

MPEG Clock Generator with VCXO

Features	Benefits
Integrated phase-locked loop (PLL)	Highest performance PLL tailored for multimedia applications
Low-jitter, high-accuracy outputs	Meets critical timing requirements in complex system designs
VCXO with analog adjust	Large ±150 ppm range, better linearity
3.3V operation	Application compatibility for a wide variety of designs
Pin-for-pin compatible with MK3727 (-1,-4, -5, -6)	Enables design compatibility

Advanced Features	Benefits
Serial programming interface (CY2410-3 only)	Digital VCXO control
Lower drive strength settings (CY2410-4, -6)	Electromagnetic interference (EMI) reduction for standards compliance
Matches nonlinear MK3727 VCXO control curve (CY2410-5, -6)	Drop-in replacement for existing designs

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY2410-1	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Pin-for-pin compatible with MK3727
CY2410-3	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Serial programming interface
CY2410-4	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Same as CY2410-1 except lower drive strength settings
CY2410-5	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Matches MK3727 nonlinear VCXO Control Curve
CY2410-6	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Same as CY2410-5 except lower drive strength

Pin Configurations

CY2410-1,4,5,6 CY2410-3 8-pin SOIC 8-pin SOIC 8 XOUT XOUT XIN VDD ☐ 2 7 NC or VSS VDD □2 ☐ NC or VSS 6 27 MHz VCXO ☐ 3 6 NC or VDD SDAT 3 VSS □ SCLK 5 27 MHz VSS

Pin Descriptions for CY2410-1, -4, -5, -6

Name	Pin Number	Description
X _{IN}	1	Reference crystal input
V _{DD}	2	Voltage supply
V _{CXO}	3	Input analog control for V _{CXO}
V _{SS}	4	Ground
27 MHz	5	27-MHz clock output
NC/V _{DD}	6	No Connect or voltage supply
NC/V _{SS}	7	No Connect or ground
X _{OUT} ^[1]	8	Reference crystal output

Pin Description for CY2410-3

Name	Pin Number	Description
X _{IN}	1	Reference crystal input
V_{DD}	2	Voltage supply
SDAT	3	Serial data input for DCXO control
V _{SS}	4	Ground
SCLK	5	Serial clock input for DCXO control
27 MHz	6	27-MHz clock output
NC/V _{SS}	7	No Connect or ground
X _{OUT} ^[1]	8	Reference crystal output

Pullable Crystal Specifications^[2]

Parameter	Name	Min.	Тур.	Max.	Unit
Crystal Accuracy	Initial Accuracy at 25°C			±20	ppm
TS	Temperature Stability			±30	ppm
	Aging			±20	ppm
CR _{load}	Load Capacitance		14		pF
C _o	Shunt Capacitance			7	pF
C0/C1	C0/C1 Ratio			250	
ESR	Equivalent Series Resistance		25	35	Ω

- Float X_{OUT} if X_{IN} is externally driven.
 Reference all other crystal parameters per Ecliptek ECX-5432-13.500M specification.

Document #: 38-07317 Rev. *B Page 2 of 7

Serial Programmable Interface Protocol

The CY2410-3 utilizes a two-wire-interface SDAT and SCLK that operates up to 400 kbits/sec in Read or Write mode. The basic Write serial format is as follows: start bit; 7-bit device address (DA); R/W bit; slave clock acknowledge (ACK); 8-bit memory address (MA); ACK; 8-bit data; ACK; 8-bit data in MA+1 if desired; ACK; 8-bit data in MA+2; ACK; etc. until stop bit, as illustrated in *Figure 1*.

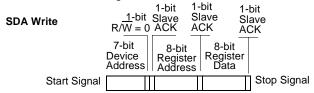


Figure 1. Data Frame Architecture

Data Valid

Data is valid when the clock is HIGH, and may only be transitioned when the clock is low as illustrated in *Figure 2*.

Data Frame

Every new data frame is indicated by a start and stop sequence, as illustrated in *Figure 3*.

Start Sequence

A start frame is indicated by SDAT going LOW when SCLK is HIGH. Every time a start signal is given, the next 8-bit data must be the device address (7 bits) and a R/W bit (0 for Write), followed by register address (8 bits) and register data (8 bits). See *Figure 3*.

Stop Sequence

A stop frame is indicated by SDAT going HIGH when SCLK is HIGH. A stop frame frees the bus for writing to another part on the same bus or writing to another random register address. See *Figure 3*.

Acknowledge Pulse

During Write mode, the CY2410-3 will respond with an ACK pulse after every 8 bits. This is accomplished by pulling the SDAT line LOW during the next clock cycle after the eighth bit is shifted in.

Device Address

The 7-bit device address is 1101001.

Register Address

The 8-bit address for the VCXO register is 00010011.

Register Data

The register data can be any value between 00H–FFH. As you increase the value, the capacitance on the $X_{\rm IN}$ and $X_{\rm OUT}$ pins will increase, thereby decreasing the xtal frequency.

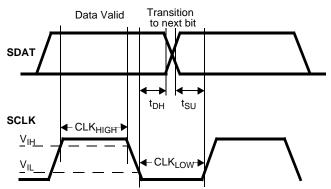


Figure 2. Data Valid and Data Transition Periods

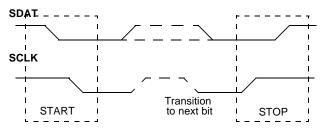


Figure 3. Start and Stop Frame

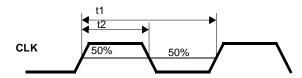


Figure 4. Duty Cycle Definition; DC = t2/t1

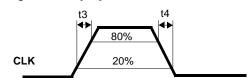


Figure 5. Rise and Fall Time Definitions: ER = 0.6 x VDD / t3, EF = 0.6 x VDD / t4

Document #: 38-07317 Rev. *B Page 3 of 7

Absolute Maximum Conditions

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	-0.5	7.0	V
T _S	Storage Temperature ^[3]	– 65	125	°C
T _J	Junction Temperature		125	°C
	Digital Inputs	V _{SS} - 0.3	V _{DD} + 0.3	V
	Digital Outputs referred to V _{DD}	V _{SS} - 0.3	V _{DD} + 0.3	V
	Electrostatic Discharge	2000		V

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	ting Voltage 3.135 3.3		3.465	V
T _A	Ambient Temperature	0		70	°C
C _{LOAD}	Max. Load Capacitance			15	pF
f _{REF}	Reference Frequency		13.5		MHz

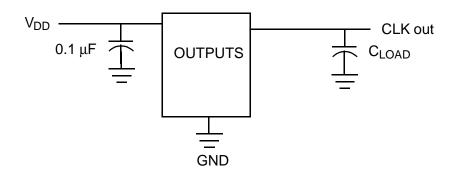
DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{OH}	Output HIGH Current -1,3,5	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	12	24		mA
I _{OL}	Output LOW Current -1,3,5	$V_{OL} = 0.5, V_{DD} = 3.3V$	12	24		mA
I _{OH}	Output HIGH Current -4,6	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	6	18		mA
I _{OL}	Output LOW Current -4,6	$V_{OL} = 0.5, V_{DD} = 3.3V$	6	18		mA
C _{IN}	Input Capacitance				7	pF
I _{IZ}	Input Leakage Current			5		μΑ
$f_{\Delta XO}$	V _{CXO} pullability range		<u>+</u> 150			ppm
V _{VCXO}	V _{CXO} input range		0		V_{DD}	V
I _{VDD}	Supply Current			30	35	mA

AC Electrical Specifications ($V_{DD} = 3.3V$)^[4]

Parameter ^[4]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 4, 50% of V _{DD}	45	50	55	%
ER _{OR}	Rising Edge Rate -1, -3, -5	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.8	1.4		V/ns
ER _{OF}	Falling Edge Rate -1, -3, -5	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.7	1.4		V/ns
ER _{OR}	Rising Edge Rate -4, -6	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.7	1.1		V/ns
ER _{OF}	Falling Edge Rate -4, -6	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.7	1.1		V/ns
t ₉	Clock Jitter -1, -3, -5	Peak-to-peak period jitter		140		ps
t ₉	Clock Jitter -4, -6	Peak-to-peak period jitter		150		ps
t ₁₀	PLL Lock Time				3	ms

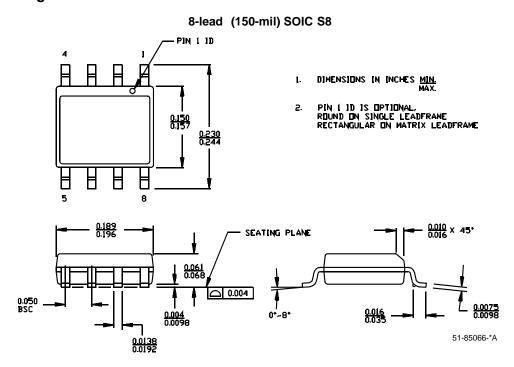
- Rated for ten years.
 Not 100% tested.


Document #: 38-07317 Rev. *B Page 4 of 7

Serial Programming Interface Timing Specifications

Parameter	Description	Min.	Max.	Unit
f _{SCL}	Frequency of SCLK		400	kHz
	Start mode time from SDAT LOW to SCLK LOW	0.6		μS
CLK _{LOW}	SCLK LOW period	1.3		μS
CLK _{HIGH}	SCLK HIGH period	0.6		μS
t _{SU}	Data transition to SCLK HIGH	100		ns
t _{DH}	Data hold (SCLK LOW to data transition)	0		ns
	Rise time of SCLK and SDAT		300	ns
	Fall time of SCLK and SDAT		300	ns
	Stop mode time from SCLK HIGH to SDA HIGH	0.6		μs
	Stop mode to start mode	1.3		μs

Test and Measurement Set-up


Ordering Information

Ordering Code	Package Name	Package Type	Operating Range	Operating Voltage	Features
CY2410SC-1	S8	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY2410SC-1T	S8	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY2410SC-3	S8	8-pin SOIC	Commercial	3.3V	Digital VCXO control
CY2410SC-3T	S8	8-pin SOIC - Tape and Reel	Commercial	3.3V	Digital VCXO control
CY2410SC-4	S8	8-pin SOIC	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-4T	S8	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-5	S8	8-pin SOIC	Commercial	3.3V	Matches nonlinear MK3727 VCXO control curve
CY2410SC-5T	S8	8-pin SOIC - Tape and Reel	Commercial	3.3V	Matches nonlinear MK3727 VCXO control curve
CY2410SC-6	S8	8-pin SOIC	Commercial	3.3V	Lower drive strength version of CY2410-5
CY2410SC-6T	S8	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength version of CY2410-5

Document #: 38-07317 Rev. *B Page 5 of 7

Package Drawing and Dimensions

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY2410 MPEG Clock Generator with VCXO Document Number: 38-07317				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	111553	02/12/02	CKN	New Data Sheet
*A	114937	09/24/02	CKN	Added -6 to data sheet, Advance Information to Final
*B	121418	12/06/02	CKN	Updated the Pullable Crystal Specifications table on page 2.

Document #: 38-07317 Rev. *B Page 7 of 7