ANALOG

DC to 500 MHz , Dual Digital Gain Trim Amplifier

Preliminary Technical Data

FEATURES

Matched Pair of Differential Digitally-Controlled VGAs

Gain Range: $\mathbf{4 . 5} \mathbf{~ d B}$ to $\mathbf{2 0 . 5 ~ d B}$
Step 0.25 dB
Operating frequency
DC to 500 MHz
800MHz 3-dB bandwidth
NF 10.5 dB @ max. gain, 18dB @ min. gain at 10MHz
OIP3 36dBVrms at 10MHz
HD2, HD3 > 88dBc for 2Vpp output at 10MHz at max gain
Differential Input and Output
Adjustable output common-mode
Optional DC output offset correction
Serial/Parallel Port Programmable
Power-down Feature
Single 5V Supply Operation

APPLICATIONS

Baseband I/Q receivers
Diversity receivers
ADC drivers
W-CDMA/CDMA/CDMA2000/GSM
Point-to-(Multi)Point Radio
CATV
Wireless local loop
WiMax

GENERAL DESCRIPTION

The AD8366 is a matched pair of fully differential low-noise and low-distortion digitally programmable variable gain amplifiers. The gain of each amplifier can be programmed separately or simultaneously over a range of 5 dB to 21 dB in steps of 0.25 dB . The amplifier offers flat frequency performance and group delay from DC out to 150 MHz , independent of gain code.
The AD8366 offers excellent spurious-free dynamic range, suitable for driving 12-bit ADCs. The NF at max gain is 10.5 dB at 10 MHz and increases 2 dB for every 4 dB decrease in gain. Over the entire gain range, the HD3 and HD2 are $>88 \mathrm{dBc}$ for 2 V p-p at the output at 10 MHz into 500Ω. The 2 -tone intermodulation distortion of -90 dBc into 200Ω translates to an OIP 3 of 43 dBm . The differential input impedance is 200Ω to provide a well-defined termination. The differential output is voltage-mode with a low impedance of $30 \boldsymbol{\Omega}$.

Rev. PrC

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
REVISION HISTORY
10/07-Revision PrA: Initial Version
02/08-Revision PrB: Updated Performance Specifications
06/08-Revision PrC: Evaluation Board Section
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics. 7
APPLICATIONS SCHEMATIC 8
Parallel and SERIAL Interface timing. 9
Outline Dimensions 13

SPECIFICATIONS

VS. $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=200 \Omega, \mathrm{Z}_{\mathrm{L}}=200 \Omega, \mathrm{f}=10 \mathrm{MHz}$, unless otherwise noted
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE Bandwidth Slew Rate	3dB; all gain codes 1dB; all gain codes Max. Gain Min. Gain		$\begin{aligned} & 1000 \\ & 250 \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		MHz MHz V/ns V/ns
INPUT STAGE Maximum Input Swing Differential Input Impedance Input Common Mode Range	IPPA, IPMA, IPPB, IPMB At minimum gain $A_{v}=4.5 \mathrm{~dB}$ 1Vp-p Input Input pins left floating	TBD	$\begin{aligned} & 3.2 \\ & 200 \\ & \mathrm{Vps} / 2 \end{aligned}$	TBD	$\begin{aligned} & \text { Vp-p } \\ & \Omega \\ & V \end{aligned}$
GAIN Voltage Gain Range Gain Step Size 0.1 dB Gain Flatness Mismatch Group Delay Flatness Mismatch Gain Step Response Common-mode Rejection Ratio	All gain codes Max. Gain Channels A and B at same gain code All gain codes, 20% frac. bandwidth, $\mathrm{fc}<100 \mathrm{MHz}$ Channels A and B at same gain code Max. gain to Min. gain Min. gain to Max gain	4.5	0.25 150 $+/-$ 0.05 dB <0.5 2 TBD TBD TBD	20.5	dB dB MHz dB ns ps ns ns dB
OUTPUT STAGE Maximum Output Swing Differential Output Impedance Output DC offset Output Common Mode Range Common-Mode Setpoint Input Impedance	OPPA, OPMA, OPPB, OPMB, VCMA, VCMB At maximum gain, $A_{v}=20.5 \mathrm{~dB}$ Inputs Shorted, offset loop disabled 1Vp-p output VCMA and VCMB left floating	$\begin{gathered} -15 \\ 1.2 \end{gathered}$	$\begin{aligned} & 6 \\ & 30 \\ & \text { TBD } \\ & \\ & \text { Vps/2 } \\ & 4 \end{aligned}$	$\begin{aligned} & -4 \\ & 3.4 \end{aligned}$	$\mathrm{Vp}-\mathrm{p}$ $\mathrm{\Omega}$ mV V V $\mathrm{k}^{\prime} \Omega$
NOISE/DISTORTION					
$10 \mathrm{MHz}$					
Noise Figure	Max Gain		10.5		dB
	Min Gain		18		dB
$2{ }^{\text {nd }}$ Harmonic	2 Vp-p output, Max Gain, ZL=500' Ω 2 Vp-p output, Min Gain, ZL=500' Ω		$\begin{aligned} & 88 \\ & 88 \end{aligned}$		dBC dBc
$3{ }^{\text {rd }}$ Harmonic	2 Vp-p output, Max Gain, ZL=500' Ω 2 Vp-p output, Min Gain, ZL=500'		$\begin{aligned} & 92 \\ & 85 \end{aligned}$		dBC dBc
OIP3	2 V p-p composite, Max. Gain, ZL=200' Ω 2 V p-p composite, Min. Gain, ZL=200 Ω		$\begin{aligned} & 36 \\ & 35 \end{aligned}$		dBVrms dBVrms
Output 1 dB Compression Point	Max. gain, $\mathrm{ZL}=500^{\prime} \Omega$ Min. Gain, ZL=500 Ω		$\begin{aligned} & 7 \\ & 6.9 \end{aligned}$		dBVrms dBVrms
50 MHz					
Noise Figure	Max Gain Min Gain		$\begin{aligned} & 11.2 \\ & 18.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$2^{\text {nd }}$ Harmonic	2 Vp-p output, Max Gain Min Gain		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$		dBc dBc
$3{ }^{\text {rd }}$ Harmonic	2 V p-p output, Max Gain Min Gain		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$		dBC dBC

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltages VPSI, VPSO	5.5 V
ENBL, SENB, DENA, DENB, BIT0, BIT1, BIT2,	TBD V
BIT3, BIT4, BIT5	
IPPA, IPMA, IPPB, IPMB	TBD V
OPPA, OPMA, OPPB, OPMB	TBD V
OFSA, OFSB	TBD V
DECA, DECB, VCMA, VCMB, CCMA, CCMB	TBD V
Internal Power Dissipation	TBD mW
ӨJA (With Pad Soldered to Board)	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8, 13, 28	VPSIA, VPSIB, VPSOA, VPSOB	Input and Output Stage Positive Supply Voltage. $4.5 \mathrm{~V}-5.5 \mathrm{~V}$.
2, 3, 6, 7	IPPA, IPMA, IPPB, IPMB	Differential Inputs
4	ENBL	Chip Enable. Pull high to enable.
5,20	ICOM, OCOM	Input and Output Stage Common. Connect via lowest possible impedance to external circuit common
9,32	DECA, DECB	Vpos/2 Reference Output Decoupling. Connect decoupling capacitor to circuit common.
10,31	OFSA, OFSB	Output Offset Correction Loop Compensation. Connect capacitor to circuit common. Tie to common to disable.
11,30	CCMA, CCMB	Output Common-mode Centering Loop Compensation. Connect capacitor to circuit common
12, 29	VCMB, VCMA	Output Common-mode Setpoint. Defaults to Vpos/2 if left open
14, 15, 26, 27	OPPB, OPMB, OPMA, OPPA	Differential Outputs
16, 17	DENB, DENA	Data enable . Pull high to address each or both channels for parallel load. Not used in serial mode.
18, 19, 21, 22, 23, 24	BIT5, BIT4, BIT3, BIT2, BIT1, BITO	Parallel data path for SENB pulled low. For SENB pulled high, BITO becomes a chip-select (CS), BIT1 becomes serial data input, SDAT, and BIT2 becomes serial clock, SCLK. BIT3-BIT5 are not used in the serial mode
25	SENB	Serial interface enable. Pull high for serial; pull low for parallel.

Preliminary Technical Data

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Gain vs. Frequency for Multiple Gain Codes

Figure 4. IQ Gain Mismatch at 10 MHz vs. Ideal Gain

Figure 5.O IP2,OIP3 and NF vs. Gain at 10 MHz

Figure 6. Gain Error vs. Ideal Gain Codes at $10 \mathrm{MHz}, 50 \mathrm{MHz}$ and 100 MHz

Figure 7. IQ Phase Mismatch at 10 MHz vs. Ideal Gain

Figure 8. Gain \& Output Swing vs. Input Power at Max Gain Setting at 10 MHz

APPLICATIONS SCHEMATIC

Figure 9 Applications Schematic with Basic Connections

Preliminary Technical Data

EVALUATION BOARD

Figure 10. Evaluation Board Schematic

AD8366

Table 4. Evaluation Board Configuration Options

Components	Function	Default Conditions
C1, C13 to C16, R3 to R6	Power Supply Decoupling. Nominal supply decoupling consists a $0.1 \mu \mathrm{~F}$ capacitor to ground followed by $0.01 \mu \mathrm{~F}$ capacitors to ground positioned as close to the device as possible.	$\begin{aligned} & \mathrm{C} 1=0.1 \mu \mathrm{~F} \text { (size } 0603 \text {) } \\ & \text { C13 to } \mathrm{C} 16=0.01 \mu \mathrm{~F} \text { (size 0402) } \\ & \text { R3 to } \mathrm{R} 6=0 \Omega(\text { size } 0603) \end{aligned}$
T1, T2, C5,C18,C20,C21, R12 to R21, R44 to R48, R50, R54, R58, R62, R63	Input Interface. The default configuration of the Eval board is for single ended operation. T1 and T2 are 4:1 impedance ratio baluns to transform a 50Ω single-ended input into a 200Ω-balanced differential signal. R12 to R14 and R15, R16, and R19 are populated for appropriate balun interface. R44 to R48 and R50, R54, R58, R62, andR63 are provided for generic placement of matching components. C5 to C20 are balun decoupling capacitors. R17, R18, R20, R21 can be populated with 0Ω and the balun interfacing resistors can be removed to bypass T1 and T2 for differential interfacing.	$\begin{aligned} & \text { T1, T2 }=\text { ADT4-6T+ (Mini-Circuits) } \\ & \text { C5,C20 }=0.1 \mu \text { F (size 0402) } \\ & \text { C18,C21 = Do not install } \\ & \text { R12 to R16, R19, R44 to R47 = } 0 \Omega \text { (size } \\ & 0402 \text {) } \\ & \text { R17, R18, R20, R21,R48, R50, R54, R58, } \\ & \text { R62, andR63 = open (size 0402) } \end{aligned}$
T3, T4, C24 to C27, R29 to R31,R33 to R39,R65,R67 to R74, R80	Output Interface. The default configuration of the Eval board is for single ended operation. T3 and T4 are 4:1 impedance ratio baluns to transform a 50Ω single-ended output into a 200Ω-balanced differential load. R29 to R31, R33, R38, R39 are populated for appropriate balun interface. R65, R67 to R74, and R80 are provided for generic placement of matching components. C24, C25 are balun decoupling capacitors. R34 to R37 can be populated with 0Ω and the balun interfacing resistors can be removed to bypass T3 and T4 for differential interfacing.	$\begin{aligned} & \text { T3, T4 = ADT4-6T+ (Mini-Circuits) } \\ & \text { C24,C25 }=0.1 \mu \text { F (size 0402) } \\ & \text { C26,C27 = Do not install } \\ & \text { R29 to R31, R33, R38, R39, R65, R67, } \\ & \text { R68, R80 = } 0 \Omega \text { (size 0402) } \\ & \text { R34 to R37, R69 to R74 = open (size } \\ & \text { 0402) } \end{aligned}$
$\begin{aligned} & \text { S1, S5, S7, R53, R57, R79, } \\ & \text { C29, C30, C31 } \end{aligned}$	Enable Interface. -Device Enable. The AD8366 is enabled by applying a logic high voltage to the ENBL pin. The device is enabled when the switch S1 is set in the down position (HIGH), connecting the ENBL pin to VPOS. -Data Enable. DENA and DENB are used to enable the data path for Channel A and Channel B respectively. Channel A is enabled when the switch S 5 is set in the down position (HIGH), connecting the DENA pin to VPOS. Likewise, Channel B is enabled when the switch S 7 is set in the down position (HIGH), connecting the DENB pin to VPOS. Both channels are disabled by setting the switches to the up position, connecting the DENA and DENB pins to GND.	$\begin{aligned} & \text { S1,S5,S7 = installed } \\ & \text { R53, R57 }=5.1 \mathrm{k} \Omega \text { (size 0603) } \\ & \text { R79 }=10 \mathrm{k} \Omega(\text { size } 0402) \\ & \mathrm{C} 30=0.01 \mathrm{uF} \text { (size 0402) } \\ & \text { C29, C31 }=1500 \mathrm{pF} \text { (size 0402) } \end{aligned}$
$\begin{aligned} & \text { S2,S3,S4,S6,S8,S9, S10 } \\ & \text { R26, R32, R40-R43, } \\ & \text { R61,R64 } \\ & \text { C23, C33 } \\ & \text { U1 } \end{aligned}$	Serial/Parallel Interface Control. SENB is used to set the data control either in parallel or serial mode. Parallel Interface is enabled when the switch S4 is up position (LOW). Serial interface enabled when S 4 is in the down position (HIGH). For SENB pulled LOW, BIT0 (switch S9) sets 0.25 dB Gain BIT1 (switch S2) sets 0.5 dB Gain BIT2 (switch S3) sets 1 dB Gain BIT3 (switch S6)sets 2dB Gain BIT4 (switch S8)sets 4dB Gain BIT5 (switch S10) sets 8 dB Gain For SENB pulled HIGH, BIT0 becomes a chip-select (CS), BIT1 becomes serial data input, SDAT, and BIT2 becomes serial clock, SCLK. BIT3-BIT5 are not used in the serial mode.	$\begin{aligned} & \text { S2,S3,S4, S6, S8, S9, } 10=\text { installed } \\ & \text { R26=698 k } \Omega(\text { size } 0603 \text {) } \\ & \text { R32, R40-R43, R61,R64 }=5.1 \mathrm{k} \Omega \text { (size } \\ & 0603 \text {) } \\ & \text { C23, C33 = 1500pF (size 0603) } \\ & \text { U1 = SN74LVC2G14, Clock Chip } \end{aligned}$
S11, S12, C9, C10	DC Offset Correction Loop Compensation. The DC offset correction loop is enabled (HIGH) with switch S11 and S12 for channel A and channel B respectively. When enabled, the capacitor is connected to circuit common. When disabled (LOW), the OFSA/OFSB pins are tied to common.	$\begin{aligned} & \text { S11, S12 = installed } \\ & \text { C9, C10=8200pF (size 0402) } \end{aligned}$

$\begin{aligned} & \text { R10, R22, R24, R28, C22, } \\ & \text { C28 } \end{aligned}$	Output Common-mode Setpoint. The output common mode on channels A and B can be set externally when applied to the VCMA and VCMB. The resistive change thorough the potentiometer sets a variable VCMA voltage. If left open, the output common mode defaults to Vpos/2.	R10, R24= $10 \mathrm{k} \Omega$ Potentiometers $R 22, R 28=0 \Omega$
C2, C3, C11, C12	Vpos/2 Reference Output Decoupling Capacitor to circuit common.	$\begin{aligned} & C 2, C 3=0.1 \mu \mathrm{~F}(\text { size } 0402) \\ & C 11, C 12=0.01 \mu \mathrm{~F} \text { (size } 0402) \end{aligned}$
C4, C17	Output Common-mode Centering Loop Compensation. Connect capacitor to circuit common	C4, C17= 1 nF (size 0402)

PARALLEL AND SERIAL INTERFACE TIMING

Figure 11. SPI Port Timing Diagram

OUTLINE DIMENSIONS

Figure 13. Outline Dimensions.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8366-EVALZ		Evaluation Board	

