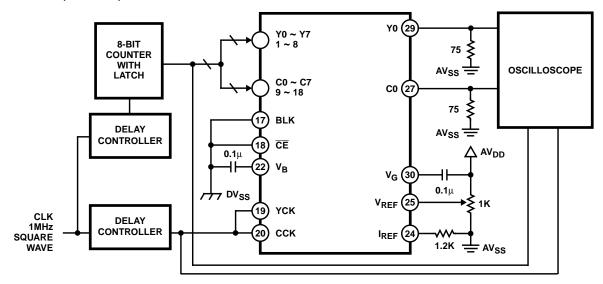


FIGURE 3. SETUP HOLD TIME AND GLITCH ENERGY

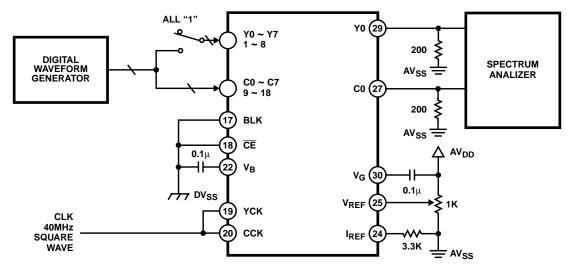


FIGURE 4. CROSSTALK

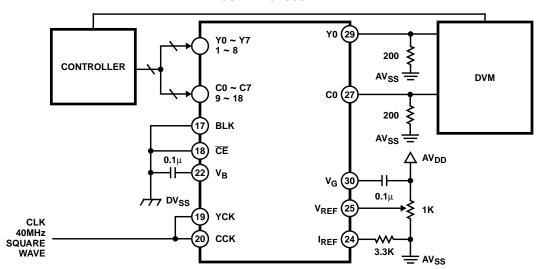


FIGURE 5. DC CHARACTERISTICS

Test Circuits (Continued)

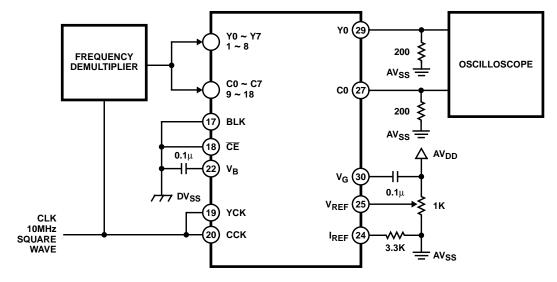


FIGURE 6. PROPAGATION DELAY TIME

200

Typical Performance Curves

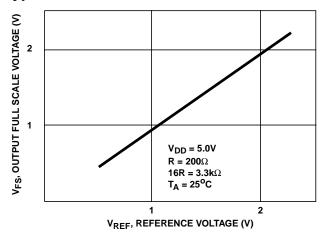


FIGURE 7. OUTPUT FULL SCALE VOLTAGE vs REFERENCE VOLTAGE

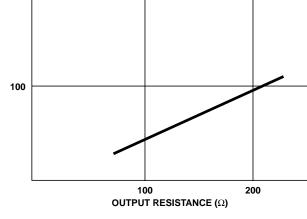


FIGURE 8. GLITCH ENERGY vs OUTPUT RESISTANCE

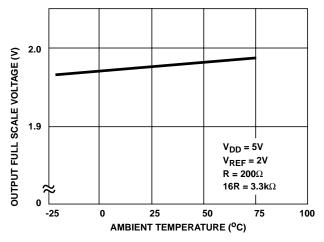


FIGURE 9. OUTPUT FULL SCALE VOLTAGE vs AMBIENT TEMPERATURE

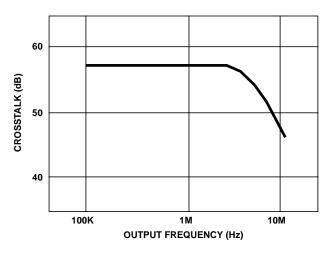


FIGURE 10. CROSSTALK vs OUTPUT FREQUENCY

Application Circuit

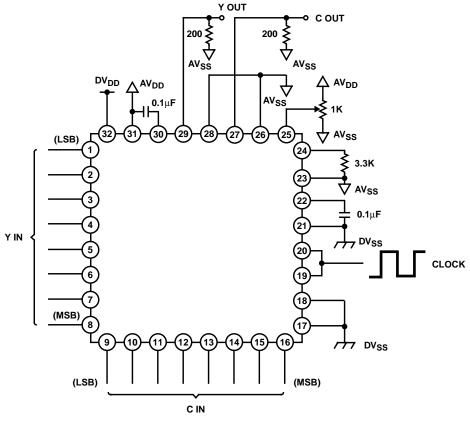


FIGURE 11.

Operation

- · How to select the output resistance:
 - The HI1177 is a D/A converter of the current output type.
 To obtain the output voltage connect the resistance to IO pin (Y0, C0). For specifications we have:

Output full scale voltage V_{FS} = less than 2V Output full scale current I_{FS} = less than 15mA

Calculate the output resistance value from the relation of V_{FS} = I_{FS} X R. Also, 16 times resistance of the output resistance is connected to reference current pin I_{REF}. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that V_{FS} becomes V_{FS} = V_{REF} X 16R/R'. R is the resistance connected to IO while R' is connected to I_{REF}. Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.

- Phase relation between data and clock:
 - To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the set up time (t_S) and hold time (t_H) as stipulated in the Electrical Characteristics.
- V_{DD}, V_{SS}:
 - To reduce noise effects separate analog and digital systems in the device periphery. For V_{DD} pins, both digital and analog, bypass respective GNDs by using a ceramic capacitor of about $0.1\mu F$, as close as possible to the pin.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com