Dual 12-Bit, 250/210/170/125MSPS A/D Converter

General Description

The KAD5612P is a family of low-power, highperformance, dual-channel 12-bit, analog-to-digital converters. Designed with Kenet's proprietary FemtoCharge ${ }^{\circledR}$ technology on a standard CMOS process, the family supports sampling rates of up to 250MSPS. The KAD5612P-25 is the fastest member of this pin-compatible family, which also features sample rates of 210MSPS (KAD5612P-21), 170MSPS (KAD5612P-17) and 125MSPS (KAD5612P-12).
A serial peripheral interface (SPI) port allows for extensive configurability, as well as fine control of gain, skew and offset matching between the two converter cores.
Digital output data is presented in selectable LVDS or CMOS formats. The KAD5612P is available in a 72contact QFN package with an exposed paddle. Performance is specified over the full industrial temperature range (-40 to $+85^{\circ} \mathrm{C}$).

Features

- Programmable Gain, Offset and Skew control
- 1.3 GHz Analog Input Bandwidth
- 60fs Clock Jitter
- Over-Range Indicator
- Selectable Clock Divider: $\div 1, \div 2$ or $\div 4$
- Clock Phase Selection
- Nap and Sleep Modes
- Two's Complement, Gray Code or Binary Data Format
- DDR LVDS-Compatible or LVCMOS Outputs
- Programmable Built-in Test Patterns
- Single-Supply 1.8 V Operation

Applications

- Power Amplifier Linearization
- Radar and Satellite Antenna Array Processing
- Broadband Communications
- High-Performance Data Acquisition
- Communications Test Equipment
- WiMAX and Microwave Receivers

KAD5612P

Table of Contents

Section	Pages
Electrical Specifications	3-7
DC Specifications	3
AC Specifications	4
Digital Specifications	5
Absolute Maximum Ratings	6
Timing Diagrams	6
Switching Specifications	7
Thermal Impedance	7
ESD	7
Pinout/Package Information	8-9
Pin Descriptions	8
Pin Configuration	9
Typical Performance Characteristics	10-12
Theory of Operation	13-18
Functional Description	13
Power-On Calibration	13
User-Initiated Reset	14
Analog Input	14
Clock Input	15
Jitter	16
Voltage Reference	16
Digital Outputs	16
Over Range Indicator	16
Power Dissipation	17
Nap/Sleep	17
Data Format	17

Section	Pages
Serial Peripheral Interface	$18-24$
SPI Physical Interface	19
SPI Configuration	20
Device Information	20
Indexed Device Configuration/Control	20
Global Device Configuration/Control	21
Device Test	23
SPI Memory Map	24
Equivalent Circuits	25
Layout Considerations	25
Definitions	26
Outline Dimensions	27
Ordering Guide	28
Revision History	28

KAD5612P

Electrical Specifications

All specifications apply under the following conditions unless otherwise noted: AVDD $=1.8 \mathrm{~V}, \mathrm{OVDD}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (typical specifications at $25^{\circ} \mathrm{C}$), $\mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}$, fsAmple $=$ Maximum Conversion Rate (per speed grade).

DC Specifications

Parameter	Symbol	Conditions	KAD5612P-25			KAD5612P-21			KAD5612P-17			KAD5612P-12			Units
			Min	Typ	Max										
Analog Input															
Full-Scale Analog Input Range	$V_{\text {FS }}$	Differential	1.42	1.48	1.56	1.42	1.48	1.56	1.42	1.48	1.56	1.42	1.48	1.56	$V_{\text {PP }}$
Input Resistance	RIN	Differential		1000			1000			1000			1000		Ω
Input Capacitance	CIN	Differential		1.8			1.8			1.8			1.8		pF
Full Scale Range Temp. Drift	Avtc	Full Temp		90			90			90			90		ppm $/{ }^{\circ} \mathrm{C}$
Input Offset Voltage	Vos		-10	± 2	10	mV									
Gain Error	E_{G}			± 2		\%									
Common-Mode Output Voltage	$\mathrm{V}_{\text {CM }}$			0.535			0.535			0.535			0.535		V
Power Requirements															
1.8V Analog Supply Voltage	AVDD		1.7	1.8	1.9	1.7	1.8	1.9	1.7	1.8	1.9	1.7	1.8	1.9	V
1.8V Digital Supply Voltage	OVDD		1.7	1.8	1.9	1.7	1.8	1.9	1.7	1.8	1.9	1.7	1.8	1.9	V
1.8V Analog Supply Current	IAVDD			157	165		146	154		134	142		118	126	mA
1.8V Digital Supply Current ${ }^{1}$	lovdd	3mA LVDS		68	76		66	74		64	72		62	70	mA
Power Supply Rejection Ratio	PSRR	30 MHz , 200mVpp signal on		-36			-36			-36			-36		dB
Power Dissipation															
Normal Mode	PD	3 mA LVDS		405	434		382	411		357	386		324	353	mW
Nap Mode	PD			134	146		129	142		124	138		118	131	mW
Sleep Mode	PD			14	16		13	16		7	15		12	13	mW

1. Digital Supply Current is dependent upon the capacitive loading of the digital outputs. lovdo specifications apply for 10pF load on each digital output.

KAD5612P

AC Specifications ${ }^{1}$

1. AC Specifications apply after internal calibration of the ADC is invoked at the given sample rate and temperature. Refer to the Power-On Calibration and User-Initiated Reset sections for more details.
2. The DLL Range setting must be changed for low speed operation. See the Serial Peripheral Interface section for more detail.

KAD5612P

Digital Specifications

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Inputs						
Input Current High (RESETN)		$\mathrm{V}_{\mathbb{I}}=1.8 \mathrm{~V}$	0	1	10	$\mu \mathrm{A}$
Input Current Low (RESETN)	$1 / 2$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-25	-12	-5	$\mu \mathrm{A}$
Input Current High (OUTMODE, NAP/SLP, CLKDIV, OUTFMT)	I_{H}		15	25	40	$\mu \mathrm{A}$
Input Current Low (OUTMODE, NAP/SLP, CLKDIV, OUTFMT)	IL		-40	25	-15	$\mu \mathrm{A}$
Input Capacitance	C_{DI}			3		pF
LVDS Outputs						
Differential Output Voltage	V_{T}	3 mA Mode		620		mVpp
Output Offset Voltage	Vos	3 mA Mode	950	965	980	mV
Output Rise Time	t_{R}			500		ps
Output Fall Time	${ }_{\text {F }}$			500		ps
CMOS Outputs						
Voltage Output High	VOH	$\mathrm{IOH}^{\prime}=-500 \mu \mathrm{~A}$	OVDD-0.3	OVDD-0.1		V
Voltage Output Low	Vol	$\mathrm{loL}=1 \mathrm{~mA}$		0.1	0.3	V
Output Rise Time	t_{R}			1.8		ns
Output Fall Time	$t_{\text {F }}$			1.4		ns

KAD5612P

Absolute Maximum Ratings ${ }^{1}$

Parameter	Min	Max	Units
AVDD to AVSS	-0.4	2.1	V
OVDD to OVSS	-0.4	2.1	\checkmark
AVSS to OVSS	-0.3	0.3	V
Analog Inputs to AVSS	-0.4	AVDD + 0.3	V
Clock Inputs to AVSS	-0.4	AVDD + 0.3	V
Logic Input to AVSS	-0.4	OVDD + 0.3	V
Logic Inputs to OVSS	-0.4	OVDD + 0.3	V
Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Junction Temperature		150	${ }^{\circ} \mathrm{C}$

1. Exposing the device to levels in excess of the maximum ratings may cause permanent damage. Exposure to maximum conditions for extended periods may affect device reliability.

Timing Diagrams

Figure 1. LVDS Timing Diagram—DDR

KAD5612P

Switching Specifications

Parameter	Condition	Symbol	Min	Typ	Max	Units
ADC						
Aperture Delay		$t_{\text {A }}$		375		ps
RMS Aperture Jitter		j_{A}		60		fs
Output Clock to Data Propagation Delay，LVDS Mode	Rising Edge	toc	－260	－50	120	ps
	Falling Edge	toc	－160	10	230	ps
Output Clock to Data Propagation Delay，CMOS Mode	Rising Edge	toc	－220	－10	200	ps
	Falling Edge	toc	－310	－90	110	ps
Latency（Pipeline Delay）		L		7.5		cycles
Over Voltage Recovery		tove		1		cycles
SPI Interface ${ }^{1,2}$						
SCLK Period	Write Operation	tcık	64			ns
	Read Operation	tcık	264			ns
	Read or Write		25	50	75	\％
SCLK \uparrow to CSB \downarrow Setup Time	Read or Write	ts	－4			ns
SCLK个 to CSB \uparrow Hold Time	Read or Write	${ }_{\text {H }}$	－12			ns
SCLK个 to Data Setup Time	Read or Write	tos	－4			ns
SCLK个 to Data Hold Time	Read or Write	tD	－12			ns

1．SPI Interface timing is directly proportional to the ADC sample period（ t_{s} ）．Values above reflect multiples of a 4ns sample period，and must be scaled proportionally for lower sample rates．
2．The SPI may operate asynchronously with respect to the ADC sample clock．

Thermal Impedance

Parameter	Symbol	Typ	Unit
Junction to Ambient ${ }^{3}$	Φ_{JA}	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3．Paddle soldered to ground plane．

ESD

Electrostatic charge accumulates on humans，tools and equipment and may discharge through any metallic package contacts（pins，balls，exposed paddle，etc．）of an integrated circuit．Industry－standard protection techniques have been utilized in the design of this prod－ uct．However，reasonable care must be taken in the storage and handling of ESD sensitive products．Contact Kenet for the specific ESD sensitivity rating of this product．

KAD5612P

Pin Descriptions

Pin \#	LVDS [LVCMOS] Name	LVDS [LVCMOS] Function
1,6,19, 24, 71	AVDD	1.8V Analog Supply
2-5, 17, 18, 28-31	DNC	Do Not Connect
7, 10-12, 72	AVSS	Analog Ground
8,9	BINP, BINN	B-Channel Analog Input Positive, Negative
13,14	AINN, AINP	A-Channel Analog Input Negative, Positive
15	VCM	Common Mode Output
16	CLKDIV	Clock Divider Control
20, 21	CLKP, CLKN	Clock Input True, Complement
22	OUTMODE	Output Mode (LVDS, LVCMOS)
23	NAPSLP	Power Control (Nap, Sleep modes)
25	RESETN	Power On Reset (Active Low)
26, 45, 55, 65	OVSS	Output Ground
27, 36, 56	OVDD	1.8V Output Supply
32,33	DON, DOP [NC, DO]	LVDS Bit 0 (LSB) Output Complement, True [NC, LVCMOS Bit 0]
34,35	DIN, DIP [NC, DI]	LVDS Bit 1 Output Complement, True [NC, LVCMOS Bit 1]
37,38	D2N, D2P [NC, D2]	LVDS Bit 2 Output Complement, True [NC, LVCMOS Bit 2]
39,40	D3N, D3P [NC, D3]	LVDS Bit 3 Output Complement, True [NC, LVCMOS Bit 3]
41, 42	D4N, D4P [NC, D4]	LVDS Bit 4 Output Complement, True [NC, LVCMOS Bit 4]
43, 44	D5N, D5P [NC, D5]	LVDS Bit 5 Output Complement, True [NC, LVCMOS Bit 5]
46	RLVDS	LVDS Bias Resistor (connect to OVSS with a 10k 2 , 1% resistor)
47,48	CLKOUTN, CLKOUTP [NC, CLKOUT]	LVDS Clock Output Complement, True [NC, LVCMOS CLKOUT]
49,50	D6N, D6P [NC, D6]	LVDS Bit 6 Output Complement, True [NC, LVCMOS Bit 6]
51,52	D7N, D7P [NC, D7]	LVDS Bit 7 Output Complement, True [NC, LVCMOS Bit 7]
53, 54	D8N, D8P [NC, D8]	LVDS Bit 8 Output Complement, True [NC, LVCMOS Bit 8]
57, 58	D9N, D9P [NC, D9]	LVDS Bit 9 Output Complement, True [NC, LVCMOS Bit 9]
59,60	DION, DIOP [NC, DIO]	LVDS Bit 10 Output Complement, True [NC, LVCMOS Bit 10]
61,62	DIIN, DIIP [NC, DII]	LVDS Bit 11 (MSB) Output Complement, True [NC, LVCMOS Bit 11]
63, 64	ORN, ORP [NC, OR]	LVDS Over Range Complement, True [NC, LVCMOS Over Range]
66	SDO	SPI Serial Data Output ($4.7 \mathrm{k} \Omega$ pull-up to OVDD is required)
67	CSB	SPI Chip Select (active low)
68	SCLK	SPI Clock
69	SDIO	SPI Serial Data Input/Output
70	OUTFMT	Output Data Format (Two's Comp., Gray Code, Offset Binary)
Exposed Paddle	AVSS	Analog Ground

Pin Configuration

Figure 3. Pin Configuration

KAD5612P

Typical Performance Curves

All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD $=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}, \mathrm{f}_{\mathrm{IN}}=105 \mathrm{MHz}, \mathrm{f}_{\text {SAMPLE }}=$ Maximum Conversion Rate (per speed grade) .

Figure 4. SNR \& SFDR vs. f_{IN}

Figure 6. SNR \& SFDR vs. AIN

Figure 8. SNR \& SFDR vs. fsAMPLE

Figure 5. HD2 \& HD3 vs. f_{IN}

Figure 7. HD2 \& HD3 vs. Ain

Figure 9. HD2 \& HD3 vs. fsample

KAD5612P

Typical Performance Curves

All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD $=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}, \mathrm{f}_{\mathrm{IN}}=105 \mathrm{MHz}, \mathrm{f}_{\text {SAMPLE }}=$ Maximum Conversion Rate (per speed grade) .

Figure 10. Power vs. $\mathrm{f}_{\text {SAMPLE }}$ in 3 mA LVDS Mode

Figure 12. Integral Nonlinearity

Figure 14. Noise Histogram

Figure 11. Differential Nonlinearity

Figure 13. SNR \& SFDR vs. VCM

Figure 15. Single-Tone Spectrum @ 10 MHz

KAD5612P

Typical Performance Curves

All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD $=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}, \mathrm{f}_{\mathrm{IN}}=105 \mathrm{MHz}, \mathrm{f}_{\text {SAMPLE }}=$ Maximum Conversion Rate (per speed grade) .

Figure 16. Single-Tone Spectrum @ 105 MHz

Figure 18. Single-Tone Spectrum @ 495MHz

Figure 20. Two-Tone Spectrum @ 70 MHz

Figure 17. Single-Tone Spectrum @ 190 MHz

Figure 19. Single-Tone Spectrum @ 995 MHz

Figure 21. Two-Tone Spectrum @ 170 MHz

KAD5612P

Functional Description

The KAD5612P is based upon a 12-bit, 250MSPS A/D converter core that utilizes a pipelined successive approximation architecture (Figure 22). The input voltage is captured by a Sample-Hold Amplifier (SHA) and converted to a unit of charge. Proprietary charge-domain techniques are used to successively compare the input to a series of reference charges. Decisions made during the successive approximation operations determine the digital code for each input value. The converter pipeline requires six samples to produce a result. Digital error correction is also applied, resulting in a total latency of seven and one half clock cycles. This is evident to the user as a latency between the start of a conversion and the data being available on the digital outputs.
The device contains two A/D converter cores with carefully matched transfer characteristics. At startup, each core performs a self-calibration to minimize gain and offset errors. The reset pin (RESETN) is initially set high at power-up and will remain in that state until the calibration is complete. The clock frequency should remain fixed during this time, and no SPI communications should be attempted. Recalibration can be initiated via the SPI port at any time after the initial self-calibration.

Power-On Calibration

The ADC performs a self-calibration at start-up. An internal power-on-reset (POR) circuit detects the supply voltage ramps and initiates the calibration when the analog and digital supply voltages are above a threshold. The following conditions must be adhered to for the power-on calibration to execute successfully:

- A frequency-stable conversion clock must be applied to the CLKP/CLKN pins
- DNC pins (especially 3, 4 and 18) must not be pulled up or down
- SDO (pin 66) must be high
- RESETN (pin 25) must begin low
- SPI communications must not be attempted A user-initiated reset can subsequently be invoked in the event that the above conditions cannot be met at power-up.
The SDO pin requires an external $4.7 \mathrm{k} \Omega$ pull-up to OVDD. If the SDO pin is pulled low externally during power-up, calibration will not be executed properly.
After the power supply has stabilized the internal POR releases RESETN and an internal pull-up pulls it high, which starts the calibration sequence. If a subsequent user-initiated reset is required, the RESETN pin should be connected to an open-drain driver with a drive strength of less than 0.5 mA .

Figure 22. ADC Core Block Diagram

KAD5612P

The calibration sequence is initiated on the rising edge of RESETN, as shown in Figure 23. The overrange output (OR) is set high once RESETN is pulled low, and remains in that state until calibration is complete. The OR output returns to normal operation at that time, so it is important that the analog input be within the converter's full-scale range to observe the transition. If the input is in an over-range condition the OR pin will stay high, and it will not be possible to detect the end of the calibration cycle.
While RESETN is low, the output clock (CLKOUTP/CLKOUTN) is set low. Normal operation of the output clock resumes at the next input clock edge (CLKP/CLKN) after RESETN is deasserted. At 250MSPS the nominal calibration time is 200 ms , while the maximum calibration time is 550 ms .

Figure 23. Calibration Timing

User-Initiated Reset

Recalibration of the ADC can be initiated at any time by driving the RESETN pin low for a minimum of one clock cycle. An open-drain driver with a drive strength of less than 0.5 mA is recommended. As is the case during power-on reset, the SDO, RESETN and DNC pins must be in the proper state for the calibration to successfully execute.
The performance of the KAD5612P changes with variations in temperature, supply voltage or sample rate. The extent of these changes may necessitate recalibration, depending on system performance requirements. Best performance will be achieved by recalibrating the ADC under the environmental conditions at which it will operate.
A supply voltage variation of less than 100 mV will generally result in an SNR change of less than 0.5 dBFS and SFDR change of less than 3dBc.
In situations where the sample rate is not constant, best results will be obtained if the device is calibrated
at the highest sample rate. Reducing the sample rate by less than 75MSPS will typically result in an SNR change of less than 0.5 dBFS and an SFDR change of less than 3dBc.
Figures 25 and 26 show the effect of temperature on SNR and SFDR performance without recalibration. In each plot the ADC is calibrated at $25^{\circ} \mathrm{C}$ and temperature is varied over the operating range without recalibrating. The average change in SNR/SFDR is shown, relative to the $25^{\circ} \mathrm{C}$ value.

Figure 24. SNR Performance vs. Temperature after $25^{\circ} \mathrm{C}$ Calibration

Figure 25. SFDR Performance vs. Temperature after $25^{\circ} \mathrm{C}$ Calibration

Analog Input

Each ADC core contains a fully differential input (AINP/AINN, BINP/BINN) to the sample and hold amplifier (SHA). The ideal full-scale input voltage is 1.45 V , centered at the VCM voltage of 0.535 V as shown in Figure 26.

KAD5612P

Best performance is obtained when the analog inputs are driven differentially. The common-mode output voltage, VCM, should be used to properly bias the inputs as shown in Figures 27 through 29.

Figure 26. Analog Input Range
An RF transformer will give the best noise and distortion performance for wideband and/or high intermediate frequency (IF) inputs. Two different transformer input schemes are shown in Figures 27 and 28.

Figure 27. Transformer Input for General Purpose Applications

Figure 28. Transmission-line Transformer Input for High IF Applications
This dual transformer scheme is used to improve com-mon-mode rejection, which keeps the commonmode level of the input matched to VCM. The value of the shunt resistor should be determined based on the desired load impedance. The differential input resistance of the KAD5612P is 1000 2 .
The SHA design uses a switched capacitor input stage (see Figure 42), which creates current spikes when the sampling capacitance is reconnected to the input voltage. This causes a disturbance at the input which must settle before the next sampling point. Lower source impedance will result in faster
settling and improved performance. Therefore a 1:1 transformer and low shunt resistance are recommended for optimal performance.

Figure 29. Differential Amplifier Input
A differential amplifier, as shown in Figure 29, can be used in applications that require dc-coupling. In this configuration the amplifier will typically dominate the achievable SNR and distortion performance.

Clock Input

The clock input circuit is a differential pair (see Figure 43). Driving these inputs with a high level (up to $1.8 \mathrm{~V}_{\text {PP }}$ on each input) sine or square wave will provide the lowest jitter performance. A transformer with 4:1 impedance ratio will provide increased drive levels.
The recommended drive circuit is shown in Figure 30. A duty range of 40% to 60% is acceptable. The clock can be driven single-ended, but this will reduce the edge rate and may impact SNR performance. The clock inputs are internally self-biased to AVDD/2 to facilitate AC coupling.

Figure 30. Recommended Clock drive
A selectable 2 X frequency divider is provided in series with the clock input. The divider can be used in the 2 X mode with a sample clock equal to twice the desired sample rate. This allows the use of the Phase Slip feature, which enables synchronization of multiple ADCs.

CLKDIV Pin	Divide Ratio
AVSS	2
Float	1
AVDD	4

Table 1. CLKDIV Pin Settings
The clock divider can also be controlled through the SPI port, which overrides the CLKDIV pin setting. Details on this are contained in the Serial Peripheral Interface section.
A delay-locked loop (DLL) generates internal clock signals for various stages within the charge pipeline. If the frequency of the input clock changes, the DLL may take up to 52μ s to regain lock at 250MSPS. The lock time is inversely proportional to the sample rate.

Jitter

In a sampled data system, clock jitter directly impacts the achievable SNR performance. The theoretical relationship between clock jitter (\dagger_{J}) and SNR is shown in Equation 1 and is illustrated in Figure 31.

$$
S N R=20 \log _{10}\left(\frac{1}{2 \pi f_{\mathbb{N}} t_{J}}\right)
$$

Equation 1.

Figure 31. SNR vs. Clock Jitter
This relationship shows the SNR that would be achieved if clock jitter were the only non-ideal factor. In reality, achievable SNR is limited by internal factors such as linearity, aperture jitter and thermal noise. Internal aperture jitter is the uncertainty in the sampling instant shown in Figure 1. The internal aperture jitter combines with the input clock jitter in a root-sum-square fashion, since they are not statistically correlated, and this determines the total jitter in the
system. The total jitter, combined with other noise sources, then determines the achievable SNR.

Voltage Reference

A temperature compensated voltage reference provides the reference charges used in the successive approximation operations. The full-scale range of each A/D is proportional to the reference voltage. The nominal value of the voltage reference is 1.25 V .

Digital Outputs

Output data is available as a parallel bus in LVDScompatible or CMOS modes. In either case, the data is presented in double data rate (DDR) format with the A and B channel data available on alternating clock edges. When CLKOUT is low channel A data is output, while on the high phase channel B data is presented. Figures 1 and 2 show the timing relationships for LVDS and CMOS modes, respectively.
Additionally, the drive current for LVDS mode can be set to a nominal 3 mA or a power-saving 2 mA . The lower current setting can be used in designs where the receiver is in close physical proximity to the ADC. The applicability of this setting is dependent upon the PCB layout, therefore the user should experiment to determine if performance degradation is observed.
The output mode and LVDS drive current are selected via the OUTMODE pin as shown in Table 2.

OUTMODE Pin	Mode
AVSS	LVCMOS
Float	LVDS, 3 mA
AVDD	LVDS, 2 mA

Table 2. OUTMODE Pin Settings
The output mode can also be controlled through the SPI port, which overrides the OUTMODE pin setting. Details on this are contained in the Serial Peripheral Interface section.
An external resistor creates the bias for the LVDS drivers. A $10 \mathrm{k} \Omega, 1 \%$ resistor must be connected from the RLVDS pin to OVSS.

Over Range Indicator

The over range (OR) bit is asserted when the output code reaches positive full-scale (e.g. OxFFF in offset binary mode). The output code does not wrap around during an over-range condition. The OR bit is updated at the sample rate.

KAD5612P

Power Dissipation

The power dissipated by the KAD5612P is primarily dependent on the sample rate and the output modes: LVDS vs. CMOS and DDR vs. SDR. There is a static bias in the analog supply, while the remaining power dissipation is linearly related to the sample rate. The output supply dissipation changes to a lesser degree in LVDS mode, but is more strongly related to the clock frequency in CMOS mode.

Nap/Sleep

Portions of the device may be shut down to save power during times when operation of the ADC is not required. Two power saving modes are available: Nap, and Sleep. Nap mode reduces power dissipation to less than 134 mW and recovers to normal operation in approximately $1 \mu s$. Sleep mode reduces power dissipation to less than 14 mW but requires 1 ms to recover.

All digital outputs (Data, CLKOUT and OR) are placed in a high impedance state during Nap or Sleep. The input clock should remain running and at a fixed frequency during Nap or Sleep. Recovery time from Nap mode will increase if the clock is stopped, since the internal DLL can take up to 52μ s to regain lock at 250MSPS.
By default after the device is powered on, the operational state is controlled by the NAPSLP pin as shown in Table 3.

NAPSLP Pin	Mode
AVSS	Normal
Float	Sleep
AVDD	Nap

Table 3. NAPSLP Pin Settings
The power down mode can also be controlled through the SPI port, which overrides the NAPSLP pin setting. Details on this are contained in the Serial Peripheral Interface section. This is an indexed function when controlled from the SPI, but a global function when driven from the pin.

Data Format

Output data can be presented in three formats: two's complement, Gray code and offset binary. The data format is selected via the OUTFMT pin as shown in Table 4.

OUTFMT Pin	Mode
AVSS	Offset Binary
Float	Two's Complement
AVDD	Gray Code

Table 4. OUTFMT Pin Settings
The data format can also be controlled through the SPI port, which overrides the OUTFMT pin setting. Details on this are contained in the Serial Peripheral Interface section.
Offset binary coding maps the most negative input voltage to code 0×000 (all zeros) and the most positive input to 0xFFF (all ones). Two's complement coding simply complements the MSB of the offset binary representation.
When calculating Gray code the MSB is unchanged. The remaining bits are computed as the XOR of the current bit position and the next most significant bit. Figure 32 shows this operation.

Figure 32. Binary to Gray Code Conversion
Converting back to offset binary from Gray code must be done recursively, using the result of each bit for the next lower bit as shown in Figure 33.

Figure 33. Gray Code to Binary Conversion
Mapping of the input voltage to the various data formats is shown in Table 5.

Input Voltage	Offset Binary	Two's Complement	Gray Code
-Full Scale	000000000000	100000000000	000000000000
-Full Scale + 1LSB	000000000001	100000000001	000000000001
Mid-Scale	100000000000	000000000000	110000000000
+Full Scale - 1LSB	11111111110	01111111110	100000000001
+Full Scale	11111111111	01111111111	100000000000

Table 5. Input Voltage to Output Code Mapping

Serial Peripheral Interface

A serial peripheral interface (SPI) bus is used to facilitate configuration of the device and to optimize performance. The SPI bus consists of chip select (CSB), serial clock (SCLK) serial data input (SDI), and serial data input/output (SDIO). The maximum SCLK rate is equal to the ADC sample rate (fsample) divided by 16 for write operations and fsample divided by 66 for reads. At fsAmple $=250 \mathrm{MHz}$, maximum SCLK is 15.63 MHz for writing and 3.79 MHz for write operations. There is no minimum SCLK rate.
The following sections describe various registers that are used to configure the SPI or adjust performance or functional parameters. Many registers in the available address space (0×00 to $0 x F F$) are not defined in

Figure 34. MSB-First Addressing

Figure 35. LSB-First Addressing

KAD5612P

this document. Additionally, within a defined register there may be certain bits or bit combinations that are reserved. Undefined registers and undefined values within defined registers are reserved and should not be selected. Setting any reserved register or value may produce indeterminate results.

SPI Physical Interface

The serial clock pin (SCLK) provides synchronization for the data transfer. By default, all data is presented on the serial data input/output (SDIO) pin in threewire mode. The state of the SDIO pin is set automatically in the communication protocol (described below). A dedicated serial data output pin (SDO) can be activated by setting $0 \times 00[7]$ high to allow operation in four-wire mode.
The SPI port operates in a half duplex master/slave configuration, with the KAD5612P functioning as a
slave. Multiple slave devices can interface to a single master in four-wire mode only, since the SDIO output of an unaddressed device is asserted in three wire mode.
The chip-select bar (CSB) pin determines when a slave device is being addressed. Multiple slave devices can be written to concurrently, but only one slave device can be read from at a given time (again, only in four-wire mode). If multiple slave devices are selected for reading at the same time, the results will be indeterminate.
The communication protocol begins with an instruction/address phase. The first rising SCLK edge following a high to low transition on CSB determines the beginning of the two-byte instruction/address command. Data can be presented in MSB-first order or LSB-first order. The default is MSB-first, but this can be changed by setting $0 \times 00[6]$ high. Figures 34 and 35

Figure 36. Instruction/Address Phase

Figure 37. 2-Byte Transfer

Figure 38. N-Byte Transfer

KAD5612P

show the appropriate bit ordering for the MSB-first and LSB-first modes, respectively. In MSB-first mode the address is incremented for multi-byte transfers, while in LSB-first mode it's decremented.
In the default mode the MSB is R/W, which determines if the data is to be read (active high) or written. The next two bits, WI and WO, determine the number of data bytes to be read or written (see Table 6). The lower 13 bits contain the first address for the data transfer. This relationship is illustrated in Figure 36, and timing values are given in the Switching Specifications section.
After the instruction/address bytes have been read, the appropriate number of data bytes are written to or read from the ADC (based on the R/W bit status). The data transfer will continue as long as CSB remains low and SCLK is active. Stalling of the CSB pin is allowed at any byte boundary (instruction/address or data) if the number of bytes being transferred is three or less. For transfers of four bytes or more, CSB is allowed stall in the middle of the instruction/address bytes or before the first data byte. If CSB transitions to a high state after that point the state machine will reset and terminate the data transfer.

[W1:W0]	Bytes Transferred
00	1
01	2
10	3
11	4 or more

Table 6. Byte Transfer Selection
Figures 37 and 38 illustrate the timing relationships for 2-byte and N -byte transfers, respectively. The operation for a 3-byte transfer can be inferred from these diagrams.

SPI Configuration

Address 0x00: chip_port_config

Bit ordering and SPI reset are controlled by this register. Bit order can be selected as MSB to LSB (MSB first) or LSB to MSB (LSB first) to accommodate various microcontrollers.
Bit 7 SDO Active

Bit 6 LSB First
Setting this bit high configures the SPI to interpret serial data as arriving in LSB to MSB order.
Bit 5 Soft Reset

Setting this bit high resets all SPI registers to default values.
Bit 4 Reserved
This bit should always be set high.
Bits 3:0 These bits should always mirror bits $4: 7$ to avoid ambiguity in bit ordering.

Address 0x02: burst_end

If a series of sequential registers are to be set, burst mode can improve throughput by eliminating redundant addressing. In 3-wire SPI mode the burst is ended by pulling the CSB pin high. If the device is operated in 2-wire mode the CSB pin is not available. In that case, setting the burst_end address determines the end of the transfer. During a write operation, the user must be cautious to transmit the correct number of bytes based on the starting and ending addresses.
Bits 7:0 Burst End Address
This register value determines the ending address of the burst data.

Device Information

Address 0x08: chip_id
 Address 0x09: chip_version

The generic die identifier and a revision number, respectively, can be read from these two registers.

Indexed Device Configuration/ Control

Address 0×10 : device_index_A

A common SPI map, which can accommodate sin-gle-channel or multi-channel devices, is used for all Kenet ADC products. Certain configuration commands (identified as Indexed in the SPI map) can be executed on a per-converter basis. This register determines which converter is being addressed for an Indexed command. It is important to note that only a single converter can be addressed at a time.
This register defaults to 00h, indicating that no ADC is addressed. Error code 'AD' is returned if any indexed register is read from without properly setting device_index_A.

Address 0x20: offset_coarse

Address 0x21: offset_fine

The input offset of each ADC core can be adjusted in fine and coarse steps. Both adjustments are made via an 8-bit word as detailed in Table 7.

KAD5612P

The default value of each register will be the result of the self-calibration after initial power-up. If a register is to be incremented or decremented, the user should first read the register value then write the incremented or decremented value back to the same register.

Parameter	0x20[7:0] Coarse Offset	0x21[7:0] Fine Offset
Steps	255	255
-Full Scale (0x00)	-133 LSB $(-47 \mathrm{mV})$	$-5 L S B(-1.75 \mathrm{mV})$
Mid-Scale (0x80)	$0.0 \mathrm{LSB}(0.0 \mathrm{mV})$	$0.0 L S B$
+Full Scale (0xFF)	$+133 L S B(+47 \mathrm{mV})$	$+5 L S B(+1.75 \mathrm{mV})$
Nominal Step Size	$1.04 L S B(0.37 \mathrm{mV})$	$0.04 L S B(0.014 \mathrm{mV})$

Table 7. Offset Adjustments
Address 0x22: gain_coarse
Address 0x23: gain_medium
Address 0x24: gain_fine
Gain of each ADC core can be adjusted in coarse, medium and fine steps. Coarse gain is a 4-bit adjustment while medium and fine are 8-bit.
The default value of each register will be the result of the self-calibration after initial power-up. If a register is to be incremented or decremented, the user should first read the register value then write the incremented or decremented value back to the same register.

0x22[3:0]	Nominal Coarse Gain Adjust
1100	4.2%
1000	2.8%
0100	1.4%
0000	0.0%
0001	-1.4%
0010	-2.8%
0011	-4.2%

Table 8. Coarse Gain Adjustment

Parameter	0x23[7:0] Medium Gain	$\mathbf{0 x 2 4 [7 : 0]}$ Fine Gain
Steps	256	256
-Full Scale (0x00)	-2%	-0.2%
Mid-Scale (0x80)	0.0%	0.0%
+Full Scale (0xFF)	$+2 \%$	$+0.2 \%$
Nominal Step Size	0.016%	0.0016%

Table 9. Medium and Fine Gain Adjustments

Address 0x25: modes

Two distinct reduced power modes can be selected. By default, the tri-level NAPSLP pin can select normal operation, nap or sleep modes (refer to Nap/Sleep section). This functionality can be overridden and controlled through the SPI. This is an indexed function when controlled from the SPI, but a global function when driven from the pin. This register is not changed by a Soft Reset.

Value	0x25[2:0] Power Down Mode
000	Pin Control
001	Normal Operation
010	Nap Mode
100	Sleep Mode

Table 10. Power Down Control

Global Device Configuration/Control

Address 0x70: skew_diff

The value in the skew_diff register adjusts the timing skew between the two ADCs cores. The nominal range and resolution of this adjustment are given in Table 11. The default value of this register after power-up is 00 h .

Parameter	0x70[7:0] Differential Skew
Steps	256
-Full Scale (0x00)	-6.5 ps
Mid-Scale (0x80)	0.0 ps
+Full Scale (0xFF)	+6.5 ps
Nominal Step Size	51 fs

Table 11. Differential Skew Adjustment

KAD5612P

Address 0x71: phase_slip

When using the clock divider, it's not possible to determine the synchronization of the incoming and divided clock phases. This is particularly important when multiple ADCs are used in a time-interleaved system. The phase slip feature allows the rising edge of the divided clock to be advanced by one input clock cycle, as shown in Figures 39 and 40. This register is self-clearing.

Figure 39. Phase Slip: CLK $\div 2$ Mode, fcıock $=500 \mathrm{MHz}$

Figure 40. Phase Slip: CLK $\div 4$ Mode, $\mathrm{fc}_{\text {cock }}=1000 \mathrm{MHz}$ Address 0x72: clock_divide
The KAD5612P has a selectable clock divider that can be set to divide by four, two or one (no division). By default, the tri-level CLKDIV pin selects the divisor (refer to Clock Input section). This functionality can be overridden and controlled through the SPI, as shown in Table 12. This register is not changed by a Soft Reset.

Value	0x72[2:0] Clock Divider
000	Pin Control
001	Divide by 1
010	Divide by 2
100	Divide by 4

Table 12. Clock Divider Selection

Address 0x73: output_mode_A

The output_mode_A register controls the physical output format of the data, as well as the logical coding. The KAD5612P can present output data in two physical formats: LVDS or LVCMOS. Additionally, the drive strength in LVDS mode can be set high (3 mA) or low (2mA). By default, the tri-level OUTMODE pin selects the mode and drive level (refer to Digital Outputs section). This functionality can be overridden and controlled through the SPI, as shown in Table 13.
Data can be coded in three possible formats: two's complement, Gray code or offset binary. By default, the tri-level OUTFMT pin selects the data format (refer to Data Format section). This functionality can be overridden and controlled through the SPI, as shown in Table 14.

This register is not changed by a Soft Reset.

Value	$\mathbf{0 x 9 3 [7 : 5] ~}$
000	Pin Control
001	LVDS 2 mA
010	LVDS 3mA
100	LVCMOS

Table 13. Output Mode Control

Value	0x93[2:0] Output Format
000	Pin Control
001	Two's Complement
010	Gray Code
100	Offset Binary

Table 14. Output Format Control
Address 0x74: output_mode_B
Address 0x75: config_status
Bit 6 DLL Range
This bit sets the DLL operating range to fast (default) or slow.

KAD5612P

Internal clock signals are generated by a delaylocked loop (DLL), which has a finite operating range. Table 15 shows the allowable sample rate ranges for the slow and fast settings.

DLL Range	MIN	MAX	Unit
Slow	40	100	MSPS
Fast	80	$\mathrm{f}_{\mathrm{s} \text { MAX }}$	MSPS

Table 15. DLL Ranges

The output_mode_B and config_status registers are used in conjunction to select the frequency range of the DLL clock generator. The method of setting these options is different from the other registers.

Figure 41 Setting output_mode_B register
The procedure for setting output_mode_B is shown in Figure 41. Read the contents of output_mode_B and config_status and XOR them. Then XOR this result with the desired value for output_mode_B and write that XOR result to the register.

Device Test

The KAD5612 can produce preset or user defined patterns on the digital outputs to facilitate in-situ testing. A static word can be placed on the output bus, or two different words can alternate. In the alternate mode, the values defined as Word 1 and Word 2 (as shown in Table 16) are set on the output bus on alternating clock phases. The test mode is enabled asynchronously to the sample clock, therefore several sample clock cycles may elapse before the data is present on the output bus.

Address $0 \times \mathrm{CO}$: test_io

Bits 7:6 User Test Mode
These bits set the test mode to static (0×00) or alternate (0x01) mode. Other values are reserved.
The four LSBs in this register (Output Test Mode) determine the test pattern in combination with registers $0 \times C 2$ through $0 x C 5$. Refer to Table 17.

Value	OxCO[3:0] Output Test Mode	Word 1	Word 2
0000	Off		
0001	Midscale	0×8000	N/A
0010	Positive Full-Scale	0xFFFF	N/A
0011	Negative Full-Scale	0x0000	N/A
0100	Checkerboard	0xAAAA	0x5555
0101	Reserved	N/A	N/A
0110	Reserved	N/A	N/A
0111	One/Zero	0xFFFF	0x0000
1000	User Pattern	user_patt1	user_patt2

Table 16. Output Test Modes
Address 0xC2: user_patt1_Isb
Address 0xC3: user_patt1_msb
These registers define the lower and upper eight bits, respectively, of the first user-defined test word.
Address 0xC2: user_patt2_Isb
Address 0xC3: user_patt2_msb
These registers define the lower and upper eight bits, respectively, of the second user-defined test word.

KAD5612P

SPI Memory Map

Table 17. SPI Memory Map

Equivalent Circuits

Figure 42. Analog Inputs

Figure 43. Clock Inputs

Figure 44. Tri-Level Digital Inputs

Figure 45. Digital Inputs

Figure 46. LVDS Outputs

Figure 47. СMOS Outputs

Figure 48. VCM_OUT Output

Layout Considerations

Split Ground and Power Planes

Data converters operating at high sampling frequencies require extra care in PC board layout. Many complex board designs benefit from isolating the analog and digital sections. Analog supply and ground planes should be laid out under signal and clock inputs. Locate the digital planes under outputs and logic pins. Grounds should be joined under the chip.

Clock Input Considerations

Use matched transmission lines to the transformer inputs for the analog input and clock signals. Locate transformers and terminations as close to the chip as possible.

KAD5612P

Exposed Paddle

The exposed paddle must be electrically connected to analog ground (AVSS) and should be connected to a large copper plane using numerous vias for optimal thermal performance.

Bypass and Filtering

Bulk capacitors should have low equivalent series resistance. Tantalum is a good choice. For best performance, keep ceramic bypass capacitors very close to device pins. Longer traces will increase inductance, resulting in diminished dynamic performance and accuracy. Make sure that connections to ground are direct and low impedance. Avoid forming ground loops.

LVDS Outputs

Output traces and connections must be designed for 50Ω (100Ω differential) characteristic impedance. Keep traces direct and minimize bends where possible. Avoid crossing ground and power-plane breaks with signal traces.

LVCMOS Outputs

Output traces and connections must be designed for 50Ω characteristic impedance.

Unused Inputs

Standard logic inputs (RESETN, CSB, SCLK, SDIO, SDO) which will not be operated do not require connection to ensure optimal ADC performance. These inputs can be left floating if they are not used. Tri-level inputs (NAPSLP, OUTMODE, OUTFMT, CLKDIV) accept a floating input as a valid state, and therefore should be biased according to the desired functionality.

Definitions

Analog Input Bandwidth is the analog input frequency at which the spectral output power at the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB from its full-scale low-frequency value. This is also referred to as Full Power Bandwidth.
Aperture Delay or Sampling Delay is the time required after the rise of the clock input for the sampling switch to open, at which time the signal is held for conversion.
Aperture Jitter is the RMS variation in aperture delay for a set of samples.

Clock Duty Cycle is the ratio of the time the clock wave is at logic high to the total time of one clock period.
Differential Non-Linearity (DNL) is the deviation of any code width from an ideal 1 LSB step.
Effective Number of Bits (ENOB) is an alternate method of specifying Signal to Noise-and-Distortion Ratio (SINAD). In dB, it is calculated as: $\mathrm{ENOB}=$ (SINAD-1.76) / 6.02
Gain Error is the ratio of the difference between the voltages that cause the lowest and highest code transitions to the full-scale voltage less 2 LSB. It is typically expressed in percent.
Integral Non-Linearity (INL) is the maximum deviation of the ADC's transfer function from a best fit line determined by a least squares curve fit of that transfer function, measured in units of LSBs.
Least Significant Bit (LSB) is the bit that has the smallest value or weight in a digital word. Its value in terms of input voltage is $\mathrm{V}_{\mathrm{FS}} /\left(2^{\mathrm{N}}-1\right)$ where N is the resolution in bits.

Missing Codes are output codes that are skipped and will never appear at the ADC output. These codes cannot be reached with any input value.
Most Significant Bit (MSB) is the bit that has the largest value or weight.
Pipeline Delay is the number of clock cycles between the initiation of a conversion and the appearance at the output pins of the data.
Power Supply Rejection Ratio (PSRR) is the ratio of the observed magnitude of a spur in the ADC FFT, caused by an AC signal superimposed on the power supply voltage.
Signal to Noise-and-Distortion (SINAD) is the ratio of the RMS signal amplitude to the RMS sum of all other spectral components below one half the clock frequency, including harmonics but excluding DC.
Signal-to-Noise Ratio (without Harmonics) is the ratio of the RMS signal amplitude to the RMS sum of all other spectral components below one-half the sampling frequency, excluding harmonics and DC.
SNR and SINAD are either given in units of dB when the power of the fundamental is used as the reference, or dBFS (dB to full scale) when the converter's full-scale input power is used as the reference.
Spurious-Free-Dynamic Range (SFDR) is the ratio of the RMS signal amplitude to the RMS value of the largest spurious spectral component. The largest spurious spectral component may or may not be a harmonic.

KAD5612P

Two-Tone SFDR is the ratio of the RMS value of the lowest power input tone to the RMS value of the peak spurious component, which may or may not be an IMD product.

Outline Dimensions

Figure 49. 72QFN Dimensions

KAD5612P

Ordering Guide

The KAD5612P is compliant with EU directive 2002/95/EC regarding the Restriction of Hazardous Substances (RoHS). Contact Kenet for a materials declaration for this product.

Model	Speed	Package	Temp. Range
KAD5612P-25Q72	250 MSPS	$72-\mathrm{QFN}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
KAD5612P-21Q72	210 MSPS	$72-\mathrm{QFN}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
KAD5612P-17Q72	170 MSPS	$72-$ QFN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
KAD5612P-12Q72	125 MSPS	$72-$ QFN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Revision History

30-Jul-08: Rev $1 \quad$ Initial Release of Production Datasheet

[^0]FemtoCharge is a registered trademark of Kenet. Other trademarks and registered trademarks are the property of their respective owners.

Products referred to in this specification are subject to Kenet's Standard Terms and Conditions of Sale.

[^0]: Information provided by Kenet, Inc. (Kenet) is believed to be accurate and reliable as of the publication date. Kenet reserves the right to change specifications and product descriptions at any time. No license to any intellectual property rights is granted by this document, whether express, implied or otherwise.

