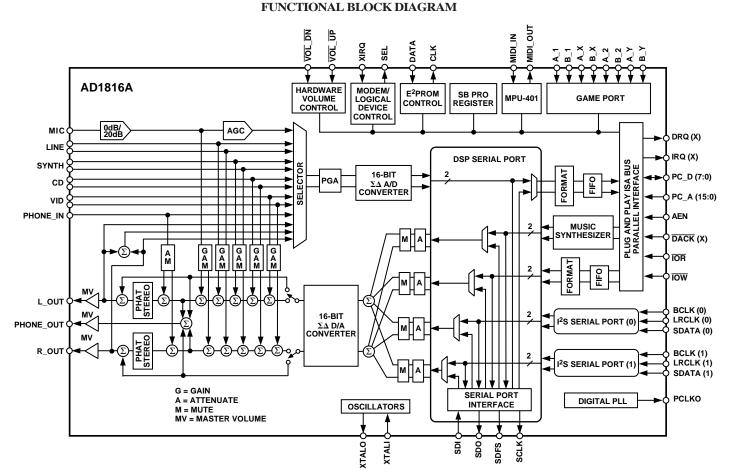


SoundPort[®] Controller

AD1816A


FEATURES

Compatible with Microsoft[®] PC 97 Logo Requirements Supports Applications Written for Windows[®] 95, Windows 3.1, Windows NT, SoundBlaster[®] Pro, AdLib[®]/OPL3[®] Stereo Audio 16-Bit ΣΔ Codec Internal 3D Circuit—Phat[™] Stereo Phase Expander MPC Level-3 Mixer ISA Plug and Play Compatible 16-Bit Address Decode Dual Type F FIFO DMA Support MPU-401 Compatible MIDI Port Supports Wavetable Synthesizers Integrated Enhanced Digital Game Port Bidirectional DSP Serial Port Two I²S Digital Audio Serial Ports Integrated OPL3 Compatible Music Synthesizer Software and Hardware Volume Control Full-Duplex Capture and Playback Operation at Different Sample Rates

Supports Up to Six Different Sample Rates Simultaneously 1 Hz Resolution Programmable Sample Rates from

4 kHz to 55.2 kHz Power Management Modes Operation from +5 V Supply Built-In 24 mA Bus Drivers 100-Lead PQFP and TQFP Package

SoundPort is a registered trademark of Analog Devices, Inc. Phat is a trademark of Analog Devices, Inc. All other trademarks are the property of their respective holders.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1997

PRODUCT OVERVIEW

The AD1816A SoundPort Controller is a single chip Plug and Play multimedia audio subsystem for concurrently processing multiple digital streams of 16-bit stereo audio in personal computers. The AD1816A maintains full legacy compatibility with applications written for SoundBlaster Pro and AdLib, while servicing Microsoft PC 97 application requirements. The AD1816A includes an internal OPL3 compatible music synthesizer, Phat Stereo circuitry for phase expanding the analog stereo output, an MPU-401 UART, joystick interface with a built-in timer, a DSP serial port and two I²S serial ports. The AD1816A on-chip Plug and Play routine provides configuration services for all integrated logical devices. Using an external E²PROM allows the AD1816A to decode up to two additional external user-defined logical devices such as modem and CD-ROM.

TABLE OF CONTENTS

FEATURES 1
PRODUCT OVERVIEW
SPECIFICATIONS
PIN CONFIGURATION
PIN FUNCTION DESCRIPTIONS
HOST INTERFACE 15
REFERENCES 16
SERIAL INTERFACES 17
ISA INTERFACE
AD1816A Chip Registers
AD1816A Plug and Play Device Configuration Registers 22
Sound System Direct Registers
Sound System Indirect Registers
SB Pro; AdLib Registers
MPU-401 Registers
Game Port Register
APPENDIX A.
PLUG AND PLAY INTERNAL ROM 40
PLUG AND PLAY KEY AND "ALTERNATE KEY"
SEQUENCES 41
AD1816 AND AD1816A COMPATIBILITY
USING AN EEPROM WITH THE AD1816 OR
AD1816A
AD1816 FLAG BYTE 42
USING THE AD1816 WITHOUT AN EEPROM 42
AD1816A FLAG BYTES 43
USING THE AD1816A WITHOUT AN EEPROM 44
MAPPING THE AD1816 EEPROM INTO THE
AD1816A EEPROM 45
PIN MUXING IN THE AD1816 AND AD1816A 45
PROGRAMMING EXTERNAL EEPROMS
REFERENCE DESIGNS AND DEVICE DRIVERS 47
OUTLINE DIMENSIONS

Figures	
Functional Block Diagram	1
Figure 1. PIO Read Cycle	6
Figure 2. PIO Write Cycle	6
Figure 3. DMA Read Cycle	7
Figure 4. DMA Write Cycle	7
Figure 5. Codec Transfers	
Figure 6. DSP Port Timing	7
Figure 7. I ² S Serial Port Timing	7
Figure 8. Reset Pulse Width	7
Figure 9. Serial Interface Right-Justified Mode 1	7
Figure 10. Serial Interface I ² S-Justified Mode 1	7
Figure 11. Serial Interface Left-Justified Mode 1	7
Figure 12. DSP Serial Interface (Default Frame Rate) 2	
Figure 13. DSP Serial Interface (User Programmed	
Frame Rate)	0
Figure 14. DSP Serial Port 2	1
Figure 15. Codec Transfers 2	
Figure 16. Recommended Application Circuit 4	8
Figure 17. AD1816A Frequency Response Plots 4	9
Tables	
Table I. DSP Port Time Slot Map 1	8
Table II. Chip Register Diagram 2	
Table III. Logical Devices and Compatible Plug and	
Play Device Drivers	2
Table IV. Internal Logical Device Configuration 2	
Table V. Sound System Direct Registers 2	
Table VI. Codec Transfers 2	
Table VII. Indirect Register Map and Reset/Default States . 3	
Table VIII. Sound System Indirect Registers 3	
Table IX. SoundBlaster Pro ISA Bus Registers 3	
Table X. AdLib ISA Bus Registers 3	
Table XI. MIDI ISA Bus Registers	
Table XII. Game Port ISA Bus Registers 3	
Table XIII. AD1816 Pin Muxing 4	
Table XIV. AD1816A Pin Muxing 4	

SPECIFICATIONS

STANDARD TEST CONDITIONS UNLESS

STANDARD TEST CONDITION	IS UNLESS		DAC Test Conditions
OTHERWISE NOTED			0 dB Attenuation
Temperature	25	°C	Input Full Scale
Digital Supply (V _{DD})	5.0	V	16-Bit Linear Mode
Analog Supply (V _{CC})	5.0	V	100 k Ω Output Load
Sample Rate (F_S)	48	kHz	Mute Off
Input Signal Frequency	1008	Hz	Measured at Line Output
Audio Output Passband	20 Hz to 2	20 kHz	ADC Test Conditions
V _{IH}	5.0	V	0 dB Gain
V _{IL}	0	V	Input –4 dB Relative to Full Scale
			Line Input Selected

16-Bit Linear Mode

ANALOG INPUT

Parameter	Min	Тур	Max	Units
Full-Scale Input Voltage (RMS Values Assume Sine Wave Input)				
PHONE_IN, LINE, SYNTH, CD, VID		1		V rms
		2.83		V p-p
MIC with $+20 \text{ dB Gain} (MGE = 1)$		0.1		V rms
		0.283		V p-p
MIC with 0 dB Gain (MGE = 0)		1		Vrms
		2.83		V p-p
Input Impedance*		17		kΩ
Input Capacitance*		15		pF

PROGRAMMABLE GAIN AMPLIFIER—ADC

Parameter	Min	Тур	Max	Units
Step Size (0 dB to 22.5 dB)				
(All Steps Tested)		1.5		dB
PGA Gain Range Span		22.5		dB

CD, LINE, MICROPHONE, SYNTHESIZER, AND VIDEO INPUT ANALOG GAIN/ATTENUATORS/MUTE AT LINE OUTPUT

Parameter	Min	Тур	Max	Units
CD, LINE, MIC, SYNTH, VID				
Step Size: (All Steps Tested)				
+12 dB to -34.5 dB		1.5		dB
Input Gain/Attenuation Range		46.5		dB
PHONE_IN				
Step Size 0 dB to -45 dB: (All Steps Tested)		3.0		dB
Input Gain/Attenuation Range		45		dB

DIGITAL DECIMATION AND INTERPOLATION FILTERS*

Parameter	Min	Гур Мах	Units
Audio Passband	0	$0.4 \times F_{S}$	Hz
Audio Passband Ripple		±0.09	dB
Audio Transition Band	$0.4 \times F_S$	$0.6 \times F_S$	Hz
Audio Stopband	$0.6 \times F_{S}$	~	Hz
Audio Stopband Rejection	82		dB
Audio Group Delay		12/F _s	sec
Group Delay Variation Over Passband		0.0	μs

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted, Referenced to Full Scale)		82	80	dB
Total Harmonic Distortion (THD) (Referenced to Full Scale)		0.011	0.015	%
		-79	-76.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full-Scale, A-Weighted)	79	82		dB
Audio THD+N (Referenced to Full-Scale)			0.019	%
		-76	-74.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)		82		dB
ADC Crosstalk*				
Line Inputs (Input L, Ground R, Read R; Input R, Ground L Read L)		-95	-80	dB
Line to MIC (Input LINE, Ground and Select MIC, Read ADC)		-95	-80	dB
Line to SYNTH		-95	-80	dB
Line to CD		-95	-80	dB
Line to VID		-95	-80	dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 1	dB
ADC Offset Error	-22		+15	mV

DIGITAL-TO-ANALOG CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted)		83	79	dB
Total Harmonic Distortion (THD)		0.006	0.009	%
		-85	-80.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full Scale, A-Weighted)	79	82		dB
Audio THD+N (Referenced to Full Scale)		0.013	0.017	%
		-78	-75.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)		95		dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
DAC Crosstalk* (Input L, Zero R, Measure R_OUT;				
Input R, Zero L, Measure L OUT)			-80	dB
Total Out-of-Band Energy (Measured from $0.6 \times F_S$ to 100 kHz				
at L_OUT and R_OUT)*			-45	dB
Audible Out-of-Band Energy (Measured from $0.6 \times F_s$ to 20 kHz				
at L_OUT and R_OUT)*			-75	dB

MASTER VOLUME ATTENUATORS (L_OUT AND R_OUT, PHONE_OUT)

Parameter	Min	Тур	Max	Units
Master Volume Step Size (0 dB to –46.5 dB)		1.5		dB
Master Volume Output Attenuation Range Span		46.5		dB
Mute Attenuation of 0 dB Fundamental*			-80	dB

DIGITAL MIX ATTENUATORS*

Parameter	Min	Тур	Max	Units
Step Size: I ² S (0), I ² S (1), Music, ISA		1.505		dB
Digital Mix Attenuation Range Span		94.8		dB

ANALOG OUTPUT

Parameter	Min	Тур	Max	Units
Full-Scale Output Voltage (at L_OUT, R_OUT, PHONE_OUT)		2.8		V p-p
Output Impedance*			570	Ω
External Load Impedance*	10			kΩ
Output Capacitance*		15		pF
External Load Capacitance			100	pF
V _{REFX} *	2.10	2.25	2.40	V
V _{REFX} Current Drive*		100		μΑ
V _{REFX} Output Impedance*		6.5		kΩ
Master Volume Mute Click (Muted Analog Mixers), Muted				
Output Minus Unmuted Output at 0 dB		±5		mV

SYSTEM SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
System Frequency Response Ripple (Line In to Line Out)			1.0	dB
Differential Nonlinearity			±1	LSB
Phase Linearity Deviation			5	Degrees

STATIC DIGITAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units
High Level Input Voltage (V _{IH})	2			V
XTALI	2.4			V
Low Level Input Voltage (V _{IL})			0.8	V
High Level Output Voltage (V_{OH}), $I_{OH} = 8 \text{ mA}^{\dagger}$	2.4			V
Low Level Output Voltage (V_{OL}), $I_{OL} = 8 \text{ mA}$			0.4	V
Input Leakage Current	-10		+10	μΑ
Output Leakage Current	-10		+10	μA

POWER SUPPLY

Parameter	Min	Тур	Max	Units
Power Supply Range—Analog	4.75		5.25	V
Power Supply Range—Digital	4.75		5.25	V
Power Supply Current			221	mA
Power Dissipation			1105	mW
Analog Supply Current			51	mA
Digital Supply Current			170	mA
Analog Power Supply Current—Power-Down			2	mA
Digital Power Supply Current—Power-Down			24	mA
Analog Power Supply Current—RESET			0.2	mA
Digital Power Supply Current—RESET			10	mA
Power Supply Rejection (100 mV p-p Signal on Both Analog and Digital				
Supply Pins, Measured at ADC and Line Outputs)		40		dB

CLOCK SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
Input Clock Frequency		33		MHz
Recommended Clock Duty Cycle	25	50	75	%
Power-Up Initialization Time			500	ms

TIMING PARAMETERS (Guaranteed Over Operating Temperature Range)

Parameter	Symbol	Min	Тур	Max	Units
IOW/IOR Strobe Width	t _{STW}	100			ns
IOW/IOR Rising to IOW/IOR Falling	t _{BWDN}	80			ns
Write Data Setup to IOW Rising	t_{WDSU}	10			ns
IOW Falling to Valid Read Data	t _{RDDV}			40	ns
AEN Setup to IOW/IOR Falling	t _{AESU}	10			ns
AEN Hold from IOW/IOR Rising	t _{AEHD}	0			ns
Adr Setup to IOW/IOR Falling	t_{ADSU}	10			ns
Adr Hold from IOW/IOR Rising	t _{ADHD}	0			ns
DACK Rising to IOW/IOR Falling	t _{DKSU}	20			ns
Data Hold from IOR Rising	t _{DHD1}			2	ns
Data Hold from IOW Rising	t _{DHD2}	15			ns
DRQ Hold from IOW/IOR Falling	t _{DRHD}			25	ns
DACK Hold from IOW/IOR Rising	t _{DKHD}	10			ns
Data [SDI] Input Setup Time to SCLK*	t _S	15			ns
Data [SDI] Input Hold Time from SCLK*	t _H	10			ns
Frame Sync [SDFS] HI Pulse Width*	t _{FSW}		80		ns
Clock [SCLK] to Frame Sync [SDFS]					
Propagation Delay*	t _{PD}			15	ns
Clock [SCLK] to Output Data [SDO] Valid*	t _{DV}			15	ns
RESET Pulse Width	t _{RPWL}	100			ns
BCLK HI Pulse Width	t _{DBH}	25			ns
BCLK LO Pulse Width	t _{DBL}	25			ns
BCLK Period	t _{DBP}	50			ns
LRCLK Setup	t _{DLS}	5			ns
SDATA Setup	t _{DDS}	5			ns
SDATA Hold	t _{DDH}	5			ns

NOTES

*Guaranteed, not tested.

†All ISA pins MIDI_OUT IOL = 24 mA. Refer to pin description for individual output drive levels.

Specifications subject to change without notice.

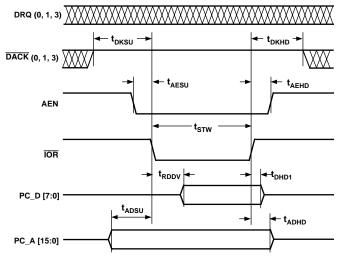
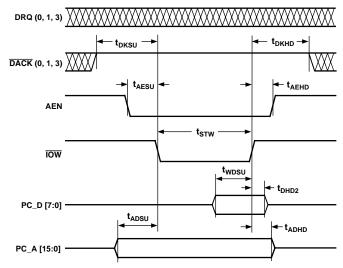



Figure 1. PIO Read Cycle

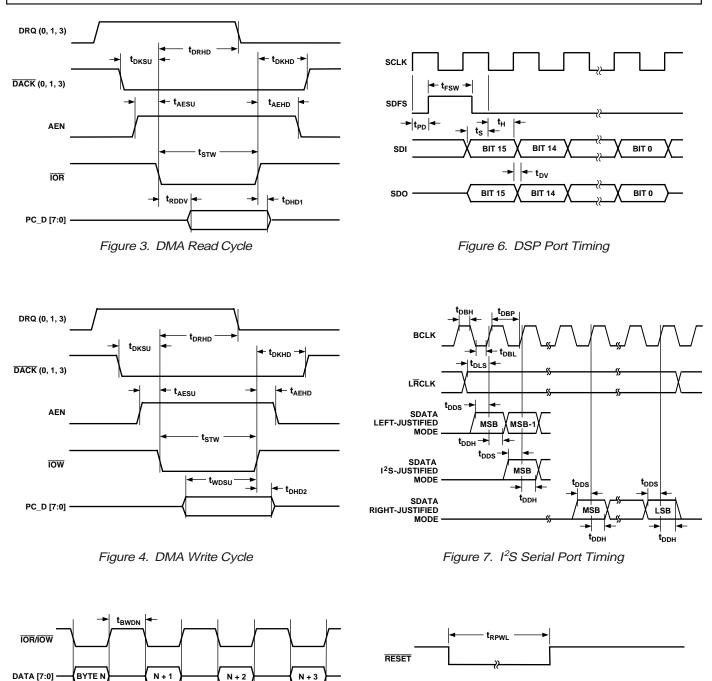


Figure 8. Reset Pulse Width

Figure 5. Codec Transfers

ABSOLUTE MAXIMUM RATINGS*

Parameter	Min	Max	Units
Power Supplies			
Digital (V_{DD})	-0.3	6.0	V
Analog (V_{CC})	-0.3	6.0	V
Input Current (Except Supply Pins)		± 10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$V_{CC} + 0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$V_{DD} + 0.3$	V
Ambient Temperature (Operating)	0	+70	°C
Storage Temperature	-65	+150	°C

*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ENVIRONMENTAL CONDITIONS

Ambient Temperature Rating:

- $T_{AMB} = T_{CASE} (PD \times \theta_{CA})$
- $T_{CASE} = Case Temperature in °C$

PD = Power Dissipation in W

 θ_{CA} = Thermal Resistance (Case-to-Ambient)

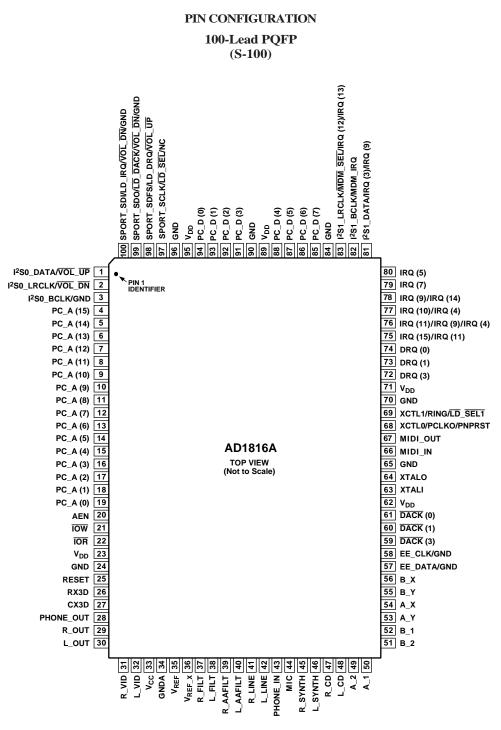
 $\theta_{JA} =$ Thermal Resistance (Junction-to-Ambient)

 θ_{JC} = Thermal Resistance (Junction-to-Case)

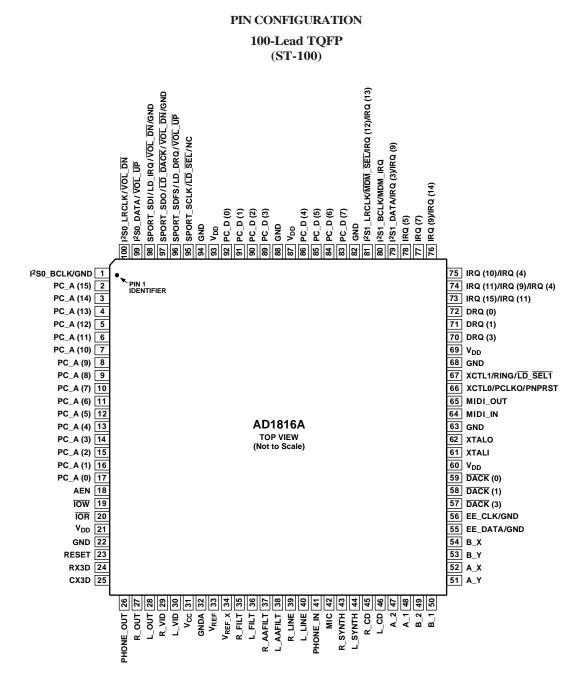
Package	θ_{JA}	θ_{JC}	θ_{CA}
PQFP	35.1°C/W	7°C/W	28°C/W
TQFP	35.3°C/W	8°C/W	27.3°C/W

ORDERING GUIDE

Model	Temperature	Package	Package	
	Range	Description	Option*	
	0°C to +70°C	100-Lead PQFP	S-100	
	0°C to +70°C	100-Lead TQFP	ST-100	


*S = Plastic Quad Flatpack; ST = Thin Quad Flatpack. JST package option availability subject to 10,000 PC minimum order quantity.

CAUTION_


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD1816A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

The AD1816A latchup immunity has been demonstrated at \geq +100 mA/-80 mA on all pins when tested to Industry Standard/JEDEC methods.

NC = NO CONNECT

NC = NO CONNECT

PIN FUNCTION DESCRIPTIONS

Analog Signals (All Inputs must be AC-Coupled)

Pin Name	PQFP	TQFP	I/O	Description	
MIC	44	42	I	Microphone Input. The MIC input may be either line-level or -20 dB from line-level (the difference being made up through a software controlled 20 dB gain block). The mono MIC input may be sent to the left and right channel of the ADC for conversion, or gained/ attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left and right line OUT before the Master Volume stage.	
L_LINE	42	40	Ι	Left Line-Level Input. The left line-level input may be sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).	
R_LINE	41	39	I	Right Line-Level Input. The right line-level input may be sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).	
L_SYNTH	46	44	I	Left Synthesizer Input. The left MIDI upgrade line-level input may be sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).	
R_SYNTH	45	43	Ι	Right Synthesizer Input. The right MIDI upgrade line-level input may be sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).	
L_CD	48	46	Ι	Left CD Line-Level Input. The left CD line-level input may be sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).	
R_CD	47	45	Ι	Right CD Line-Level Input. The right CD line-level input may be sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).	
L_VID	32	30	Ι	Left Video Input. The left audio track for a video line-level input may be sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).	
R_VID	31	29	Ι	Right Video Input. The right audio track for a video line-level input may be sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).	
L_OUT	30	28	0	Left Output. Left channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.	
R_OUT	29	27	0	Right Output. Right channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.	
PHONE_IN	43	41	Ι	Phone Input. Line-level input from a DAA/modem chipset.	
PHONE_OUT	28	26	0	Phone Output. Line-level output from a DAA/modem chipset.	
RX3D	26	24	0	Phat Stereo Phase Expander filter network, resistor pin.	
CX3D	27	25	Ι	Phat Stereo Phase Expander filter network, capacitor pin.	

Parallel Interface (All Outputs are 24 mA Drivers)

Pin Name	PQFP	TQFP	I/O	Description
PC_D[7:0]	85–88, 91–94	83-86, 89-92	I/O	Bidirectional ISA Bus PC Data, 24 mA drive. Connects the AD1816A to the low byte data on the bus.
IRQ (x)*	75–81, 83	73–79, 81	0	Host Interrupt Request, 24 mA drive. IRQ (3)/IRQ (9), IRQ (5), IRQ (7), IRQ (9)/IRQ (14), IRQ (10)/IRQ (4), IRQ (11)/IRQ (9)/IRQ (4), IRQ (12)/IRQ (13), IRQ (15)/IRQ (11). Active HI signals indicating a pending interrupt.
DRQ (x)	72–74	70–72	0	DMA Request, 24 mA drive. DRQ (0), DRQ (1), DRQ (3). Active HI signals indicating a request for DMA bus operation.
PC_A[15:0]	4–19	2–17	Ι	ISA Bus PC Address. Connects the AD1816A to the ISA bus address lines.
AEN	20	18	Ι	Address Enable. Low signal indicates a PIO transfer.
$\overline{\text{DACK}}(x)$	59–61	57–59	I	DMA Acknowledge. DACK (0), DACK (1), DACK (3). Active LO signal indicating that a DMA operation can begin.
IOR	22	20	Ι	I/O Read. Active LO signal indicates a read operation.
IOW	21	19	Ι	I/O Write. Active HI signal indicates a write operation.
RESET	25	23	Ι	Reset. Active HI.

Game Port

Pin Name	PQFP	TQFP	I/O	Description
A_1	50	48	Ι	Game Port A, Button #1.
A_2	49	47	Ι	Game Port A, Button #2.
A_X	54	52	Ι	Game Port A, X-Axis.
A_Y	53	51	Ι	Game Port A, Y-Axis.
B_1	52	50	Ι	Game Port B, Button #1.
B_2	51	49	Ι	Game Port B, Button #2.
B_X	56	54	Ι	Game Port B, X-Axis.
B_Y	55	53	Ι	Game Port B, Y-Axis.

MIDI Interface Signal (24 mA Drivers)

Pin Name	PQFP	TQFP	I/O	Description
MIDI_IN	66	64	Ι	RXD MIDI Input. This pin is typically connected to Pin 15 of the game port connector.
MIDI_OUT	67	65	0	TXD MIDI Output. This pin is typically connected to Pin 12 of the game port connector.

Pin Name	PQFP	TQFP	I/O	Description	
I ² S(0)_BCLK*	3	1	Ι	I ² S (0) Bit Clock.	
I ² S(0)_LRCLK*	2	100	Ι	I ² S (0) Left/Right Clock.	
I ² S(0)_DATA*	1	99	Ι	I ² S (0) Serial Data Input.	
I ² S(1)_BCLK*	82	80	Ι	I ² S (1) Bit Clock.	
I ² S(1)_LRCLK*	83	81	Ι	I ² S (1) Left/Right Clock.	
I ² S(1)_DATA*	81	79	Ι	I ² S (1) Serial Data Input.	
SPORT_SDI*	100	98	Ι	Serial Port Digital Serial Input.	
SPORT_SCLK*	97	95	0	Serial Port Serial Clock.	
SPORT_SDFS*	98	96	О	Serial Port Serial Data Frame Synchronization.	
SPORT_SDO*	99	97	Ο	Serial Port Serial Data Output.	

Muxed Serial Ports (8 mA Drivers)

Miscellaneous Analog Pins

Pin Name	PQFP	TQFP	I/O	Description	
V _{REF_X}	36	34	0	Voltage Reference. Nominal 2.25 volt reference available for dc-coupling and level-shifting. V_{REF_X} should not be used to sink or source signal current. V_{REF_X} should be bypassed with 10 µF and 0.1 µF parallel capacitors.	
V _{REF}	35	33	Ι	Voltage Reference Filter. Voltage reference filter point for external bypassin only. V_{REF} should be bypassed with 10 µF and 0.1 µF parallel capacitors.	
L_FILT	38	36	Ι	Left Channel Filter. Requires a 1.0 μ F to analog ground for proper operation.	
R_FILT	37	35	Ι	Right Channel Filter. Requires a 1.0 µF to analog ground for proper operation.	
L_AAFILT	40	38	Ι	Left Channel Antialias Filter. This pin requires a 560 pF NPO capacitor to analog ground for proper operation.	
R_AAFILT	39	37	Ι	Right Channel Antialias Filter. This pin requires a 560 pF NPO capacitor to analog ground for proper operation.	

Crystal Pin

Pin Name	PQFP	TQFP	I/O	Description
XTALO	64	62	0	33 MHz Crystal Output. If no Crystal is present leave XTALO unconnected.
XTALI	63	61	Ι	33 MHz Clock. When using a crystal as a clock source, the crystal should be connected between the XTALI and XTALO pins. Clock input may be driven into XTALI in place of a crystal. When using an external clock V_{IH} must be 2.4 V rather than the V_{IH} of 2.0 V specified for all other digital inputs.

External Logical Devices

Pin Name	PQFP	TQFP	I/O	Description
LD_IRQ*	100	98	Ι	Logical Device IRQ.
LD_DACK*	99	97	0	Logical Device DACK.
LD_DRQ*	98	96	Ι	Logical Device DRQ.
LD_SEL*	97	95	0	Logical Device Select.
MDM_SEL*	83	81	Ο	Modem Chip Set Select.
MDM_IRQ*	82	82	Ι	Modem Chip Set IRQ.
LD_SEL1*	69	67	0	Logical Device (1) Select.
PNPRST*	68	66	0	Plug and Play Reset.

Hardware Volume Pins

Pin Name	PQFP	TQFP	I/O	Description
VOL_DN*	2, 99, 100	97, 98, 100	Ι	Master Volume Down. Modifies output level on pins L_OUT and R_OUT. When asserted LO, decreases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, out- put is muted. Output level modification reflected in indirect register [41].
VOL_UP*	1, 98	96, 99	I	Master Volume Up. Modifies output level on pins L_OUT and R_OUT. When asserted LO, increases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modification reflected in indirect register [41].

Control Pins

Pin Name	PQFP	TQFP	I/O	Description
XCTL0*	68	66	0	External Control 0. The state of this pin (TTL HI or LO) is reflected in codec indexed register. This pin is an open drain driver.
PCLKO*	68	66	0	Programmable Clock Output. This pin can be programmed to generate an output clock equal to F_S , $8 \times F_S$, $16 \times F_S$, $32 \times F_S$, $64 \times F_S$, $128 \times F_S$ or $256 \times F_S$. MPEG decoders typically require a master clock of $256 \times F_S$ for audio synchronization.
XCTL1*	69	67	0	External Control 1. The state of this pin (TTL HI or LO) is reflected in codec indexed register. Open drain, 8 mA active 0.5 mA pull-up resistor.
RING*	69	67	Ι	Ring Indicator. Used to accept the ring indicator flag from the DAA.

Power Supplies

Pin Name	PQFP	TQFP	I/O	Description
V _{CC}	33	31	Ι	Analog Supply Voltage (+5 V).
GNDA	34	32	Ι	Analog Ground.
V _{DD}	23, 62, 71, 89, 95	21, 60, 69, 87, 93	Ι	Digital Supply Voltage (+5 V).
GND	3*, 24, 65, 70, 84, 90, 96, 99*, 100*	1*, 22, 63, 68, 82, 88, 94, 97*, 98*	Ι	Digital Ground.

Optional EEPROM Pins

Pin Name	PQFP	TQFP	I/O	Description
EE_CLK	58	56	0	EEPROM Clock. Open drain output, requires external pull-up.
EE_DATA	57	55	I/O	EEPROM Data. Open drain I/O, requires external pull-up.

*The position of this pin location/function is dependent on the EEPROM data.

HOST INTERFACE

The AD1816A contains all necessary ISA bus interface logic on chip. This logic includes address decoding for all onboard resources, control and signal interpretation, DMA selection and control logic, IRQ selection and control logic, and all interface configuration logic.

The AD1816A supports a Type "F" DMA request/grant architecture for transferring data with the ISA bus through the 8-bit interface. The AD1816A also supports DACK preemption. Programmed I/O (PIO) mode is also supported for control register accesses and for applications lacking DMA control. The AD1816A includes dual DMA count registers for full-duplex operation enabling simultaneous capture and playback on separate DMA channels.

Codec Functional Description

The AD1816A's full-duplex stereo codec supports business audio and multimedia applications. The codec includes stereo audio converters, complete on-chip filtering, MPC Level-2 and Level-3 compliant analog mixing, programmable gain and attenuation, variable sample rate converters, extensive digital mixing and FIFOs buffering the Plug and Play ISA bus interface.

Analog Inputs

The codec contains a stereo pair of $\Sigma \Delta$ analog-to-digital converters (ADC). Inputs to the ADC can be selected from the following analog signals: mono (PHONE_IN), mono microphone (MIC), stereo line (LINE), external stereo synthesizer (SYNTH), stereo CD ROM (CD), stereo audio from a video source (VID) and post-mixed stereo or mono line output (OUT).

Analog Mixing

PHONE_IN, MIC, LINE, SYNTH, CD and VID can be mixed in the analog domain with the stereo line OUT from the $\Sigma\Delta$ digital-to-analog converters (DAC). Each channel of the stereo analog inputs can be independently gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps, except for PHONE_IN, which has a range of 0 dB to -45 dB steps. The summing path for the mono inputs (MIC, and PHONE_IN to line OUT) duplicates mono channel data on both the left and right line OUT, which can also be gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps for MIC, and +0 dB to -45.0 dB in 3 dB steps for PHONE_IN. The left and right mono summing signals are always identical being gained or attenuated equally.

Analog-to-Digital Datapath

The selector sends left and right channel information to the programmable gain amplifier (PGA). The PGA following the selector allows independent gain for each channel entering the ADC from 0 dB to 22.5 dB in 1.5 dB steps.

For supporting time correlated I/O echo cancellation, the ADC is capable of sampling microphone data on the left channel and the mono summation of left and right OUT on the right channel.

The codec can operate in either a global stereo mode or a global mono mode with left channel inputs appearing at both channels of the 16-bit $\Sigma\Delta$ converters. Data can be sampled at the programmed sampling frequency (from 4 kHz to 55.2 kHz with 1 Hz resolution).

Digital Mixing and Sample Rates

The audio ADC sample rate and the audio DAC sample rates are completely independent. The AD1816A includes a variable sample rate converter that lets the codec instantaneously change and process sample rates from 4 kHz to 55.2 kHz with a resolution of 1 Hz. The in-band integrated noise and distortion artifacts introduced by rate conversions are below –90 dB.

REV. A

Up to four channels of digital data can be summed together and presented to the stereo DAC for conversion. Each digital channel pair can contain information encoded at a different sample rate. For example, 8 kHz .wav data received from the ISA interface, 48 kHz MPEG audio data received from $I^2S(0)$, digital 44.1 kHz CD data received from $I^2S(1)$ and internally generated 22.05 kHz music data may be summed together and converted by the DACs.

Digital-to-Analog Datapath

The internally generated music synthesizer data, PCM data received from the ISA interface, data received from the $I^2S(0)$ port and data received from the $I^2S(1)$ port, and the DSP serial port passes through an attenuation mute stage. The attenuator allows independent control over each digital channel, which can be attenuated from 0 dB to -94.5 dB in 1.5 dB steps before being summed together and passed to the DAC, or the channel may be muted entirely.

Analog Outputs and Phat Stereo

The analog output of the DAC can be summed with any of the analog input signals. The summed analog signal enters the Master Volume stage where each channel L_OUT, R_OUT and PHONE_OUT may be attenuated from 0 dB to -46.5 dB in 1.5 dB steps or muted.

Analog Outputs and Phat Stereo

The AD1816A includes ADI's proprietary Phat Stereo 3D phase enhancement technology, which creates an increased sense of spaciousness using two speakers. Our unique patented feedback technology enables superior control over the width and depth of the acoustic signals arriving at the human ear. The AD1816A employs an electrical model of the speaker-to-ear path allowing precise control over a signal's phase at the ear. The Phat Stereo circuitry expands apparent sound images beyond the angle of the speakers by exploiting phase information in the audio signal and creating a more immersive listening experience.

Digital Data Types

The codec can process 16-bit twos complement PCM linear digital data, 8-bit unsigned magnitude PCM linear data and 8-bit μ -law or A-law companded digital data as specified in the control registers. The AD1816A also supports ADPCM encoded in the Creative SoundBlaster ADPCM formats.

Host-Based Echo Cancellation Support

The AD1816A supports time correlated I/O data format by presenting MIC data on the left channel of the ADC and the mono summation of left and right OUT on the right channel. The ADC sample rates are independent of the DAC sample rate allowing the AD1816A to support ADC time correlated I/O data at 8 kHz and DAC data at any other sample rate in the range of 4 kHz to 55.2 kHz simultaneously.

Telephony Support

The AD1816A contains a PHONE_IN input and a PHONE_OUT output. These pins are supplied so the AD1816A may be connected to a modem chip set, a telephone handset or down-line phone.

WSS and SoundBlaster Compatibility

Windows Sound System software audio compatibility is built into the AD1816A.

SoundBlaster emulation is provided through the SoundBlaster register set and the internal music synthesizer. SoundBlaster Pro version 3.02 functions are supported, including record and Creative SoundBlaster ADPCM.

Virtually all applications developed for SoundBlaster, Windows Sound System, AdLib and MIDI MPU-401 platforms run on the AD1816A SoundPort Controller. Follow the same development process for the controller as you would for these other devices.

As the AD1816A contains SoundBlaster (compatible) and Windows Sound System logical devices. You may find the following related development kits useful when developing AD1816A applications.

Developer Kit for SoundBlaster Series, 2nd ed. © 1993, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035

Microsoft Windows Sound System Driver Development Kit (CD), Version 2.0, © 1993, Microsoft Corp., One Microsoft Way, Redmond, WA 98052

The following reference texts can serve as additional sources of information on developing applications that run on the AD1816A.

S. De Furia & J. Scacciaferro, *The MIDI Implementation Book*, (© 1986, Third Earth, Pompton Lake)

C. Petzold, *Programming Windows: the Microsoft guide to writing applications for Windows 3.1*, 3rd. ed., (© 1992, Microsoft Press, Redmond)

K. Pohlmann, *Principles of Digital Audio*, (© 1989, Sams, Indianapolis)

A. Stolz, *The SoundBlaster Book*, (© 1993, Abacaus, Grand Rapids)

J. Strawn, *Digital Audio Engineering*, *An Anthology*, (© 1985, Kaufmann, Los Altos)

Yamamoto, *MIDI Guidebook*, 4th. ed., (© 1987, 1989, Roland Corp.)

Multimedia PC Capabilities

The AD1816A is MPC-2 and MPC-3 compliant. This compliance is achieved through the AD1816A's flexible mixer and the embedded chip resources.

Music Synthesis

The AD1816A includes an embedded music synthesizer that emulates industry standard OPL3 FM synthesizer chips and delivers 20 voice polyphony. The internal synthesizer generates digital music data at 22.05 kHz and is summed into the DACs digital data stream prior to conversion. To sum synthesizer data with the ADC output, the ADC must be programmed for a 22.05 kHz sample rate.

The synthesizer is a hardware implementation of Eusynth-1+ code that was developed by Euphonics, a research and development company that specializes in audio processing and electronic music synthesis.

Wavetable MIDI Inputs

The AD1816A has a dedicated analog input for receiving an analog wavetable synthesizer output. Alternatively, a wavetable synthesizer's I²S formatted digital output can be directly connected to one of the AD1816A's I²S serial ports. Digital wavetable data from the AD1816A's I²S port may be summed with other digital data streams being handled by the AD1816A and then sent to the 16-bit $\Sigma\Delta$ DAC.

MIDI

The primary interface for communicating MIDI data to and from the host PC is the compatible MPU-401 interface that operates only in UART mode. The MPU-401 interface has two built-in FIFOs: a 64-byte receive FIFO and a 16-byte transmit FIFO.

Game Port

An IBM-compatible game port interface is provided on chip. The game port supports up to two joysticks via a 15-pin D-sub connector. Joystick registers supporting the Microsoft Direct Input standard are included as part of the codec register map. The AD1816A may be programmed to automatically sample the game port and save the value in the Joystick Position Data Register. When enabled, this feature saves up to 10% CPU MIPS by off-loading the host from constantly polling the joystick port.

Volume Control

The registers that control the Master Volume output stage are accessible through the ISA Bus. Master Volume output can also be controlled through a 2-pin hardware interface. One pin is used to increase the gain, the other pin attenuates the output and both pins together entirely mute the output. Once muted, any further activity on these pins will unmute the AD1816A's output.

Plug and Play Configuration

The AD1816A is fully Plug and Play configurable. For motherboard applications, the built-in Plug and Play protocol can be disabled with a software key providing a back door for the BIOS to configure the AD1816A's logical devices. For information on the Plug and Play mode configuration process, see the *Plug and Play ISA Specification Version 1.0a (May 5, 1994).* All the AD1816A's logical devices comply with Plug and Play resource definitions described in the specification.

The AD1816A may alternatively be configured using an optional Plug and Play Resource ROM. When the EEPROM is present, some additional AD1816A muxed-pin features become available. For example, pins that control an external modem logical device are muxed with the DSP serial port. Some of these pin option combinations are mutually exclusive (see Appendix A for more information).

REFERENCES

The AD1816A also complies with the following related specifications; they can be used as an additional reference to AD1816A operations beyond the material in this data sheet.

Plug and Play ISA Specification, Version 1.0a, © 1993, 1994, Intel Corp. & Microsoft Corp., One Microsoft Way, Redmond, WA 98052

Multimedia PC Level 2 Specification, © 1993, Multimedia PC Marketing Council, 1730 M St. NW, Suite 707, Washington, DC 20036

MIDI 1.0 Detailed Specification & Standard MIDI Files 1.0, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173

Recommendation G.711-Pulse Code Modulation (PCM) Of Voice Frequencies (μ-Law & A-Law Companding), The International Telegraph and Telephone Consultative Committee IX Plenary Assembly Blue Book, Volume III - Fascicle III.4, General Aspects Of Digital Transmission Systems; Terminal Equipment's, Recommendations G.700 - G.795, (Geneva, 1988), ISBN 92-61-03341-5

SERIAL INTERFACES

I²S Serial Ports

The two I²S serial ports on the AD1816A accept serial data in the following formats: Right-Justified, I²S-Justified and Left-Justified.

Figure 9 shows the right-justified mode. LRCLK is HI for the left channel and LO for the right channel. Data is valid on the rising edge of the BCLK. The MSB is delayed 16-bit clock periods from an LRCLK transition, so that when there are 64 BCLK periods per LRCLK period, the LSB of the data will be right-justified to the next LRCLK transition.

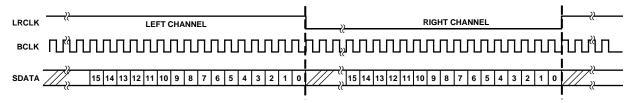


Figure 9. Serial Interface Right-Justified Mode

Figure 10 shows the I^2 S-justified mode. LRCLK is LO for the left channel and HI for the right channel. Data is valid on the rising edge of BCLK. The MSB is left-justified to an LRCLK transition, but with a single BCLK period delay.

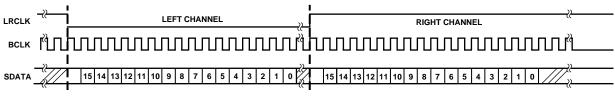


Figure 10. Serial Interface I²S-Justified Mode

Figure 11 shows the left-justified mode. LRCLK is HI for the left channel and LO for the right channel. Data is valid on the rising edge of BCLK. The MSB is left-justified to an LRCLK transition, with no MSB delay.

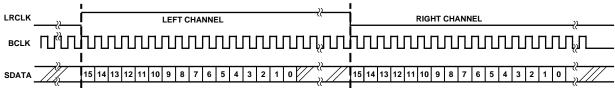


Figure 11. Serial Interface Left-Justified Mode

Bidirectional DSP Serial Interface

The AD1816A SoundPort Controller transmits and receives both data and control/status information through its DSP serial interface port (SPORT). The AD1816A is always the bus master and supplies the frame sync and the serial clock. The AD1816A has four pins assigned to the SPORT: SDI, SDO, SDFS and SCLK. The SPORT has two operating modes: monitor and intercept. The SPORT always monitors the various data streams being processed by the AD1816A. In intercept mode, any of the digital data streams can be manipulated by the DSP before reaching the final ADC or DAC stages.

The SDI and SDO pins handle the serial data input and output of the AD1816A. Communication in and out of the AD1816A requires that bits of data be transmitted after a rising edge of SCLK and sampled on the falling edge of SCLK. The SCLK frequency is always 11 MHz (or 1/3 or XTALI).

DSP Serial Port Interface time slots are mapped as shown in Table I.

Time Slot	SDI Pin	SDO Pin
0	Control Word Input	Status Word Output
1	Control Register Data Input	Control Register Data Output
2	* SS/SB ADC Right Input (to ISA)	SS/SB ADC Right Output (from Codec)
3	* SS/SB ADC Left Input (to ISA)	SS/SB ADC Left Output (from Codec)
4	* SS/SB DAC Right Input (to Codec)	SS/SB DAC Right Output (from ISA)
5	* SS/SB DAC Left Input (to Codec)	SS/SB DAC Left Output (from ISA)
6	* FM DAC Right Input (to Codec)	FM DAC Right Output (from FM Synth Block)
7	* FM DAC Left Input (to Codec)	FM DAC Left Output (from FM Synth Block)
8	* I ² S (1) DAC Right Input (to Codec)	I ² S (1) DAC Right Output (from I ² S Port (1))
9	* I ² S (1) DAC Left Input (to Codec)	I ² S (1) DAC Left Output (from I ² S Port (1))
10	* I ² S (0) DAC Right Input (to Codec)	$I^2S(0)$ DAC Right Output (from I^2S Port (0))
11	* I ² S (0) DAC Left Input (to Codec)	I ² S (0) DAC Left Output (from I ² S Port (0))

Table I. DSP Port Time Slot Map

*This data is ignored by the AD1816A unless the channel pair is in intercept mode (see below).

SS = Sound System Mode SB = SoundBlaster Mode

At start-up (after pin reset), there are exactly 12 time slots per frame. The frame rate will be 57,291 and 2/3 Hz (11 MHz sclk/ [16 bits \times 12 slots]). Interfacing with an Analog Devices 21xx family DSP can be achieved by putting the ADSP-21xx in 24 slot per frame mode, where the first 12 and second 12 slots in the ADSP-21xx frame are identical.

The frame rate can be changed from its default by a write to the DFS(2:0) bits in register 33. Rate choices are: Maximum (57,291 and 2/3 Hz default), SS capture rate, SS playback rate, FM rate, I^2S Port (1) rate, or I^2S Port (0) rate. When the frame rate is less than 57,261 and 2/3 Hz, extra SCLK periods are added to fill up the time. The number of SCLK periods added will vary somewhat from frame to frame.

To control the sample data flow of each channel through the DSP Port, valid input, valid output and request bits are located in the control and status words. If the specified channel sample rate is equal to the frame rate, these bits may be ignored since they will always be set to "1."

By default, the DSP serial port allows only codec sample data I/O to be monitored. Intercept modes must be enabled to make substitutions in sample data flow to and from the codec. There are five bits in SS register 33, which enable intercept mode for SS capture, SS playback, FM playback, I²S Port (1) playback and I²S Port (0) playback.

Control Word Input (Slot 0 SDI)

_	15	14	13	12	11	10	9	8
	FCLR	RES	RES	SSCVI	SSPVI	FMVI	IS1VI	ISOVI
	7	6	5	4	3	2	1	0
	ALIVE	R/W			IA[5:0]			

IA [5:0] Indirect Register Address. Sound System Indirect Register Address defines the address of indirect registers shown in Table VI.

R/W Read/Write request. Either a read from or a write to an SS indirect register occurs every frame. Setting this bit initiates an SS indirect register read while clearing this bit initiates an SS indirect register write.

- ALIVE DSP port alive bit. When set, this bit indicates to the power-down timer that the DSP port is active. When cleared, this bit indicates that the DSP port is inactive.
- ISOVI I²S Port 0 Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the I²S port 0 channel pair, or (2) The AD1816A did not request data from the I²S port 0 channel pair in the previous frame. Otherwise, setting this bit indicates that slots 10 and 11 contain valid right and left I²S Port 0 substitution data. When this bit is cleared, data in slots 10 and 11 is ignored.
- IS1VI IS1VI
- FMVIFM Synthesis Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the
FM synthesis channel pair or (2) The AD1816A did not request data from the FM synthesis channel pair in the
previous frame (see the FMRQ Bit 9 in the status word output). Otherwise, setting this bit to 1 indicates that slots
6 and 7 contain valid right and left FM synthesis channel substitution data. When this bit is reset to 0, data in slots
6 and 7 is ignored.

- SSPVI SS/SB Playback Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/SB playback or (2) The AD1816A did not request data for SS/SB playback in the previous frame (see the SSPRQ bit in the Status Word Output). Otherwise, setting this bit indicates that Slots 4 and 5 contain valid right and left SS/SB playback substitution data. If in "capture rate equal to playback rate" mode, setting this bit also indicates that valid capture substitution data is being sent to the AD1816A. If not in modem mode, right and left channel capture substitution data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in slots 2 and 3. When this bit is cleared, data in all slots controlled by this bit, as defined above, is ignored.
- SSCVI SS/SB Capture Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/ SB capture or (2) The AD1816A did not request data for SS/SB capture in the previous frame (see the SSCRQ bit in the Status Word Output). Otherwise, setting this bit indicates that valid SS/SB capture substitution data is being sent to the AD1816A. If not in modem mode, or DSP port or ISA bus based, right and left channel capture data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in Slot 3, because Slot 2, which is mapped to the right capture channel, is being used for modem. This mono data will, however, be sent to both left and right ISA SS/SB capture channels. When this bit is cleared, data in Slots 3 and 2 is ignored.
- RES Reserved: To ensure future compatibility write "0" to all reserved bits.
- FCLR DSP Port Clear Status Flag. When this bit is set, (write 1), the PNPR and PDN flag bits in the status word (Bits 15 and 14 of slots 0 SDO) are cleared. When this bit is cleared, (writing a 0), it has no effect on PNPR and PDN and preserves them in the previous states.

Status Word Output (Slot 0 SDO)

_	15	14	13	12	11	10	9	8
[PDN	PNPR	RES	SSCVO	SSPVO	FMVO	IS1VO	IS0VO
	7	6	5	4	3	2	1	0
[MB1	MB0	RES	SSCRQ	SSPRQ	FMRQ	IS1RQ	ISORQ

ISORQ I^2S Port (0) Input Request Flag. This bit is set if intercept mode is enabled for I^2S Port (0) and its four-word stereo input buffer is not full.

- IS1RQ I²S Port (1) Input Request Flag. This bit is set if intercept mode is enabled for I²S Port (1) and its four-word stereo input buffer is not full.
- FMRQ FM Synthesis Input Request Flag. This bit is set if intercept mode is enabled for FM synthesis and its four-word stereo input buffer is not full.
- SSPRQ SS/SB Playback Input Request Flag. This bit is set if intercept mode is enabled for SS/SB playback and its fourword stereo input buffer is not full.
- SSCRQ SS/SB Capture Input Request Flag. This bit is set if intercept mode is enabled for SS/SB capture and its four-word stereo input buffer is not full.
- MB0 Mailbox 0 Status Flag. This bit is set if the most recent action to SS indirect register 42 (DSP port Mail Box 1) was a write, and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.
- MB1 Mailbox 1 Status Flag. This bit is set if the most recent action to SS indirect register 43 (DSP port Mail Box 1) was a write and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.
- ISOVO I²S Port 0 Valid Out. This bit is set if Slots 10 and 11 contain valid right and left I²S Port 0 data.
- IS1V1 I²S Port 1 Valid Out. This bit is set if Slots 8 and 9 contain valid right and left I²S Port 1 data.
- FMVO FM Synthesis Valid Out. This bit is set if Slots 6 and 7 contain valid left and right FM synthesis data.
- SSPVO SS/SB Playback Valid Out. This bit is set if Slots 4 and 5 contain valid right and left SS/SB playback data.
- SSCVO SS/SB Capture Valid Out. This bit is set if valid SS/SB capture data is being transmitted. If not in a modem mode, Slots 2 and 3 will contain valid right and left SS/SB capture data. If in modem mode, only Slot 3 will contain valid left SS/SB capture data as Slot 2 and the ADC right channel are used by the modem.

- PNPR Plug and Play Reset flag. This bit is set by an AD1816A reset (RESETB pin asserted LOW) or by a Plug and Play reset command. This bit is cleared by the assertion of the FCLR bit in the control word. While this bit is set, all attempts to write an SS indirect register via the DSP port will be ignored and fail. This is to ensure that Plug and Play resets are immediately applied to the application running on the DSP, without requiring them to continuously poll the Plug and Play reset status bit. During the frame in which this bit is cleared (by asserting FCLR), an attempt to write an SS indirect register will succeed. If the FCLR bit is continuously asserted, writes to indirect registers via the DSP port will always be enabled. A Plug and Play reset command will set this PNPR bit HIGH during at least one frame.
- PDN Power-Down flag. This bit is set by an AD1816A reset (RESETB pin asserted LOW), or by an AD1816A powerdown. Before an AD1816A power-down sequence shuts down the DSP port, at least one frame will be sent with this bit set. This bit can be cleared by the assertion of the FCLR (DSP port status clear) bit in the control word, providing the AD1816A is no longer in power-down.

The SDFS pin is used for the serial interface frame synchronization. New frames are marked by a one SCLK duration HI pulse, driven out on SDFS, one serial clock period before the frame begins. Upon initializing, there are exactly 12 time slots per frame and 16 bits per time slot. The frame rate is 57,291 and 2/3 Hz (11 MHz SCLK /(16 bits \times 12 slots)). The frame rate can also be changed from the default value by reprogramming the rate in registers. The frame rate can run at the default rate or be programmed to match the modem sample rate, ADC capture rate, DAC playback rate, music sample rate, I²S(1) sample rate or I²S(0) sample rate. When the frame rate is not equivalent to the sample rate, Valid Out, Request In and Valid In bits are used to control the sample data flow. When the frame rate is equivalent to the sample rate, Valid and Request bits can be ignored.

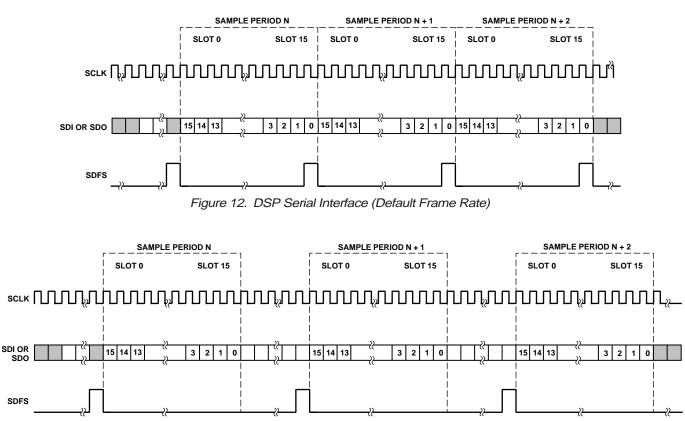


Figure 13. DSP Serial Interface (User Programmed Frame Rate)

Figure 14 illustrates the flexibility of the DSP Serial Port interface. This port can monitor or intercept any of the digital streams managed by the AD1816A. Any ADC or DAC data stream can be intercepted by the port, shipped to an external DSP or ASIC manipulated, and returned to any DAC summing path or to the ADC.

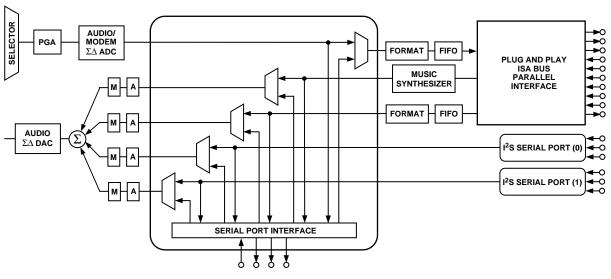


Figure 14. DSP Serial Port

ISA INTERFACE

AD1816A Chip Registers

Table II, Chip Register Diagram, details the AD1816A direct register set available from the ISA Bus. Prior to any accesses by the host, the PC I/O addressable ports must be configured using the Plug and Play Resources.

Table II	. Chip	Register	Diagram
----------	--------	----------	---------

Register Type-Register Name	Register PC I/O Address		
Plug and Play			
ADDRESS	0x279		
WRITE_DATA	0xA79		
READ_DATA	Relocatable in Range 0x203 – 0x3FF		
Sound System Codec			
CODEC REGISTERS	0x(SS Base+0 – SS Base+15)		
	Relocatable in Range 0x100 – 0x3FF		
	See Table V		
SoundBlaster Pro			
Music0: Address (w), Status (r)	(SB Base) Relocatable in Range 0x100 – 0x3F0		
Music0: Data (w)	(SB Base+1)		
Music1: Address (w)	(SB Base+2)		
Music1: Data (w)	(SB Base+3)		
Mixer Address (w)	(SB Base+4)		
Mixer Data (w)	(SB Base+5)		
Reset (w)	(SB Base+6 or 7)		
Music0: Address (w)	(SB Base+8)		
Music0: Data (w)	(SB Base+9)		
Input Data (r)	(SB Base+A or +B)		
Status (r), Output Data (w)	(SB Base+C or +D)		
Status (r)	(SB Base+E or +F)		

Register Type-Register Name	Register PC I/O Address		
AdLib			
Music0: Address (w), Status (r)	(AdLib Base) Relocatable in Range 0x100 – 0x3F8		
Music0: Data (w)	(AdLib Base+1)		
Music1: Address (w)	(AdLib Base+2)		
Music1: Data (w)	(AdLib Base+3)		
MIDI MPU-401			
MIDI Data (r/w)	(MIDI Base) Relocatable in Range 0x100 – 0x3FE		
MIDI Status (r), Command (w)	(MIDI Base+1)		
Game Port			
Game Port I/O	(Game Base +0 to Game Base +7) Relocatable in Range		
0x100 - 0x3F8			

AD1816A Plug and Play Device Configuration Registers

The AD1816A may be configured according to the Intel/Microsoft Plug and Play Specification using the internal ROM. Alternatively, the PnP configuration sequence may be bypassed using the "Alternate Key Sequence" described in Appendix A.

The operating system configures the AD1816A Plug and Play Logical Devices after system boot. There are no "boot-devices" among the Plug and Play Logical Devices in the AD1816A. Non-Plug and Play BIOS systems configure the AD1816A's Logical Devices after boot using drivers. Depending on BIOS implementations, Plug and Play BIOS systems may configure the AD1816A's Logical Devices before POST or after Boot. See the *Plug and Play ISA Specification Version 1.0a* for more information on configuration control. To complete this configuration, the system reads resource data from the AD1816A's on-chip resource ROM or optional EEPROM and from any other Plug and Play cards in the system, and then arbitrates the configuration of system resources with a heuristic algorithm. The algorithm maximizes the number of *active* devices and the *acceptability* of their configurations.

The system considers all Plug and Play logical device resource data at the same time and makes a conflict-free assignment of resources to the devices. If the system cannot assign a conflict-free resource to a device, the system does not configure or activate the device. All configured devices are activated.

The system's Plug and Play support selects all necessary drivers, starts them and maintains a list of system resources allocated to each logical device. As an option, system resources can be reassigned at runtime with a Plug and Play Resource Manager. The custom setup created using the manager can be saved and used automatically on subsequent system boots.

Plug and Play Device IDs (embedded in the logical device's resource data) provide the system with the information required to find and load the correct device drivers. One custom driver, the AD1816A Sound System driver from Analog Devices, is required for correct operation. In the other cases (MIDI, Game Port), the system can use generic drivers. Table III lists the AD1816A's Logical Devices and compatible Plug and Play device drivers.

Logical Device Number	Emulated Device	Compatible (Device ID)	Device ID
0	Sound System		ADS7180
1	MIDI MPU401 Compatible	PNPB006	ADS7181
2	Game/Joystick Port	PNPB02F	ADS7182

Table III. Logical Devices and Compatible Plug and Play Device Drivers

The configuration process for the logical devices on the AD1816A is described in the *Plug and Play ISA Specification Version 1.0a* (*May 5, 1994*). The specification describes how to transfer the logical devices from their start-up *Wait For Key* state to the *Config* state and how to assign I/O ranges, interrupt channels and DMA channels. See Appendix A for an example setup program and specific Plug and Play resource data.

Table IV describes in detail the I/O Port Address Descriptors, DMA Channels, Interrupts for the functions required for the AD1816A Logical Device groups.

LDN	PnP Function	Description
0	I/O Port Address Descriptor (0x60-0x61)	The SoundBlaster Pro address range is from 0x100 to 0x3F0. The typical address is 0x220. The range is 16 bytes long and must be aligned to a 16 byte memory boundary.
0	I/O Port Address Descriptor (0x62-0x63)	The AdLib address range is from 0x100 to 0x3F8. The typical address is 0x388. The range is 4 bytes long and must be aligned to an 8 byte memory boundary.
0	I/O Port Address Descriptor (0x64-0x65)	The Codec address range is from 0x100 to 0x3F8. The range is 16 bytes long and must be aligned to a 16 byte memory boundary.
0	Interrupt Request Level Select (0x70-0x71)	This IRQ is shared between the SB Pro device and the Codec. These devices require one of the following IRQ channels: 5, 7, 9, 11, 12 or 15. Typically, the IRQ is set to 5 or 7 for this device.
0	DMA Playback Channel Select (0x74)	This 8-bit channel is shared between the SB Pro device and the Codec for playback. These devices require one of the following DMA channels: 0, 1, 3. Typically, DMA channel 1 is set.
0	DMA Capture Channel Select (0x75)	This the DMA channel used for capturing Codec data. The Codec operates in single channel mode if a separate DMA channel for capture and playback is not assigned. The following DMA channels may be programmed: 0, 1, 3. DMA Channel 4 indicates single channel mode.
1	I/O Port Address Descriptor (0x60-0x61)	The MPU-401 compatible device address range is 0x100 to 0x3FE. Typical configurations use 0x330. The range is 2 bytes long and must be aligned to a 2 byte memory boundary.
1	Interrupt Request Level Select (0x70-0x71)	The MIDI device requires one of the following IRQ channels: 5, 7, 9, 11, 12 or 15.
2	I/O Port Address Descriptor (0x60-0x61)	The Game Port address range is from 0x100 to 0x3F8. The typical address is 0x200. The range is 8 bytes long and must be aligned to an 8 byte memory boundary.

Table IV.	Internal	Logical	Device	Configuration
I GOIC I ' '	ATTECT THEFT	Logical	Device	Comfaitation

NOTE

DMA channel 4 indicates single-channel mode.

Sound System Direct Registers

The AD1816A has a set of 16 programmable Sound System Direct Registers and 36 Indirect Registers. This section describes all the AD1816A registers and gives their address, name and initialization state/reset value. Following each register table is a list (in ascending order) of the full register name, its usage and its type: (RO) Read Only, (WO) Write Only, (STKY) Sticky, (RW) Read Write and Reserved (res). Table V is a map of the AD1816A direct registers.

Direct									
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SSBASE + 0	CRDY	VBL	INADR[5:0]						
SSBASE + 1	PI	CI	TI	VI	DI	RI	GI	SI	
SSBASE + 2				Indirect SS Da	ta [7:0]		-		
SSBASE + 3				Indirect SS Da	ta [15:8]				
SSBASE + 4	RES		PUR	COR	ORF	R [1:0]	(ORL [1:0]	
SSBASE + 5	PFH	PDR	PLR	PUL	CFH	CDR	CLR	CUL	
SSBASE + 6		-		PIO Playback/	Capture [7:0]	-	-		
SSBASE + 7				RESERV	ED				
SSBASE + 8	TRD	DAZ	PFM	T [1:0]	PC/L	PST	PIO	PEN	
SSBASE + 9	RES	5	CFM	T [1:0]	CC/L	CST	CIO	CEN	
SSBASE + 10				RESE	RVED				
SSBASE + 11	RESERVED								
SSBASE + 12	JOYSTICK DATA [7:0]								
SSBASE + 13	JRDY JWRP JSEL [1:0] JMSK [3:0]								
SSBASE + 14	JAXIS [7:0]								
SSBASE + 15	JAXIS [15:8]								

[Base+0]	Chip Status/Indirect Address				
Г	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
L	CRDYVBLINADR[5:0]RESET = [0x00]				
INADR [5:0	(RW) Indirect Address for Sound System (SS). These bits are used to access the Indirect Registers shown in Table VIII. All registers data must be written in pairs, low byte followed by high byte, by loading the Indirect SS Data Registers, (Base +2) and (Base +3).				
VBL	Volume Button Location. When using an EEPROM to configure the PnP state of the AD1816A, this bit determines whether PQFP Pins 1 and 2 (TQFP Pins 99 and 100) are used for VOL_UP and VOL_DN or I ² S0_DATA and I ² S0_LRCLK respectively. 0 I ² S0_DATA and I ² S0_LRCLK 1 VOL_UP and VOL_DN				
CRDY	 (RO) AD1816A Ready. The AD1816A asserts this bit when AD1816A can accept data. 0 AD1816A not ready 1 AD1816A ready 				
[Base+1]	Interrupt Status				
	PICITIVIDIRIGISIRESET = $[0x00]$				
SI	 (RO) SoundBlaster generated Interrupt. 0 No interrupt 1 SoundBlaster interrupt pending 				
GI	 (RW) Game Interrupt (Sticky, Write "0" to Clear). 0 No interrupt 1 An interrupt is pending due to Digital Game Port data ready 				
RI	 (RW) Ring Interrupt (Sticky, Write "0" to Clear). 0 No interrupt 1 An interrupt is pending due to a Hardware Ring pin being asserted 				
DI	 (RW) DSP Interrupt (Sticky, Write "0" to Clear). 0 No interrupt 1 An interrupt is pending due to a write to the DIT bit in indirect register [33] bit <13> 				
VI	 (RW) Volume Interrupt (Sticky, Write "0" to Clear). 0 No interrupt 1 An interrupt is pending due to Hardware Volume Button being pressed 				
TI	 (RW) Timer Interrupt. This bit indicates there is an interrupt pending from the timer count registers. (Sticky, Write "0" to Clear). 0 No interrupt 1 Interrupt is pending from the timer count register 				
CI	 (RW) Capture Interrupt. This bit indicates that there is an interrupt pending from the capture DMA count register. (Sticky, Write "0" to Clear). 0 No interrupt 1 Interrupt is pending from the capture DMA count register 				
PI	 (RW) Playback Interrupt. This bit indicates that there is an interrupt pending from the playback DMA count register. (Sticky, Write "0" to Clear). 0 No interrupt 1 Interrupt is pending from the playback DMA count register 				
[Base+2]	Indirect SS Data Low Byte				
_	7 6 5 4 3 2 1 0				
L	Indirect SS Data [7:0] RESET = [0xXX]				
[Base+3]	Indirect SS Data High Byte				
	7 6 5 4 3 2 1 0				
	Indirect SS Data [15:8] RESET = [0xXX]				
Indirect SS Data [15:0]	Indirect Sound System Data. Data in this register is written to the Sound System Indirect Register specified by the address contained in INDAR [5:0], Sound System Direct Register [Base +0]. Data is written when the Indirect SS Data High Byte value is loaded				

Data High Byte value is loaded.

ORR[1:0]

ORL[1:0]

RESET = [0x00]

PUR All bits in this register are sticky until any write that clears all bits to 0.

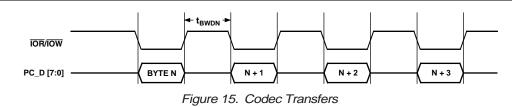
COR

RES

ORL/ORR (RO) Overrange Left/Right detect. These bits record the largest output magnitude on the ADC right and left channels and are cleared to 00 after any write to this register. The peak amplitude as recorded by these bits is [1:0] "sticky," i.e., the largest output magnitude recorded by these bits will persist until these bits are explicitly cleared. They are also cleared by powering down the chip.

ORL/ORR	Over/Under Range Detection		
00	Less than -1 dB Underrange		
01	Between -1 dB and 0 dB Underrange		
10	Between 0 dB and 1 dB Overrange		
11	Greater than 1 dB Overrange		

- COR (RO) Capture Over Run. The codec sets (1) this bit when capture data is not read within one sample period after the capture FIFO fills. When COR is set, the FIFO is full and the codec discards any new data generated. The codec clears this bit immediately after a 4 byte capture sample is read.
- Playback Under Run. The codec sets (1) this bit when playback data is not written within one sample period af-PUR (RO) ter the playback FIFO empties. The codec clears (0) this bit immediately after a 4 byte playback sample is written. When PUR is set, the playback channel has "run out" of data and either plays back a midscale value or repeats the last sample.


[Base+5] PIO Status

	7	6 5 4 3 2 1 0
	PFI	PDR PLR PUL CFH CDR CLR CUL RESET = [0x00]
CUL	(RO)	Capture Upper/Lower Sample. This bit indicates whether the PIO capture data ready is for the upper or lower byte of the channel. 0 Lower byte ready 1 Upper byte ready or any 8-bit mode
CLR	(RO)	Capture Left/Right Sample. This bit indicates whether the PIO capture data waiting is for the left channel ADC or the right channel ADC. 0 Right channel 1 Left channel or mono
CDR	(RO)	 Capture Data Ready. The PIO Capture Data register contains data ready for reading by the host. This bit should be used only when direct programmed I/O data transfers are desired (FIFO has at least 4 bytes before full). ADC is stale. Do not reread the information ADC data is fresh. Ready for next host data read
CFH	(RO)	Capture FIFO Half Full. (FIFO has at least 32 bytes before full.)
PUL	(RO)	 Playback Upper/Lower Sample. This bit indicates whether the PIO playback data needed is for the upper or lower byte of the channel. 0 Lower byte needed 1 Upper byte needed or any 8-bit mode
PLR	(RO)	 Playback Left/Right Sample. This bit indicates whether the PIO playback data needed is or the left channel DAC or the right channel DAC. 0 Right channel needed 1 Left channel or mono
PDR	(RO)	 Playback Data Ready. The PIO Playback data register is ready for more data. This bit should only be used when direct programmed I/O data transfers are desired (FIFO can take at least 4 bytes). DAC data is still valid. Do not overwrite DAC data is stale. Ready for next host data write value
PFH	(RO)	Playback FIFO Half Empty. FIFO can take at least 32 bytes, eight groups of 4 bytes.

REV. A

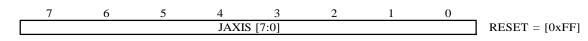
[Base+6]	PIO D	lata					
	7	6 5 4 3 2 1 0					
		PIO Playback/Capture [7:0] RESET = [0x00]					
PIO Playbac Capture [7:0		The Programmed I/O (PIO) Data Registers for capture and playback are mapped to the same address. Writes send data to the Playback Register and reads will receive data from the Capture Register.					
		Reading this register will increment the capture byte state machine so that the following read will be from the next appropriate byte in the sample. The exact byte may be determined by reading the PIO Status Register. Once all relevant bytes have been read, the state machine will stay pointed to the last byte of the sample until a new sample is received.					
		Writing data to this register will increment the playback byte tracking state machine so that the following write will be to the correct byte of the sample. Once all bytes have been written, subsequent byte writes will be ignored. The state machine is reset when the current sample is transferred.					
Note: All wr	rites to th	he FIFO "MUST" contain 4 bytes of data. * 1 sample of 16-bit stereo * 2 samples of 16-bit mono * 2 samples of 8-bit stereo (Linear PCM, μ-law PCM, A-Law PCM) * 4 samples of 8-bit mono (Linear PCM, μ-law PCM, A-Law PCM)					
[Base+7]	Reserve	ed					
	7	6 5 4 3 2 1 0					
		Reserved [7:0] RESET = [0xXX]					
[Base+8]	Playba	ck Configuration					
	7 TRD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
PEN	(RW)	Playback Enable. This bit enables or disables programmed I/O data playback. 0 Disable 1 Enable					
PIO	(RW)	 Programmed Input/Output. This bit determines whether the playback data is transferred via DMA or PIO. DMA transfers only PIO transfers only 					
PST	(RW)	 W) Playback Stereo/Mono select. These bits select stereo or mono formatting for the input audio data streams. In stereo, the Codec alternates samples between channels to provide left and right channel input. For mono, the Codec captures samples on the left channel stereo. 0 Mono 1 Stereo 					
PC/L	(RW)	 Playback Companded/Linear Select. This bit selects between a linear digital representation of the audio signal or a nonlinear companded format for all output data. The type of linear PCM or the type of companded format is defined by PFMT [1:0]. 0 Linear PCM 1 Companded 					
PFMT [1:0]	(RW)	Playback Format. Use these bits to select the playback data format for output data according to Table VI and Figure 15.					
DAZ	(RW)	 DAC zero. This bit forces the DAC to zero. 0 Repeat last sample 1 Force DAC to ZERO 					
TRD	(RW)	 Transfer Request Disable. This bit enables or disables Codec DMA transfers during a Codec interrupt (indicated by the SS Codec Status register's INT bit being set [1]). This assumes Codec DMA transfers were enabled and the PEN or CEN bits are set. 0 Transfer Request Enable 1 Transfer Request Disable 					

After setting format bits, sample data into the AD1816A must be ordered according to Figure 15, Table VI.

Table	VI	Codec	Transfers
Lanc	V I.	Couce	11 ansiers

ST	FMT1 FMT0 C/L	Format	Byte 3 MSB LSB	Byte 2 MSB LSB	Byte 1 MSB LSB	Byte 0 MSB LSB
0	000	Mono Linear, 8-Bit Unsigned	Sample 3 8 Bits Left Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Left Channel
1	000	Stereo Linear, 8-Bit Unsigned	Sample 1 8 Bits Right Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits Left Channel
0	001	Mono µ-Law, 8-Bit Companded	Sample 3 8 Bits Left Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Left Channel
1	001	Stereo µ-Law, 8-Bit Companded	Sample 1 8 Bits Right Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits Left Channel
0	010	Mono Linear 16-Bit Little Endian	Sample 1 Upper 8 Bits Left Channel	Sample 1 Lower 8 Bits Left Channel	Sample 0 Upper 8 Bits Left Channel	Sample 0 Lower 8 Bits Left Channel
1	010	Stereo Linear 16-Bit Little Endian	Sample 0 Upper 8 Bits Right Channel	Sample 0 Lower 8 Bits Right Channel	Sample 0 Upper 8 Bits Left Channel	Sample 0 Lower 8 Bits Left Channel
0	011	Mono A-Law, 8-Bit Companded	Sample 3 8 Bits Left Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Left Channel
1	011	Stereo A-Law, 8-Bit Companded	Sample 1 8 Bits Right Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits Left Channel
0	100	Reserved				
1	100	Reserved				
0	101	Reserved				
1	101	Reserved				
0	110	Mono Linear, 16-Bit Big Endian	Sample 1 Lower 8 Bits Left Channel	Sample 1 Upper 8 Bits Left Channel	Sample 0 Lower 8 Bits Left Channel	Sample 0 Upper 8 Bits Left Channel
0	110	Stereo Linear, 16-Bit Big Endian	Sample 0 Lower 8 Bits Right Channel	Sample 0 Upper 8 Bits Left Channel	Sample 0 Lower 8 Bits Left Channel	Sample 0 Upper 8 Bits Left Channel
0	111	Reserved				
1	111	Reserved				

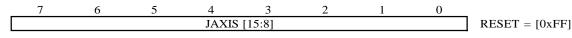
[Base+9]	Captu	re Config	uration						
7		6	5	4	3	2	1	0	
	RES		CFMT	[1:0]	CC/L	CST	CIO	CEN	RESET = [0x00]
CEN (RW) 0 Disable 1 Enable		С	apture Enal	ble. This b	it enables o	r disables da	ta capture.		
CIO	(RW)	-	ЛА	ed I/O. Thi	s bit detern	nines whethe	r the captur	e data is transf	ferred via DMA or PIO.
CST	(RW)	In stereo the Code 0 Me	, the Codec	e alternates		etween chanr			input audio data streams. ht channel input. For mono,
CC/L	(RW)	nal or a format is 0 Lin		companded	l format for				esentation of the audio sig- M or the type of companded
CFMT [1:0]	(RW)	Capture Figure 1		e these bit	s to select t	he format for	r capture da	ta according to	the following Table VI and
[Base+10]	Reser	ved							
7		6	5	4	3	2	1	0	
				RESE	ERVED				RESET = [0xXX]
[Base+11]	Reser	ved							
7		6	5	4	3	2	1	0	
				RESE	ERVED				RESET = [0xXX]
[Base+12]	Joysti	ck RAW I	рата						
[Duse 12]	00 950	6	5	4	3	2	1	0	
		0	Joy	stick Data [<u>3</u> 7:0]	2	1	0	RESET = [0xF0]
Joystick Data	(\mathbf{RO})	Iovstick	Data Jove	tick Data	(identical to	1 DN 2). W	rites to this	register are igi	nored
[Base+13]		ck Contro		tiek Dutu	(Identiedi te	<i>LDI(2)</i> . ((inco to this	register are igi	nored.
	JUysu		- -	4	2	2	1	0	
/ JRI	N I	6 JWRP	JSEL	4	3	2 JMSK	[<u>3·0]</u>	0	RESET = [0xF0]
JMSK [3:0]					calculated l			JMSK only.	
				г			-		
					xx1	Enable AX	_		
					x1x	Enable AY	_		
				E E	x1xx	Enable BX	_		
				1	XXX	Enable BY			
JSEL [1:0]	(RW)	Joystick	Select. Sele	ects one of	four joystic	k axis registe	r sets accor	ding to the foll	owing table:
				Deed AV	(16 D:+-) f	m [Doro 14]	1 0 [D] 1	51	
						m [Base+14]			
			01 F	kead AY (10 Bits) fro	m [Base+14]	& [Base+.	15] [


00	Read AX (16 Bits) from [Base+14] & [Base+15]
01	Read AY (16 Bits) from [Base+14] & [Base+15]
10	Read BX (16 Bits) from [Base+14] & [Base+15]
11	Read BY (16 Bits) from [Base+14] & [Base+15]

JWRP (RW) Joystick Wrapmode. Continuous Joystick sampling mode—sampling automatically restarted every ~16 ms.

JRDY (RO) Joystick Ready. Sampling complete, joystick data ready for reading.

Note: Sampling must be started manually if JWRP is set before any sampling cycles are run. To start sampling after setting the JWRP bit, write to the joystick port [Base+14].


[Base+14] Joystick Position Data Low Byte

JAXIS [7:0] (RO) Joystick Axis Low Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle.

[Base+15] Joystick Position Data High Byte

JAXIS [15:8] (RO) Joystick Axis High Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle

Sound System Indirect Registers

Writing Indirect Registers

All Indirect Registers must be written in pairs: low byte followed by high byte. The Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to write low data byte and the Indirect High Data Byte [SSBASE+3] is used to write the high data byte. The low data byte is held in the temporary register until the upper byte is written.

Programming Example

"Write Sample Rate for	Voice Playback at 11,000 Hz (0x2AF	8)"
------------------------	------------------------------------	-----

1) Write [SSBASE+0] with 0x	x02	; indirect register for voice playback sample rate

- 2) Write [SSBASE+2] with 0xF8
- ; low byte of 16-bit sample rate register ; high byte of 16-bit sample rate register
- 3) Write [SSBASE+3] with 0x2A *Reading Indirect Registers*

All indirect registers can be individually read. The Sound System Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to read low data byte and Indirect High Data Byte [SSBASE+3] is used to read the High data byte.

Programming Example

"Read Sample Rate for Voice Playback set to 11,000 Hz (0x2AF8)"

- 1) Write [SSBASE+0] with 0x02 ; indirect register for voice playback sample rate
- 2) Read [SSBASE+2] ; low byte of 16-bit sample rate register set to 0xF8
- 3) Read [SSBASE+3]
- ; high byte of 16-bit sample rate register set to 0x16

ISR Saves and Restores

For Interrupt Service Routines, ISRs, it is necessary to save and restore the Indirect Address and the Low Byte Temporary Data holding registers inside the ISR.

Programming Example

"Save/Restore during an ISR"

Beginning of ISR:

- 1) Read [SSBASE+0] ; save Indirect Address register to TMP_IA
- 2) Write [SSBASE+0] with 0x00;
- 3) Read [SSBASE+2]
- 4) ISR Code

REV. A

; save Low Byte Temporary data to TMP_LBT

; indirect Register for Low Byte Temporary Data

- ; ISR routine
- 5) Write [SSBASE+2] with TMP_LBT ; restore Low Byte Temporary data TMP_LBT
- 6) Write [SSBASE+0] with TMP_IA ; restore Indirect Address Register to TMP_IA
- 7) Return from Interrupt
- ; return from ISR

Address	Register Name	Reset/ Default State
00	Low Byte TMP	0xXX
01	Interrupt Enable and External Control	0x0102
02	Voice Playback Sample Rate	0x1F40
03	Voice Capture Sample Rate	0x1F40
04	Voice Attenuation	0x8080
05	FM Attenuation	0x8080
06	$I^2S(1)$ Attenuation	0x8080
07	$I^2S(0)$ Attenuation	0x8080
08	Playback Base Count	0x0000
09	Playback Current Count	0x0000
10	Capture Base Count	0x0000
11	Capture Current Count	0x0000
12	Timer Base Count	0x0000
13	Timer Current Count	0x0000
14	Master Volume Attenuation	0x0000
15	CD Gain/Attenuation	0x8888
16	Synth Gain/Attenuation	0x8888
17	Video Gain/Attenuation	0x8888
18	Line Gain/Attenuation	0x8888
19	Mic/PHONE_IN Gain/Attenuation	0x8888
20	ADC Source Select and ADC PGA	0x0000
32	Chip Configuration	0x00F0
33	DSP Configuration	0x0000
34	FM Sample Rate	0x5622
35	$I^2S(1)$ Sample Rate	0xAC44
36	$I^2S(0)$ Sample Rate	0xAC44
37	Reserved	0x0000
38	Programmable Clock Rate	0xAC44
39	3D Phat Stereo Control/PHONE_OUT Gain Attenuation	0x8000
40	Reserved	0x0000
41	Hardware Volume Button Modifier	0xXX1B
42	DSP Mailbox 0	0x0000
43	DSP Mailbox 1	0x0000
44	Power-Down and Timer Control	0x0000
45	Version ID	0xXXXX
46	Reserved	0x0000

Table VII	. Indirect Register	Map and Reset/Defa	ult States
-----------	---------------------	--------------------	------------

			(High	Byte)								(Low	Byte)				
ADDRESS	7	6	5	4	3	2	1	7	6	5	4	3	2	1	0		
00 (0x00)				RI	ES							LBTI	D [7:0]				
01 (0x01)	PIE	CIE	TIE	VIE	DIE	RIE	JIE	SIE	TE XC1								
02 (0x02)				VPSR	[15.8]				VPSR [7:0]								
03 (0x03)				VCSR	[15:8]							VCSI	R [7:0]				
04 (0x04)	LVM	RES			LVA	[5:0]			RVM	RES			RV	A [5:0]			
05 (0x05)	LFMM	RES			LFM/	A [5:0]			RFMM	RES			RFM	[A [5:0]			
06 (0x06)	LS1M	RES			LS1A	A [5:0]			RS1M	RES			RS1	A [5:0]			
07 (0x07)	LS0M	RES			LS0A	A [5:0]			RS0M	RES			RS0	A [5:0]			
08 (0x08)				PBC	[15:8]						PBC	[7:0]					
09 (0x09)				PCC	[15:8]						PCC	[7:0]					
10 (0x0A)				CBC	[15:8]						CBC	[7:0]					
11 (0x0B)				CCC								[7:0]					
12 (0x0C)				TBC	[15:8]							TBC	[7:0]				
13 (0x0D)				TCC	[15:8]				TCC [7:0]								
14 (0x0E)	LMVM	R	ES			LMVA [4:0]		RMVM								
15 (0x0F)	LCDM		ES			LCDA [4:0]		RCDM	R	ES			RCDA [4:	:0]		
16 (0x10)	LSYM	R	ES			LSYA [4:0]]		RSYM	R	ES			RSYA [4:	0]		
17 (0x11)	LVDM	R	ES			LVDA [4:0]		RVDM	R	ES			RVDA [4	:0]		
18 (0x12)	LLM	R	ES			LLA [4:0]			RLM	R	ES			RLA [4:0)]		
19 (0x13)	MCM	M20	RES			MCA [4:0]			PIM	R	RES PIA [3:0]					RES	
20 (0x14)	LAGC		LAS [2:0]				[3:0]		RAGC								
32 (0x20)	WSE	CDE	RES	CNP		R	ES	-	COF [3:0] I2SF1 [1:0] I2SF						70 [1:0]		
33 (0x21)	DS1	DS0	DIT	RI		ADR	I1T	I0T]	
34 (0x22)				FSMR					FMSR [7:0]								
35 (0x23)				S1SR					S1SR [7:0]								
36 (0x24)				SOSR									8 [7:0]				
37 (0x25)					ES								ES				
38 (0x26)				PCR	[15:8]							PCR	[7:0]				
39 (0x27)	3DDM	R	ES			[3:0]		RES	POM	R	ES			POA [4:0)]		
40 (0x28)				RI						1	· · · · · ·	R	ES				
41 (0x29)				RE					VMU	VUP	VDN			BM [4:0]		
42 (0x2A)				MB0R									R [7:0]				
43 (0x2B)	ļ			MB1R									R [7:0]				
44 (0x2C)	CPD	RES	PIW	PIR	PAA	PDA	PDP	PTB	3D	PD3D	GPSP	RES	DM		RES		
45 (0x2D)				VER [15:8]					VER [7:0]								
46 (0x2E)				RES								R	ES				

Table VIII. Sound System Indirect Registers

[00] I	NDIRE	CT LOV	W BYT	Е ТМР									DEFA	ULT =	[0xXX]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		R	ES								LBTI	D [7:0]			

LBTD [7:0] Low Byte Temporary Data holding latch for register pair writes;

Written on any write to [SSBase + 2],

Read from [SSBase + 2] when the indirect address is 0x00.

[01] I] INTERRUPT ENABLE AND EXTERNAL CONTROL DEFAULT													AULT = [0x0102]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
PIE	CIE	TIE	VIE	DIE	RIE	ЛЕ	SIE	TE			RE	S		XC1	XC0
XC0	F	RW		External Control 0. The state of this bit is reflected on the XCTL0 pin. This pin is also muxed with PCLKO. COF must be greater than 0x1011 for PCLKO to be disabled, see SS [32].											ed with
XC1	F	RW		External Control 1. The state of this bit is reflected on the XCTL1 pin. XCTL1 may also be used for Ring-In Interrupt. Open drain output, contains internal pull-up ~ 0.5 mA.										used for	
TE	F	RW	Time	er Enabl	e Bit.										
SIE	ŀ	RW	Sour 0 1	SoundBlaster Interrupt Enable; This bit must be set to enable Current Count Timer. SoundBlaster Interrupt disabled SoundBlaster Interrupt enabled											
JIE	F	RW Joystick Interrupt Enable; 0 Joystick Interrupt disabled 1 Joystick Interrupt enabled													

RIE	RW	Ring Interrupt Enable;
		0 Ring Interrupt disabled
		1 Ring Interrupt enabled
DIE	RW	DSP Interrupt Enable;
		0 DSP Interrupt disabled
		1 DSP Interrupt enabled
VIE	RW	 Volume Interrupt Enable. If enabled, software increments/decrements BUTTON MODIFIER via interrupt routine and pushing buttons only sets VUP, VDN, VMU bits. It does not change the volume. Volume Interrupt disabled Volume Interrupt enabled
TIE	RW	Timer Interrupt Enable;
112	1000	0 Timer Interrupt disabled
		1 Timer Interrupt enabled
CIE	RW	Capture Interrupt Enable;
		0 Capture Interrupt disabled
		1 Capture Interrupt enabled
PIE	RW	Playback Interrupt Enable;
		0 Playback Interrupt disabled
		1 Playback Interrupt enabled
[02] V	OICE PLAY	BACK SAMPLE RATE DEFAULT = [0x1F40]

[02] N	OICE I	PLAYB	ACK SA	AMPLE	E RATE							1	DEFAU	LI = [0XIF]	40]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	
			VPSR	[15:8]							VPSF	R [7:0]			

VPSR [15:0] Voice Playback Sample Rate. The sample rate can be programmed from 4 kHz to 55.2 kHz in 1 hertz increments. The default playback sample rate is 8 kHz.

[03] V	OICE	САРТ	RE SA	MPLE I	RATE							D	EFAUL	T = [02	x1F40]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			VCSR	[15:8]							VCSF	R [7:0]			

VCSR [15:0] Voice Capture Sample Rate. The sample rate can be programmed from 4 kHz to 55.2 kHz in 1 hertz increments. Ignored if CNP bit in SS [32] = 0 in which case VPSR [15:0] controls capture rate. The default capture sample rate is 8 kHz.

[04] \	VOICE	E ATTEN	NUATIC	N]	DEFAU	LT = [0]	x8080]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LVM	RES			LVA	[5:0]			RVM	RES			F	RVA [5:0)]	
RVA [5	5:0]	Right Vo range is				yback ch	annel. 7	The LSB	represe	nts –1.5	dB, 000	0000 =	0 dB an	d the	
RVM		Right Vo	oice Mut	te. $0 =$	Unmut	ed, $1 = N$	Auted.								
LVA [5	5:0]	Left Voi range is			•	back cha	nnel. Tł	ne LSB r	epresen	ts –1.5 d	IB, 0000	000 = 0	dB and	the	
LVM		Left Voi	ice Mute	0 = 0	Inmuted	d, $1 = M^{2}$	uted.								
[05]	FM A	FTENUA	TION]	DEFAU	LT = [0	x8080]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LFMM	RES			LFMA	[5:0]			RFMM	RES			R	FMA [5:	0]	
RFMA RFMM		Right F the range Right F	e is 0 dB	to -94.5	5 dB.			·	esizer. T	he LSB	represei	nts –1.5	dB, 000	000 = 0	dB and
		U							·	LCD		1 5 1	D 0000	00 0 1	D 1/1
LFMA		range is				e interna	I IVIUSIC	Synthes	izer. Th	e LSB r	epresent	s –1.5 d	в, 0000	00 = 0 d	B and the
LFMM	1	Left F M	Iusic Mu	ate. $0 =$	Unmu	ited, $1 =$	Muted.								
[06] 1	$1^{2}S(1)$	ATTENU	JATION	I								1	DEFAU	LT = [0	x8080]

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 LS1M RES LS1A [5:0] RS1M RES RS1A [5:0] RS1A [5:		D(1) 11			•								-			AUUUUJ
LS1M RES LS1A [5:0] RS1M RES RS1A [5:0]	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	LS1M	RES			LS1A	[5:0]			RS1M	RES			R	S1A [5:0	D]	

RS1A [5:0] Right I²S(1) Attenuation register. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB.

RS1M LS1A [5:0] LS1M [07] I²S(0)	Right I ² S Left I ² S(Left I ² S(ATTENU	1) Atten 1) Mute	uation r . $0 = 1$	egister. '	The LSI	B repres	sents –1.	5 dB, 00	00000 =	0 dB an	d the ra	ange is 0 DEFAU		
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LSOM RES			LS0A	[5:0]			RSOM	RES				RS0A [5:	0]	
RS0A [5:0] RS0M LS0A [5:0] LS0M	Right I ² S	S(0) Mut 0) Atten	te. $0 = U$ uation r	Jnmuted egister. '	l, 1 = M The LSI	luted. B repres						unge is 0 c		
[08] PLAY	BACK BA	ASE CO	UNT									DEFAU	LT = [()x0000]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		PBC	[15:8]							PBC	[7:0]			
[00] DF 4 V	(PEN) is transferre an interre Count sh circular s	deasser ed via a upt and n ould alv software	ted. When DMA c reload th vays be DMA b	en PEN cycle. Th ne Playb program puffer mu	is assert te next t ack Cur tmed to	ted, the ransfer, rent Co Numbe	Playback after zer unt with r Bytes c	c Currer to is read the valu livided b	nt Count ched in t ue in the by four,	decrem the Playl Playbac minus o	ents on back C ck Base ne ((No on.	e Count. T umber By	ery foun ount, wil The Play (tes/4) –	bytes l generate yback Base 1). The
[09] PLAY 7 6	BACK C	URREN 4	T COU. 3	NT 2	1	0	7	6	5	4	3	DEFAU 2	LT = [0 1	[0000x 0
	5	PCC		2	1	0	,	0	5	PCC		2	1	
PCC [15:0] [10] CAPI 7 6	when PE	EN is dea	sserted.	-	. Contai 1	ns the c 0	urrent P	layback 6	DMA C	Count. Ro 4	eads ar	nd Writes DEFAU 2		
		CBC						-	-	CBC				
CBC [15:0]								ture DM	[A Coun			lue to this	s registe	
	is deasse via a DM and reloa	erted. Wh IA cycle ad the C e progra	nen CEN e. The ne apture C mmed te	V is assen ext trans Current C o Numbe	rted, the fer, afte Count w er Bytes	e Captur r zero i ith the divideo	e Currents reached value in by four	nt Count 1 in the the Cap 7, minus	ading n decrem Capture ture Bas one ((N	ents onc Current se Count	te for e Count t. The 0	very four , will gen Capture E	ure Ena bytes erate ar Base Co	ble (CEN) transferrect interrupt unt should r software
[11] CAPT	is deasse via a DM and reloa always b DMA bu	erted. Wh IA cycle ad the C be progra iffer mus	nen CEN e. The ne apture C mmed to st be div	V is assen ext trans Current C o Numbe isible by	rted, the fer, afte Count w er Bytes	e Captur r zero is ith the divided ensure	e Currents reached value in by four	nt Count 1 in the the Cap 7, minus	ading n decrem Capture ture Bas one ((N	ents onc Current se Count	ce for e Count t. The Bytes/4	very four , will gen Capture E	ure Ena bytes erate ar Base Co e circula	transferred interrupt unt should r software
[11] CAPT	is deasse via a DM and reloa always b DMA bu	erted. Wh IA cycle ad the C be progra offer mus RRENT 4	nen CEN 2. The ne apture C mmed te st be div COUN 3	V is assen ext trans Current C o Numbe isible by	rted, the fer, afte Count w er Bytes	e Captur r zero i ith the divideo	e Currents reached value in by four	nt Count 1 in the the Cap 7, minus	ading n decrem Capture ture Bas one ((N	ents onc Current se Count umber E	ce for e Count t. The (Bytes/4)	very four , will gen Capture E) –1). The	ure Ena bytes erate ar Base Co e circula	transferred interrupt unt should r software
	is deasse via a DM and reloa always b DMA bu URE CU 5	erted. Wh IA cycle ad the C e progra iffer mus RRENT 4 CCC Current	hen CEN b. The ne apture C mmed to st be div COUN 3 [15:8] Count r	V is asse ext trans Current C to Numbo isible by T 2 egister.	rted, the fer, afte Count w er Bytes 7 four to 1	e Captur r zero i ith the divided ensure 0	re Currer s reached value in d by four proper o 7	the Count the Cap the Cap or, minus peration	bading n decrem Capture ture Bas one ((N n. 5	ents onc Current se Count umber E 4 CCC	ce for e Count t. The (Bytes/4) 3 [7:0]	very four , will gen Capture E) –1). The DEFAU 2	ure Ena bytes erate ar Base Co circula LT = [(1	transferred interrupt unt should r software
7 6	is deasse via a DM and reloa always b DMA bu URE CUI 5 Capture when CE	erted. Wh IA cycle ad the C e progra differ mus RRENT 4 CCC Current EN is dea	hen CEN 2. The no apture C mmed to st be div COUN 3 [15:8] Count r asserted.	V is asse ext trans Current C to Numbo isible by T 2 egister.	rted, the fer, afte Count w er Bytes 7 four to 1	e Captur r zero i ith the divided ensure 0	re Currer s reached value in d by four proper o 7	the Count the Cap the Cap or, minus peration	bading n decrem Capture ture Bas one ((N n. 5	ents onc Current se Count umber E 4 CCC	ce for e Count t. The (Bytes/4) 3 [7:0]	very four , will gen Capture E) –1). The DEFAU 2	ure Ena bytes erate ar 3ase Co c circula LT = [(1 ng must	transferred interrupt unt should r software x0000] 0 t be done
7 6 CCC [15:0]	is deasse via a DM and reloa always b DMA bu URE CUI 5 Capture when CE	erted. Wh IA cycle ad the C e progra differ mus RRENT 4 CCC Current EN is dea	hen CEN 2. The no apture C mmed to st be div COUN 3 [15:8] Count r asserted. 3	V is asse ext trans Current C to Numbo isible by T 2 egister.	rted, the fer, afte Count w er Bytes 7 four to 1	e Captur r zero i ith the divided ensure 0	re Currer s reached value in d by four proper o 7	the Count the Cap the Cap or, minus peration	bading n decrem Capture ture Bas one ((N n. 5	ents onc Current se Count umber E 4 CCC	ce for e Count t. The 0 Bytes/4 [7:0] ading a 3	very four , will gen Capture E) –1). The DEFAU 2 and Writin	ure Ena bytes erate ar 3ase Co c circula LT = [(1 ng must	transferred interrupt unt should r software x0000] 0 t be done

TBC [15:0] Timer Base Count. Writing a value to this register loads data into the Timer Current Count register. Loading must be done when Timer Enable (TE) is deasserted. When TE is asserted, the Timer Current Count register decrements once for every specified time period. The time period (10 µs or 100 ms) is programmed via the PTB bit in SS [44]. When TE is asserted, the Timer Current Count decrements once every time period. The next count, after zero is reached in the Timer Current Count register, will generate an interrupt and reload the Timer Current Count register with the value in the Timer Base Count register.

	ER CURR	RENT CO	UNI	•								DEFA		oxooool
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		TCC [15:8]							TCC	[7:0]			
TCC [15:0]		MA Curr asserted.	rent C	ount regist	er. Co	ontains t	the current	t timer o	count. l	Reading a	and Wi	riting mu	ist be do	one wher
[14] MAS	TER VOI	LUME A	TTE	NUATION	I							DEFAU	J LT = [()x0000]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LMVM	RES			LMVA [4:0]			RMVM	RE	S]	RMVA [4	:0]	
RMVA [4:0 RMVM LMVA [4:0]	-46.5 dI Volume Right M] Left Ma	B. This reg attenuation aster Vol ster Volu	gister n leve ume I me At	Attenuation is added wi l. See Hard Mute. $0 = 0$ ttenuation. is added wit	th the ware V Unmut The L	Hardwa Volume ted, 1 = SB repr	re Volume Button Mo Muted. resents –1.	e Button odifier R .5 dB, 0	Modifi egister 0000 =	er value t descriptic	o produ on for n d the ra	uce the finore deta	nal DAC ils. dB to	
LMVM	Volume Left Ma	attenuation ster Volu	n leve me M	I. See Hard 1 . Internet in the Hard 1 . Internet in the Hard 1 is the Hard 1 internet in the Hard 1 in the Hard 1 is the Hard 1 in the Hard 1 in the Hard 1 is the Hard 1 in the Hard 1 in the Hard 1 in the Hard 1 is the Hard 1 in the Hard 1 in the Hard 1 in the Hard 1 is the Hard 1 in the Hard 1	ware V	/olume	Button Mo				on for n		ils.	
[15] CD C 7 6		ENUAII 4	3	2	1	0	7	6	5	4	3	2	ים בבות 1	0
LCDM	RES		-	LCDA [4:0]		0	RCDM	RE				RCDA [4		0
LCDA [4:0] LCDM	Left CD	Attenuat	ion. 7	nmuted, 1 The LSB re muted, 1 =	epresei	nts –1.5	5 dB, 0000	00 = +12	2 dB an	d the ran	ge is +	-12 dB to	o –34.5 d	dΒ.
	Left CD Left CD	Attenuat Mute. 0	ion. 7 = Uni U ATI 3	The LSB remuted, $1 =$	epresei	nts –1.5	5 dB, 0000 7 RSYM	$\frac{6}{RE}$	5	d the ran	3	-12 dB to DEFAU 2 RSYA [4:	J LT = [(1	
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM	Left CD Left CD TH GAIN/ 5 RES Right S ^Y Left SY Left SY	Attenuation Mute. 0 ATTENU 4 YNTH Atten NTH Atten NTH Mut	ion. 7 = Unit UATIO 3 tenuation tenuation te. 0 =	The LSB re muted, 1 = ON 2	Mute Mute 1 SB re B rep	nts –1.5 ed. 0 present = Muter resents	7 RSYM s –1.5 dB, d. –1.5 dB, (6 RI 00000	5 = +12	4 dB and th	3 ne range range	DEFAU 2 RSYA [4: ge is +12	$JLT = [0]$ $\frac{1}{0]}$ $dB to -3$	0x88888] 0 34.5 dB. 4.5 dB.
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID	Left CD Left CD TH GAIN/ 5 RES Right S ^Y Right S ^Y Left SY Left SY GAIN/AT	Attenuation Mute. 0 ATTENU 4 YNTH At YNTH Atten NTH Atten NTH Mut	ion. 7 = Unit UATIO 3 tenuari tenuari te. 0 = TON	The LSB remuted, $1 = 0$ ON 2 LSYA [4:0] tion. The L 0 = 0 Unmuted 1 = 0 1 = 0	Mute Mute SB re d, 1 = B reput, 1 =	nts –1.5 ed. 0 present = Muter resents Muted.	7 RSYM s –1.5 dB, d. –1.5 dB, (6 RI 000000 00000 =	$\frac{5}{28}$ = +12	4 dB and th B and the	3 ne range e range	DEFAU 2 RSYA [4: ge is +12 c is +12 o DEFAU	$JLT = [0]$ $\frac{1}{0}$ $dB to -3$ $JLT = [0]$	0x8888] 0 34.5 dB 4.5 dB. 0x8888]
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID - 7 6	Left CD Left CD TH GAIN/ 5 RES Right S ^Y Right S ^Y Left SY Left SY GAIN/AT 5	Attenuation Mute. 0 ATTENU 4 YNTH Atten NTH Atten NTH Mut	ion. 7 = Unit UATIO 3 tenuari tenuari te. 0 = TON 3	The LSB remuted, $1 = 0$ ON 2 LSYA [4:0] tion. The L 0 = Unmuted on. The LS = Unmuted	Mute Mute SB re d, 1 = B rep l, 1 =	nts –1.5 ed. 0 present = Muter resents	7 <u>RSYM</u> s –1.5 dB, d. –1.5 dB, (6 RE 000000 00000 = 6	$\frac{5}{28} = +12$ +12 d	4 dB and th	3 ne range e range 3	DEFAU 2 RSYA [4: ge is +12 c is +12 c DEFAU 2	$JLT = [0]$ $\frac{1}{0}$ $dB to -3$ $JLT = [0]$ 1	0x88888] 0 34.5 dB. 4.5 dB.
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID 7 6 LVDM RVDA [4:0] RVDA [4:0] RVDA [4:0] LVDM	Left CD Left CD TH GAIN/ 5 RES Right S ^Y Left SY Left SY GAIN/AT 5 RES Right V Right V Left VI Left VI	Attenuation Mute. 0 ATTENU 4 YNTH Attenue NTH Attenue NTH Mute NTH Mute ID Attenue D Attenue D Attenue D Mute. 0	ion. 7 = Unit UATIO 3 tenuation tenuation te. 0 = TON 3 uation 0 = U ation. 0 = Ur	The LSB remuted, $1 = \frac{0}{2}$ ON LSYA [4:0] tion. The L 0 = Unmuted 0 = Unmuted 1 = Unmuted 2 LVDA [4:0] . The LSB Jnmute, $1 = 1$ The LSB remuted, 1	Mute Mute 1 SB re d, 1 = B repu l, 1 = 1 repress = Mute	nts -1.5 ed. 0 present = Muter resents Muted. 0 eents -1 ed. ents -1.	7 RSYM s -1.5 dB, d. -1.5 dB, () RVDM .5 dB, 000	$\frac{6}{00000}$ $\frac{00000}{00000} = \frac{6}{000}$ $\frac{6}{000} = +$	$\frac{5}{28} = +12$ $\frac{5}{4} + 12$ $\frac{5}{28} = 12$ $\frac{5}{12}$ $\frac{5}{12}$	4 dB and the B and the 4 und the ra	3 ne range range 3 unge is	DEFAU 2 RSYA [4: ge is +12 c 2 is +12 c DEFAU 2 RVDA [4: +12 dB +12 dB t	$JLT = [0] \\ 1 \\ 0] \\ dB to -3 \\ dB to -3 \\ JLT = [0] \\ 1 \\ 0] \\ to -34.5 \\ co -34.5 \\ $	0 34.5 dB. 4.5 dB. 0 34.5 dB. 0 3 dB. dB.
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID 7 6 LVDM RVDA [4:0] RVDA [4:0] RVDA [4:0] LVDM LVDA [4:0] LVDM [18] LINE	Left CD Left CD FH GAIN/ 5 RES Right S' Right S' Left SY GAIN/AT 5 RES Right V Right V Right V Left VI Left VI Left VI Left VI	Attenuation Mute. 0 ATTENU 4 YNTH Attenue NTH Attenue NTH Mute ID Attenue D Attenue D Attenue D Mute. 0 TTENUA	ion. T = Unit UATION 3 tenuation tenuation te. 0 = TION 3 uation. 0 = U ation. 0 = Ur TION	The LSB remuted, $1 = \frac{2}{0N}$ LSYA [4:0] tion. The L 0 = Unmuted on. The LS = Unmuted 2 LVDA [4:0] . The LSB Jnmute, $1 = The$ LSB remuted, 1 N	Mute Mute 1 SB re d, 1 = B repu l, 1 = 1 repress = Mute repress = Mute	nts -1.5 ed. 0 present = Muter resents Muted. 0 eents -1 ed. ents -1. ted.	7 RSYM s -1.5 dB, d. -1.5 dB, (0) RVDM .5 dB, 000 5 dB, 000	$\frac{6}{00000}$ $00000 = \frac{6}{000} = +1$	5 $= +12$ $+12$ $+12$ 5 3 12 dB a 2 dB a	4 dB and the B and the 4 und the rat	3 ne range range 3 nge is	DEFAU 2 RSYA [4: ge is +12 of 2 is +12 of DEFAU +12 dB t +12 dB t DEFAU	$JLT = [0] \\ 1 \\ 0] \\ dB to -3 \\ dB to -3 \\ JLT = [0] \\ 1 \\ 0] \\ to -34.5 \\ 0 -34.5 \\ JLT = [0] \\ JLT = [0] \\ 0 \\ JLT = [0] \\$	0 34.5 dB. 4.5 dB. 0 3 dB. dB. 0 3 dB.
LCDM [16] SYN 7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID 7 6 LVDM RVDA [4:0] RVDA [4:0] RVDA [4:0] LVDM	Left CD Left CD FH GAIN/ 5 RES Right S' Right S' Left SY GAIN/AT 5 RES Right V Right V Right V Left VI Left VI Left VI Left VI	Attenuation Mute. 0 ATTENU 4 YNTH Attenue NTH Attenue NTH Mute NTH Mute ID Attenue D Attenue D Attenue D Mute. 0	ion. 7 = Unit UATIO 3 tenuation tenuation te. 0 = TON 3 uation 0 = U ation. 0 = Ur	The LSB remuted, $1 = \frac{0}{2}$ ON LSYA [4:0] tion. The L 0 = Unmuted 0 = Unmuted 1 = Unmuted 2 LVDA [4:0] . The LSB Jnmute, $1 = 1$ The LSB remuted, 1	Mute Mute 1 SB re d, 1 = B repu l, 1 = 1 repress = Mute	nts -1.5 ed. 0 present = Muter resents Muted. 0 eents -1 ed. ents -1.	7 RSYM s -1.5 dB, d. -1.5 dB, () RVDM .5 dB, 000	$\frac{6}{00000}$ $\frac{00000}{00000} = \frac{6}{000}$ $\frac{6}{000} = +$	5 $= +12$ $+12$ $+12$ $\frac{5}{28}$ 12 dB a 5	4 dB and the B and the 4 und the ra	3 ne range range 3 unge is	DEFAU 2 RSYA [4: ge is +12 c 2 is +12 c DEFAU 2 RVDA [4: +12 dB +12 dB t	$JLT = [0] \\ 1 \\ 0] \\ dB to -3 \\ dB to -3 \\ JLT = [0] \\ 1 \\ 0] \\ to -34.5 \\ 0 -34.5 \\ JLT = [0] \\ 1 \\ 1 \\ 0] \\ ILT = [0] \\ IL$	0 34.5 dB. 4.5 dB. 0 34.5 dB. 0 3 dB. dB.

												AD18	AOI
[19] MIC/PH						-	-	_			DEFAU		
7 6 MCM M20	5 RES	4	3 	2 [CA [4:0]	1 0	7 PIM	6 D	5 RES	4	3 DIA	2 [3:0]	1	0 RES
PIA [3:0] PIM MCA [4:0] M20	PHON PHON Microp Microp	E_IN M hone At hone 20	tenuation ute. tenuation dB Gain	n. The LSF	3 represent 3 represent)-bit enable	s –3 dB, ()000 = (, 00000	0 dB and = +12 d	dB and th	ge is 0 d e range	lB to -4		<u>. </u>
МСМ		hone M											
[20] ADC SO					1 0	7	C	5	4		DEFAU		
7 6 LAGC	5 LAS [2:0	4	3	2 LAG [3	$\frac{1}{0}$	7 RAGC	6	5 RAS [2	4	3	2 PAG	1 i [3:0]	0
RAG [3:0] RAGC LAG [3:0] LAGC	and the Right A Left AI and the	a range is Automati DC Gain a range is	s 0 dB to ic Gain 0 Control s 0 dB to	+22.5 dB Control (A ADC source +22.5 dB	GC) Enable e select and	e, 1 = Ena l Gain. Fo	ıbled, 0 r Gain,	= Disal LSB rep	oled. presents +				
RAS [2:0] 200 201 210 211 100 101 110 111	ADC R R_LIN R_OU' R_CD R_SYN R_VID Mono I Reserve Reserve	E T VTH Mix ed	ut Sourc	e			LAS [2: 000 001 010 011 100 101 100 111	L L L L M P	DC Left : _LINE _OUT _CD _SYNTH _VID IIC HONE_I: eserved	[ource		
Note: When the	he AGC	is enable	ed, gain o	control sett	ings for the	ADC PC	GA are o	overridd	en for all	inputs.			
[32] CHIP C						_		_			DEFAU		
7 6 WSE CDE	5 RES	4 CNP	3	2 RES	1 0	7	6	5 F [3:0]	4	3	2	1	0
I ² SF0 [1:0] I ² SF1 [1:0] COF [3:0] CNP CDE	Clock (PCLKC SS [38] Capture 0 = Captioner (Captor) = Captor) = Captor	Dutput F D = 256 J. If COH e not equ pture equ pture not	00 Dis 01 Rig 10 I^2S 11 Lef requency × PCR/2 F > 11, the to Play the equal to the to Play	ht Justified Justified y. Program y ^{COF} where hen PCLK ayback. back. The o Playback	mable cloc COF = 0:1 O is disable capture sar	1 and PC ed.	R is the	e value o mined b	of the Prog	gramma /back sa	able Cloo	ck Rate te in SS	Register [02].

[33] DSP C	CONFIGUE	ATION										DEFA	$\mathbf{ULT} = [0\mathbf{x}]$	
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
DS1 DS0	D DIT	RES		ADR	I1T	IOT	CPI	PBI	FMI	I1I	IOI		DFS [2:0]
DFS [2:0]	000—Ma 001—I ² S(010—I ² S(011—Mu 100—Sou 101—Sou	ne Sync So ximum Fra (0) Sample (1) Sample sic Synthe and System and System	ame R e Rate e Rate esizer S n Play	Rate Sample back Sa	Rate mple R	ate	me Sync	accordi	ng to the	e follow	ing so	urce.		
	111—Res						-2							
IO		ta Intercep	-			-								
1I FMI		ta Intercep								usia Da	40 E mo	hlad		
PBI		c Synthesi Data Inter			<u>^</u>			-			la Ella	bieu.		
СРІ	•	Data Inter	-				· ·							
OT	-	keover Da	<u>^</u>					luie Dai		su.				
1T	. ,	keover Da												
ADR	. ,	sync. Writ			,			port to b	e re-init	ialized				
DIT DS0 DS1	DSP Inter DSP Mail	rrupt. A wi lbox 0 Stat lbox 1 Stat	rite to tus. 0	this bit = last ac	causes	an ISA dicates i	interrup read, 1 =	t if DIE last acc	is assert ess indi	ed. cates wi	rite.			
[34] FM SA	AMPLE RA	ATE										DEFAU	JLT = [0x]	5622]
7 6														-
/ 0	5	4	3	2	1	0	7	6	5	4	3	2	1	0
FMSR [15:0]	FM F Music S	4 [SR [15:8] Sample Ra								FMS	R [7:0] to 27.0] 6 kHz in	1 hertz in	creme
	FM F Music S SAMPLE 1 5	4 [SR [15:8] Sample Ra RATE 4	ite reg							FMSI 4 kHz 4	R [7:0] to 27.0	l 6 kHz in DEFAU I 2	1	creme
FMSR [15:0] [35] I²S(1) 7 6	FM F Music S SAMPLE 1 5 S15	4 ISR [15:8] Sample Ra RATE 4 SR [15:8]	ate reg	gister. Tl 2	he samp	ole rate c	an be pr	ogramn 6	ned from 5	FMSI 4 kHz 4 S1SI	R [7:0] to 27.0 3 R [7:0]	l 6 kHz in DEFAU I 2	1 hertz ind LT = [0xA]	creme AC44] 0
FMSR [15:0] [35] I²S(1) 7 6	FM F Music S SAMPLE 1 5 S1S I ² S(1) Sat	4 [SR [15:8] Sample Ra RATE 4	ate reg 3 regist	tister. Tl 2 ter. The	he samp 1 sample	ole rate c 0 rate car	an be prog	ogramn 6 grammed	ned from 5 1 from 4	FMSI 4 kHz 4 S1SI	R [7:0] to 27.0 3 R [7:0]	l 6 kHz in DEFAU I 2	1 hertz ind LT = [0xA]	creme (C44] 0
FMSR [15:0] [35] I²S(1) 7 6	FM F Music S SAMPLE 1 5 S1S I ² S(1) San Programm	4 Sample Ra RATE 4 SR [15:8] mple Rate ning this re	ate reg 3 regist	tister. Tl 2 ter. The	he samp 1 sample	ole rate c 0 rate car	an be prog	ogramn 6 grammed	ned from 5 1 from 4	FMSI 4 kHz 4 S1SI	R [7:0] to 27.0 3 R [7:0]	6 kHz in DEFAUI 2 kHz in 1 1	1 hertz ind LT = [0xA]	cremer CC44] 0 ements
FMSR [15:0] [35] I²S(1) 7 6 SISR [15:0]	FM F Music S SAMPLE 1 5 S1S I ² S(1) San Programm	4 Sample Ra RATE 4 SR [15:8] mple Rate ning this re	ate reg 3 regist	tister. Tl 2 ter. The	he samp 1 sample	ole rate c 0 rate car	an be prog	ogramn 6 grammed	ned from 5 1 from 4	FMSI 4 kHz 4 S1SI	R [7:0] to 27.0 3 R [7:0]	6 kHz in DEFAUI 2 kHz in 1 1	1 hertz ind $LT = [0xA]$ 1 hertz increa	cremer CC44] 0 ements
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0)	FM F Music S SAMPLE 1 5 S11 I ² S(1) Sat Programn SAMPLE 1 5	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this re RATE	tte reg 3 registe 3	zister. Tl 2 ter. The r has no	he samp 1 sample effect u	ole rate c 0 rate car unless I ² ;	7 7 n be prog SF1 [1:0	ogramn 6 grammed] is enal	5 5 d from 4 pled.	FMSI 4 kHz 4 S1SF kHz to 4	R [7:0] to 27.0 3 R [7:0] 55.2 k	6 kHz in DEFAU 2 kHz in 1 1 DEFAU	1 hertz ind $LT = [0xA]$ 1 hertz increa	crements 0 ements
⁷ MSR [15:0] [35] I²S(1) 7 6 ³ ISR [15:0] [36] I²S(0) 7 6 ³ OSR [15:0]	FM F Music S SAMPLE 1 5 S1S I ² S(1) Sar Programm SAMPLE 1 5 S0S I ² S(0) Sar Programm	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this re RATE 4	3 regist gister 3 regist	z ter. The r has no 2 er. The	he samp 1 sample effect u 1 sample	ole rate o 0 rate car inless I ² 0 rate can	an be prog	ogramn 6 grammed 1] is enal 6 ammed	ned from 5 d from 4 bled. 5 from 4 k	FMSI 4 kHz 4 S1SI kHz to 4 S0SF	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0]	6 kHz in DEFAU 2 kHz in 1 1 DEFAU 2 z in 1 her	1 hertz ind $LT = [0xA]$ 1 $hertz increases JLT = [0x] 1 rtz increms$	crements AC44] 0 ements AC44] 0 ents.
⁷ MSR [15:0] [35] I²S(1) 7 6 31SR [15:0] [36] I²S(0) 7 6 30SR [15:0] [37] RESE	FM F Music S SAMPLE 1 5 S1S I ² S(1) San Programm SAMPLE 1 5 S0S I ² S(0) San Programm RVED	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this re RATE 4 SR [15:8] mple Rate ng this reg	3 regist gister 3 regist	ter. The 2 ter. The r has no 2 ter. The has no efficiency	he samp 1 sample effect u 1 sample ffect un	ole rate c 0 rate car inless I ² ; 0 rate can less I ² SF	an be prog 7 be prog 7 be progr 70 [1:0]	ogramm 6 grammed] is enal 6 ammed is enable	the from 5 d from 4 bled. 5 from 4 k ed.	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0] 5.2 kH	6 kHz in DEFAU 2 kHz in 1 1 DEFAU 2 z in 1 her DEFA	1 hertz ind LT = [0xA] hertz increa JLT = [0x] TLT = [0x] TLT = [0x] TLT = [0x]	cremen C44] 0 ements AC44 0 ents. x0000
FMSR [15:0] [35] I ² S(1) (5 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0]	FM F Music S SAMPLE 1 5 S1S I ² S(1) Sat Programn SAMPLE 1 5 S0S I ² S(0) Sat Programn RVED 5	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate 4 RATE 4 SR [15:8] mple Rate 15:8]	3 regist gister 3 regist	z ter. The r has no 2 er. The	he samp 1 sample effect u 1 sample	ole rate o 0 rate car inless I ² 0 rate can	an be prog	ogramn 6 grammed 1] is enal 6 ammed	ned from 5 d from 4 bled. 5 from 4 k	FMSI 4 kHz 4 <u>51SF</u> kHz to 4 <u>50SF</u> Hz to 55 4	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0]	6 kHz in DEFAU 2 kHz in 1 1 DEFAU 2 z in 1 her	1 hertz ind $LT = [0xA]$ 1 $hertz increases JLT = [0x] 1 rtz increms$	crements AC44] 0 AC44] 0 ents.
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0] [37] RESE	FM F Music S SAMPLE 1 5 S1S I ² S(1) San Programm SAMPLE 1 5 S0S I ² S(0) San Programm RVED	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this re RATE 4 SR [15:8] mple Rate ng this reg	3 regist gister 3 regist	ter. The 2 ter. The r has no 2 ter. The has no efficiency	he samp 1 sample effect u 1 sample ffect un	ole rate c 0 rate car inless I ² ; 0 rate can less I ² SF	an be prog 7 be prog 7 be progr 70 [1:0]	ogramm 6 grammed] is enal 6 ammed is enable	the from 5 d from 4 bled. 5 from 4 k ed.	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0] 5.2 kH	6 kHz in DEFAUI 2 kHz in 1 l DEFAU 2 z in 1 her DEFA	1 hertz ind LT = [0xA] hertz increa JLT = [0x] TLT = [0x] TLT = [0x] TLT = [0x]	crement C44] 0 ements AC44 0 ents. x0000
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0] [37] RESE	FM F Music S SAMPLE 1 5 S13 I ² S(1) Sar Programn SAMPLE 1 5 S03 I ² S(0) Sar Programin RVED 5 RES	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this reg SR [15:8] mple Rate ng this reg 4	3 regist egister 3 regist ister h 3	ter. The r has no el control c	he samp 1 sample effect u 1 sample ffect un	ole rate c 0 rate car inless I ² ; 0 rate can less I ² SF	an be prog 7 be prog 7 be progr 70 [1:0]	ogramm 6 grammed] is enal 6 ammed is enable	the from 5 d from 4 bled. 5 from 4 k ed.	FMSI 4 kHz 4 <u>51SF</u> kHz to 4 <u>50SF</u> Hz to 55 4	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0] 5.2 kH 3	6 kHz in DEFAU 2 kHz in 1 1 DEFAU 2 z in 1 her DEFA 2	1 hertz ind LT = [0xA] hertz increa JLT = [0x] TLT = [0x] TLT = [0x] TLT = [0x]	crements AC44] 0 ements AC44 0 ents. x0000] 0
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0] [37] RESE 7 6 [38] PROG	FM F Music S SAMPLE 1 5 S13 I ² S(1) Sar Programn SAMPLE 1 5 S03 I ² S(0) Sar Programin RVED 5 RES FRAMMAE 5	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ing this reg A BLE CLO	1 regist egister 3 regist ister h 3 CK R	ter. The r has no 2 rer. The has no effective 2 2 cATE	he samp 1 sample effect u 1 sample ffect un 1	ole rate c 0 rate car inless I ² 0 rate can less I ² SF 0	2 can be prog 7 control of the prog 7 control of the program 7 control	ogramm 6 grammed 1] is enal 6 ammed 1 is enable 6	1 from 4 bled. 5 from 4 k ed. 5	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55 4 RES 4	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 R [7:0] 5.2 kH 3	b kHz in DEFAUI 2 kHz in 1 1 DEFAU 2 z in 1 her DEFA 2 DEFAU	1 hertz ind $LT = [0xA]$ 1 1 1 $LT = [0x]$ 1 1 1 1 1 1 1 1 1 1	crements AC44] 0 ements AC44] 0 ents. x0000 0 AC44]
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0] [37] RESE 7 6 [38] PROG 7 6	FM F Music S SAMPLE 1 5 S13 I ² S(1) Sar Programn SAMPLE 1 5 S03 I ² S(0) Sar Programin RVED 5 RES FRAMMAE 5 Program	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this reg SR [15:8] mple Rate ng this reg 4 BLE CLOG 4	3 register 3 register 3 register 3 CK R 3 lock R register	ter. The r has no 2 rer. The has no effective 2 rer. The h	he samp 1 sample effect u 1 sample ffect un 1 1 ister. Th y valid	ole rate c 0 rate car inless I ² 0 rate can less I ² SF 0 0 0 0 0 0 0 0 0 0	an be prog 7 be prog SF1 [1:0] 7 be progr 70 [1:0] 7 7 rate can be COF 1	rogramm 6 grammed] is enal 6 ammed 1 is enable 6 6 6 be prog bits in Si	hed from 5 5 d from 4 bled. 5 from 4 k ed. 5 5 5 rammed S [32] ar	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55 4 RES 4 RES 4 RES	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 C [7:0] 5.2 kH 3 3 [7:0] 5 kHz	6 kHz in DEFAU 2 kHz in 1 1 DEFAU 2 z in 1 her DEFA 2 DEFAU 2 to 50 kH	1 hertz ind $LT = [0x^{A}]$ 1 $LT = [0x]$ $ILT = [0x]$ 1 $ULT = [0x]$ 1 $LT = [0x]$ 1 1 1 1 1 1 1 1 1	crements AC44] 0 ements AC44] 0 ents. x0000] 0 AC44] 0 tz
FMSR [15:0] [35] I ² S(1) = 7 6 51SR [15:0] [36] I ² S(0) 7 6 50SR [15:0] [37] RESE 7 6 [38] PROG 7 6	FM F Music S SAMPLE 1 5 S1S I ² S(1) Sat Programm SAMPLE 1 5 S0S I ² S(0) Sat Programm RVED 5 RES FRAMMAE 5 Program incremo 256 × F	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this reg RATE 4 SR [15:8] mple Rate ng this reg 4 BLE CLO 4 CR [15:8] nmable Cl ents. This is CR/2 ^{COF} .	ate reg 3 registe 3 registe ister h 3 CK R 3 lock R registe See S	ter. The r has no 2 rer. The has no effective cer. The cer. The cer. The	he samp 1 sample effect u 1 sample ffect un 1 1 ister. The ly valid for dete	ole rate o 0 rate car inless I ² 0 rate can less I ² SF 0 0 0 0 e clock when th rmining	an be prog 7 be progr 7 be progr 7 [7 [7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rogramm 6 grammed] is enal 6 ammed 1 is enable 6 6 6 be prog bits in Si	hed from 5 5 d from 4 bled. 5 from 4 k ed. 5 5 5 rammed S [32] ar	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55 4 RES 4 RES 4 RES	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 C [7:0] 5.2 kH 3 3 [7:0] 5 kHz	b KHz in DEFAUI 2 KHz in 1 1 DEFAU 2 z in 1 her DEFA 2 DEFAU 2 to 50 kH nultiplier	1 hertz ind $LT = [0x^{A}]$ 1 $LT = [0x]$ $ILT = [0x]$ 1 $ULT = [0x]$ 1 $LT = [0x]$ 1 1 1 1 1 1 1 1 1	cremer AC44] 0 ements AC44] 0 ents. x0000] 0 AC44] 0 tz CLKO
FMSR [15:0] [35] I ² S(1) = 7 6 SISR [15:0] [36] I ² S(0) 7 6 SOSR [15:0] [37] RESE 7 6 [38] PROG 7 6 PCR [15:0]	FM F Music S SAMPLE 1 5 S1S I ² S(1) Sat Programm SAMPLE 1 5 S0S I ² S(0) Sat Programm RVED 5 RES FRAMMAE 5 Program incremo 256 × F	4 ISR [15:8] Sample Ra RATE 4 SR [15:8] mple Rate ning this reg RATE 4 SR [15:8] mple Rate ng this reg 4 BLE CLO 4 CR [15:8] nmable Cl ents. This is CR/2 ^{COF} .	ate reg 3 registe 3 registe 3 regist 3 CK R 3 lock R regist See S	ter. The r has no 2 rer. The has no effective cer. The cer. The cer. The	he samp 1 sample effect u 1 sample ffect un 1 1 ister. The ly valid for dete	ole rate o 0 rate car inless I ² 0 rate can less I ² SF 0 0 0 0 e clock when th rmining	an be prog 7 be progr 7 be progr 7 [7 [7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rogramm 6 grammed] is enal 6 ammed 1 is enable 6 6 6 be prog bits in Si	hed from 5 5 d from 4 bled. 5 from 4 k ed. 5 5 5 rammed S [32] ar	FMSI 4 kHz 4 S1SF kHz to 4 S0SF Hz to 55 4 RES 4 RES 4 RES	R [7:0] to 27.0 3 R [7:0] 55.2 k 3 C [7:0] 5.2 kH 3 3 [7:0] 5 kHz	b KHz in DEFAUI 2 KHz in 1 1 DEFAU 2 z in 1 her DEFA 2 DEFAU 2 to 50 kH nultiplier	1 hertz ind $LT = [0xA]$ 1 1 1 1 1 1 1 1 1 1	cremer AC44] 0 ements AC44] 0 ents. x0000] 0 AC44] 0 tz CLKO

POA [4:0] PHONE-OUT Attenuation. The LSB represents -1.5 dB, 0000 = 0 dB and the range is 0 dB to -46.5 dB.

РОМ	PHON	E-OUT	Mute.	0 = Unr	nuted, 1	= Mute	ed.							
3DD [3:0]	3D Dep the rang				ement C	Control.	The LSI	B repres	ents 6 2/	'3% pha	se expa	nsion, 0	000 = 000	% and
3DDM				0						-	-	0] bits, a reo is off		es
[40] RESER	VED											DEFAU	JLT = [0	Dx0000]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RE	ES							RI	ES			
[41] HARD	WARE V	OLUM	E BUT	TON M	ODIFII	ER					DI	EFAULT	Γ = [0xΣ	XX1B]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RE	ES				VMU	VUP	VDN]	BM [4:0]	
BM [4:0] VDM VUP VMU	Volume	e Down												

mentary grounding of greater than 50 ms on the VOL_UP pin will cause a decrement (decrease in Attenuation) in this register. Holding the pin LO for greater than 200 ms will cause an auto-decrement every 200 ms. This is also true for a momentary grounding of the VOL_DN pin. A momentary grounding of both the VOL_UP and VOL_DN causes a mute and no increment or decrement to occur.

When Muted, an unmute is possible by a momentary grounding of both the $\overline{\text{VOL}_UP}$ and $\overline{\text{VOL}_DN}$ pins together, a momentary grounding of $\overline{\text{VOL}_UP}$ (this also causes a volume increase), a momentary grounding of $\overline{\text{VOL}_DN}$ (this also causes a volume decrease) or a write of "0" to the VI bit in SS [BASE+1].

[42] D	SP MA	ILBOX	0									Ι	DEFAUI	LT = [02]	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			MB0R	[15:8]							MB0F	R [7:0]			

MB0R [15:0] This register is used to send data and control information to and from the DSP.

[43] D	SP MA	ILBOX	1]	DEFAU	LT = [0	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			MB1R	[15:8]							MB1F	R [7:0]			

MB1R [15:0] This register is used to send data and control information to and from the DSP.

[44] F	POWER	DOWN	AND T	IMER	CONTE	ROL							DEFAU	JLT = [0:	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
CPD	RES	PIW	PIR	PAA	PDA	PDP	PTB	3D	PD3D	GPSP	RES	DM		RES	

The AD1816A supports a timeout mechanism used in conjunction with the Timer Base Count and Timer Current Count registers to generate a power-down interrupt. This interrupt allows software to power down the entire chip by setting the CPD bit. This power-down control feature lets users program a time interval from 1 ms to approximately 1.8 hours in 1 ms increments. Five power-down count reload enable bits are used to reload the Timer Current Count from the Timer Base Count when activity is seen on that particular channel.

Programming Example: Generate Interrupt if No ISA Reads or Writes occur within 15 Minutes.

1) Write [SSBASE+0] with 0x0C ; Write Indirect address for TIMER BASE COUNT "register 12"

- 2) Write [SSBASE+2] with 0x28; Write TIMER BASE COUNT with $(15 \text{ min} \times 60 \text{ sec/min} \times 100 \text{ ms}) = 0x2328$; Note: PTB = 1, timer decrements every 100 ms
- 3) Write [SSBASE+3] with 0x23 ; Write High byte of TIMER BASE COUNT
- 4) Write [SSBASE+0] with 0x2C ; Write Indirect address for POWER-DOWN and TIMER CONTROL register
- 5) Write [SSBASE+2] with 0x00 ; Write Low byte of POWER-DOWN and TIMER CONTROL register
- 6) Write [SSBASE+3] with 0x31 ; Set Enable bits for PIW and PIR
- 7) Write [SSBASE+0] with 0x01 ; Write Indirect address for INTERRUPT CONFIG register
- 8) Write [SSBASE+2] with 0x82 ; Set the TE (Timer Enable) bit
- 9) Write [SSBASE+3] with 0x20 ; Set the TIE (Timer Interrupt Enable) bit

- DM DAC Mute. This bit mutes the digital DAC output entering the analog mixer.
- GPSP Game Port Speed Select. Selects the operating speed of the game port.
 - Slow Game Port 0
 - Fast Game Port 1
- PD3D Power-Down 3D. Turns off internal Phat Stereo circuitry.
 - 0 On 1

1

- Off
- 3D 3D Analog Mixer Bypass. Allows the analog output of the D/A converters to bypass the Phat Stereo Circuit. Enables ultimate flexibility for mixing and any combination of 3D enhanced analog signals or non-3D enhanced signals with the DAC output.
 - 0 3D Phat Stereo Enabled for DAC Output
 - 3D Phat Stereo Bypassed for DAC Output
- PTB Power-Down Time Base. $1 = \text{timer set to } 100 \text{ ms}, 0 = \text{timer set to } 10 \text{ } \mu\text{s}.$
- PDP Power-down count reload on DSP Port enabled; "1" = Reload count if DSP Port enabled. DSP Port is enabled when Slot 0 of SDI of the DSP Serial Port Input is Alive (Bit 7 = 1).
- Power-down count reload on Digital Activity; "1" = Reload count on Digital Activity. Digital Activity is defined as any **PDA** activity on (I²S0, I²S1, FM or PLAYBACK).
- Power-down count reload on Analog Activity; "1" = Reload count on Analog Activity. Analog Activity is defined as any PAA analog input unmuted (LINE, CD, SYNTH, MIC, PHONE_IN) or MASTER VOLUME unmuting.
- PIR Power-down count reload on ISA Read; "1" = Reload count on ISA read. ISA Read is defined as a read from any active logical device inside the AD1816A.
- PIW Power-down count reload on ISA Write; "1" = Reload count on ISA write. ISA Write defined as a write to any active logical device inside the AD1816A.
- CPD Chip Power-down
 - Power-Down; 1
 - 0 Power-Up

For Power-up, software should poll the [SSBASE+0] CRY bit for "1" before writing or reading any logical device.

[45] V	ERSIO	N ID										D	EFAUL	T = [0x]	XXXX]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		V	'ER [15:	8]						١	/ER [7:0]			
[46] B	RESERV	TED											DEFAU	T T – IO	00001
	LOLIN	/ED										-	DEFAU	$\Gamma I = [0]$	xuuuuj
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1 – LU	xuuuu]

Test register. Should never be written or read under normal operation.

SB Pro; AdLib Registers

The AD1816A contains sets of ISA Bus registers (ports) that correspond to those used by the SoundBlaster Pro audio card from Creative Labs and the AdLib audio card from AdLib Multimedia. Table IX lists the ISA Bus SoundBlaster Pro registers. Table X lists the ISA Bus AdLib registers. Because the AdLib registers are a subset of those in the SoundBlaster card, you can find complete information on using both of these registers in the Developer Kit for SoundBlaster Series, 2nd ed. © 1993, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035.

Table IX. SoundBlaster Pro ISA Bus Registers

Register Name	ISA Bus Address
Music0: Address (w), Status (r)	(SB Base) Relocatable in range 0x100 – 0x3F0
Music0: Data (w)	(SB Base+1)
Music1: Address (w)	(SB Base+2)
Music1: Data (w)	(SB Base+3)
Mixer Address (w)	(SB Base+4)
Mixer Data (w)	(SB Base+5)
Reset (w)	(SB Base+6)
Music0: Address (w)	(SB Base+8)
Music0: Data (w)	(SB Base+9)
Input Data (r)	(SB Base+A)
Status (r), Output Data (w)	(SB Base+C)
Status (r)	(SB Base+E)

Register Name	ISA Bus Address
Music0: Address (w), Status (r)	(AdLib Base) Relocatable in range 0x100 – 0x3F8
Music0: Data (w)	(AdLib Base+1)
Music1: Address (w)	(AdLib Base+2)
Music1: Data (w)	(AdLib Base+3)

Table X. AdLib ISA Bus Registers

MPU-401 Registers

The AD1816A contains a set of ISA Bus registers (ports) that correspond to those used by the ISA bus MIDI audio interface cards. Table XI lists the ISA Bus MIDI registers. These registers support commands and data transfers described in *MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0*, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173.

Table XI.	MPU-401	ISA Bus	Registers

Register Name	Address
MIDI Data (r/w)	(MIDI Base) Relocatable in range 0x100 to 0x3FE
MIDI Status (r), Command (w)	(MIDI Base+1)

0x(MIDI Base+1)

UN(INTED Du								
BIT	7	6	5	4	3	2	1	0
STATE	1	0	0	0	0	0	0	0
NAME	DRR	DSR			RESEF	RVED		

DSR (R)	Data Send Ready. When read, this bit indicates that you can (0) or cannot (1) write to the MIDI Data register. (Full = 1, Empty = 0)
DRR (R)	Data Receive Ready. When read, this bit indicates that you can (0) or cannot (1) read from the MIDI Data register. (Unreadable = 1, Readable = 0)
CMD [7:0] (W)	MIDI Command. Write MPU-401 commands to bits [7:0] of this register.

NOTES

The AD1816A supports *only* the MPU-401 0xFF (reset) and 0x3F (UART) commands. The controller powers setup for Smart mode, but must be put in pass-through mode. To start MIDI operations, send a reset command (0xFF) and then send a UART mode command (0x3F). The MPU-401 data register contains an acknowledge byte (0xFE) after each command transfer unless it is in UART mode..

All commands return an ACK byte in "smart" mode.

Status commands (0xAx) return ACK and a data byte; all other commands return ACK.

All commands except reset (0xFF) are ignored in UART mode. No ACK bytes are returned.

"Smart" mode data transfers are not supported.

Game Port Registers

The AD1816A contains a Game Port ISA Bus Register that is compatible with the IBM joystick standard.

Register Name	Address
Game Port I/O	(Game Port Base+0 to Game Port Base+7)
	Relocatable in the range 0x100 to 0x3F8

Table XII. Game Port ISA Bus Registers

REV. A

APPENDIX A

PLUG AND PLAY INTERNAL ROM

Note: All addresses are depicted in hexadecimal notation. Vendor ID: ADS7181 Serial Number: FFFFFFF Checksum: 2F PNP Version: 1.0, vendor version: 20 ASCII string: "Analog Devices AD1816A" Logical Device ID: ADS7180 not a boot device, implements PNP register(s) 31 Start dependent function, best config IRQ: channel(s) 5 7 type(s) active-high, edge-triggered DMA: channel(s) 1 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3

Type F, count-by-byte, nonbus-mastering, 8-bit only

I/O: 16-bit decode, range [0220,02E0] mod 20, length 10

I/O: 16-bit decode, range [0388.03B8] mod 08, length 04

I/O: 16-bit decode, range [0500,0560] mod 10, length 10

Start dependent function, suboptimal config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: NULL I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 End all dependent functions Logical Device ID: ADS7181 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB006 Start dependent function, best config IRO: channel(s) 57911 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0330] mod 30, length 02 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0420] mod 30, length 02 End all dependent functions Logical Device ID: ADS7182 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB02F Start dependent function, best config I/O: 16-bit decode, range [0200,0200] mod 08, length 08 Start dependent function, acceptable config I/O: 16-bit decode, range [0200,0208] mod 08, length 08 End all dependent functions

End:

PLUG AND PLAY KEY AND "ALTERNATE KEY" SEQUENCES

One additional feature of the AD1816A is an alternate programming method used, for example, if a BIOS wants to assume control of the AD1816A and present DEVNODES to the OS (rather than having the device participate in Plug and Play enumeration). The following technique may be used.

Instead of the normal 32 byte Plug and Play key sequence, an alternate 126 byte key is used. After the 126 byte key, the AD1816A device will transition to the Plug and Play "sleep" state. It can then be programmed as usual using the standard Plug and Play ports. After programming, the AD1816A should be sent to the Plug and Play "WFK" (wait for key) state. Once the AD1816A has seen the alternate key, it will no longer parse for the Plug and Play key (and therefore never participate in Plug and Play enumeration). It can be reprogrammed by reissuing the alternate key again.

Both the Plug and Play key and the alternate key are sequences of writes to the Plug and Play address register, 0x279. Below are the ISA data values of both keys.

This is the standard Plug and Play sequence:

6a	b5	da	ed	f6	fb	7d	be	df	6f	37	1b	0d	86	c3	61
b0	58	2c	16	8b	45	a2	d1	e8	74	3a	9d	ce	e7	73	39
		nger, 126													
f[n+1] = (f[n])	>>1) (((f[n] ^	(f[n] >>	1)) & 02	x01) <<	6) f[0] =	= 0x01							
01	40	20	10	08	04	02	41	60	30	18	0c	06	43	21	50
28	14	0a	45	62	71	78	3c	1e	4f	27	13	09	44	22	51
68	34	1a	4d	66	73	39	5c	2e	57	2b	15	4a	65	72	79
7c	3e	5f	2f	17	0b	05	42	61	70	38	1c	0e	47	23	11
48	24	12	49	64	32	59	6с	36	5b	2d	56	6b	35	5a	6d
76	7b	3d	5e	6f	37	1b	0d	46	63	31	58	2c	16	4b	25
52	69	74	3a	5d	6e	77	3b	1d	4e	67	33	19	4c	26	53
29	54	2a	55	6a	75	7a	7d	7e	7f	3f	1f	Of	07		

AD1816 AND AD1816A COMPATIBILITY

The AD1816 and AD1816A are pin for pin and functionally compatible. The AD1816A may be dropped directly into an existing AD1816 design. However, the AD1816A has greater pin assignment flexibility to accommodate a wider range of applications and for controlling extra logical devices such as a modem chip set or an Enhanced IDE controller. Pin assignments are controlled by the external EEPROM. Consequently, the optional EEPROM must be reprogrammed to configure the AD1816A.

USING AN EEPROM WITH THE AD1816 OR AD1816A

The AD1816 and AD1816A support an optional Plug and Play resource ROM. If present, the ROM must be a two-wire serial device (e.g. Xicor X24C02) and the clock and data lines should be wired to EE_CLK and EE_DATA pins; pull-up resistors are required on both signals. The EEPROM's A2 and A1 pins (also A0 for 256-byte EEPROMs) must all be tied to ground. The write control pin (WC*) must be tied to power if you wish to program the EEPROM in place; otherwise, we recommend tying it to ground to prevent accidental writes.

The EEPROM interface logic examines the state of the EE_CLK pin shortly after RESET is deasserted and whenever the Plug and Play reset register (02h) is written with a value X such that ($[X \& 1] \neq 0$). If an EEPROM is connected, EE_CLK is pulled high and the EEPROM logic attempts to read the first ROM byte (page 0, byte 0). If EE_CLK is tied low, the internal ROM is used; in this case EE_DATA is used to set the state of VOL_EN, and should also be tied high or low. EE_CLK is not used as an input at any other time.

The initial part of the ROM is not part of the Plug and Play resource data. It consists of a number of flags that enable optional functionality. The number of flag bytes and the purpose of each bit depend on whether an AD1816 or an AD1816A is being used.

AD1816 FLAG BYTE

The AD1816 has a single flag byte that is used as shown below:

7	6	5	4	3	2	1	0
1	0	0	XTRA_SIZE VOL_SEL	VOL_EN	XTRA_IRQ	XTRA_EN	MODEM_EN

MODEM_EN Program to one to enable the modem logical device. This logical device has an I/O range and an IRQ. The I/O range has the following requirements:

- Length of eight bytes

- Alignment of eight bytes

- 16-bit address decode

Program to zero to enable I²S Port 1.

- XTRA_EN Program to one to enable the XTRA logical device. This logical device has an I/O range, an optional IRQ, and an optional DMA. The I/O range has the following requirements:
 - Length of eight bytes or 16 bytes, selectable by XTRA_SIZE
 - Alignment of eight bytes or 16 bytes, matches length
 - 16-bit address decode

Program to zero to enable the DSP serial port.

- XTRA_IRQ Program to one to include an IRQ in the XTRA logical device. When enabled, the IRQ level and type are programmed through PnP registers 0x70 and 0x71. (Note: For the 1816, the IRQ type is hard coded and rising edge triggered.)
- VOL_EN Program to one to enable hardware volume control.

XTRA_SIZE/ The function of this bit depends on XTRA_EN. If XTRA_EN is one, this bit selects the size of the XTRA device's I/O range. Program to one to make the XTRA logical device I/O length 16 bytes. Program to zero to set the XTRA logical device I/O length to eight bytes. The alignment specified in the resource data must be an integer multiple of the length. If XTRA_EN is zero (and VOL_EN is one), then this bit selects the location of the hardware volume control pins. Program to zero to replace I²S0 with the volume control pins; program to one to replace the SPORT.

The three MSBs in the first byte of the AD1816 EEPROM are used to verify that the EEPROM data is valid. The bits are compared to the values shown; if a mismatch is found, then the EEPROM will be ignored. The internal ROM will be used to perform PnP enumeration, and the MODEM and XTRA logical devices will not be available. Hardware volume will be enabled on the f^2 S0 port. The SPORT is disabled.

USING THE AD1816 WITHOUT AN EEPROM

If the EEPROM is absent (EE_CLK pin = GND), the flags are set as shown below:

MODEM_EN = XTRA_EN = XTRA_IRQ = VOL_SEL = 0

VOL_EN = EE_DATA pin

AD1816A FLAG BYTES

The AD1816A has four flag bytes that are used as shown below: (*) AD1816-compatible setting.

Byte 0

7	6	5	4	3	2	1	0
1	0	0	XTRA_HV	I ² S0_HV	SUPER_EN	XTRA_EN	MODEM_EN

MODEM_EN Program to one to enable the modem logical device. This logical device has an I/O range and an IRQ. The I/O range has the following requirements: - Length of eight bytes - Alignment of eight bytes - 16-bit address decode Program to zero to enable I²S Port 1 (SUPER EN and IRO EN must also be zero). Program to one to enable the XTRA logical device. This logical device has an I/O range, an optional XTRA_EN IRQ, and an optional DMA. The I/O range has the following requirements: - Length of 1 to 16 bytes, selectable by XTRASZ0[3:0] - Alignment of 1 to 16 bytes, matches length - 16-bit address decode A second I/O range is available (see XTRA_CS). Program to zero to enable the DSP serial port (XTRA_HV must also be zero). SUPER_EN Program to one to merge the XTRA and modem logical devices. If this bit is set to one, XTRA_EN and IRQ_EN must be set to one and MODEM EN must be set to zero. The combined device has up to two I/O ranges, two IRQs and one DMA. The two I/O ranges are both taken from the XTRA device; the modem I/O range is disabled. The first IRQ is the XTRA device IRQ, the second is the modem IRQ. Program to zero for distinct modem and XTRA devices. (*) I²S0 HV Program to one to enable hardware volume inputs on the I²S port 0 pins. Program to one to enable hardware volume inputs on the DSP serial port pins. Do not enable both XTRA HV XTRA HV and I^2S0 HV. Program to zero to enable the XTRA device DMA or the DSP serial port.

The three MSBs in the first byte of the AD1816A EEPROM are used to verify that the EEPROM data is valid. The bits are compared to the values shown; if a mismatch is found, the EEPROM will be ignored. The internal ROM will be used to perform PnP enumeration, and the MODEM and XTRA logical devices will not be available. Hardware volume will be enabled on the I²S0 port. The SPORT is disabled.

Byte 1

7	6	5	4	3	2	1	0
	RESERVED		0	0	RSTB_EN	IRQSEL3_9	IRQSEL12_13

IRQSEL12_13Program to one to enable IRQ 13.
Program to zero to enable IRQ 12.
IRQ_EN must be one and MODEM_EN must be zero, or this bit has no effect.IRQSEL3_9Program to one to enable IRQ 9.
Program to zero to enable IRQ 3. (*)
MODEM_EN or IRQ_EN must be one, or this bit has no effect.RSTB_ENProgram to one to enable an active-low RESET output on the XCTRLO pin.

RSTB_EN Program to one to enable an active-low RESET output on the XCTRLO pi Program to zero to enable XCTRL0/PCLKO. (*)

REV. A

Byte 2

7	6	5	4	3	2	1	0
IRQSEL4_9_11	IRQSEL9_14	IRQSEL11_15	IRQSEL4_10		XTRAS	Z0[3:0]	

XTRASZ0[3:0] Sets the XTRA device I/O range 0 length. The XTRASZ0 bits set the length of the first XTRA device I/O range as follows:

XTRASZ0	I/O Range Length
0000	16
1000	8
1100	4
1110	2
1111	1

All other combinations should be avoided.

IRQSEL4_10	Program to one to enable IRQ 10. (*, if MODEM_EN is zero) Program to zero to enable IRQ 4. (*, if MODEM_EN is one)
IRQSEL11_15	Program to one to enable IRQ 15. (*) Program to zero to enable IRQ 11.
IRQSEL9_14	Program to one to enable IRQ 14. Program to zero to enable IRQ 9. (*)
IRQSEL4_9_11	Program to one to enable IRQ 11. (*) Program to zero to enable IRQ 4 (if MODEM_EN is one) or IRQ 9 (if MODEM_EN is zero).

Byte 3

7	6	5	4	3	2	1	0
	XTRAS	SZ1[3:0]		XTRA_CS	IRQ_EN	MIRQINV	XIRQINV

XIRQINV	Program to one to make LD_IRQ active-low. Program to zero to make LD_IRQ active-high. (*)
MIRQINV	Program to one to make MDM_IRQ active-low. Program to zero to make MDM_IRQ active-high. (*)
IRQ_EN	Program to one to enable additional IRQ options on the ISA bus. If MODEM_EN is zero, then two IRQs are added; if MODEM_EN is one, this bit is ignored. Program to zero to enable I ² S port 1 (SUPER_EN and MODEM_EN must also be zero). (*)
XTRA_CS	Program to one to enable a second I/O range for the XTRA or SUPER logical devices. It is identical to the first I/O range, except its size is controlled by XTRASZ1[3:0]. Program to zero to enable the XCTR1/RING_IN pin. (*) Always considered to be zero if XTRA_EN is zero.
XTRASZ1[3:0]	Sets the XTRA device I/O range one length. The XTRASZ1 bits set the length of the second XTRA device I/O range as follows:

XTRASZ1	I/O Range Length
0000	16
1000	8
1100	4
1110	2
1111	1

All other combinations should be avoided.

USING THE AD1816A WITHOUT AN EEPROM

If the EEPROM is absent (EE_CLK pin = GND), then the flags are set as shown below:

MODEM_EN = XTRA_EN = SUPER_EN = XTRA_HV = RSTB_EN = IRQ_EN = 0

IRQSEL9_14 = MIRQINV = XIRQINV = 0 IRQSEL4_10 = IRQSEL11_15 = IRQSEL4_9_11 = 1

 $I^2S0_HV = EE_DATA pin$

MAPPING THE AD1816 EEPROM INTO THE AD1816A EEPROM

The equations below map AD1816 flags onto AD1816A flags:

MODEM_EN = MODEM_EN XTRA EN = XTRA EN SUPER_EN = 0 $I^2S0_HV = VOL_EN * \overline{VOL_SEL}$ XTRA_HV = VOL_EN * VOL_SEL $IRQSEL12_{13} = X$ (don't care) IRQSEL3_9 = 0 $RSTB_EN = 0$ $XTRASZ0[3] = \overline{XTRA SIZE}$ XTRASZ0[2:0] = 000 $IRQSEL4_{10} = \overline{MODEM_{EN}}$ IRQSEL11_15 = 1 IRQSEL9_14 = 0IRQSEL4_9_11 = 1 XIRQINV = 0MIRQINV = 0 $IRQ_EN = 0$ $XTRA_CS = 0$ XTRASZ1[3:0] = XXXX (don't care)

PIN MUXING IN THE AD1816 AND AD1816A

Some AD1816 and AD1816A options are mutually exclusive because there are a limited number of pins on the device to support them all. The tables below map functions to pin, and show how the flags must be set to assign functions to pins. For each pin, the first function listed is the default; that function is used if the EEPROM is absent or invalid.

PQFP	TQFP	Pin Function	I/O	Flags Required
1	99	I ² S0_DATA	Ι	$\overline{\text{VOL}_\text{EN}} + (\overline{\text{XTRA}_\text{EN}} * \text{VOL}_\text{SEL})$
		VOL_UP	Ι	VOL_EN * (XTRA_EN + \overline{VOL}_SEL)
2	100	I ² S0_LRCLK	I	$\overline{\text{VOL}_\text{EN}} + (\overline{\text{XTRA}_\text{EN}} * \text{VOL}_\text{SEL})$
		VOL_DN	Ι	VOL_EN * (XTRA_EN + \overline{VOL}_SEL)
3	1	I ² S0_BCLK	Ι	$\overline{\text{VOL}_\text{EN}} + (\overline{\text{XTRA}_\text{EN}} * \text{VOL}_\text{SEL})$
		GND	Ι	VOL_EN * (XTRA_EN + \overline{VOL}_SEL)
77	75	IRQ(10)	O (1)	MODEM_EN
		IRQ(4)	O (1)	MODEM_EN
81	79	I ² S1_DATA	Ι	MODEM_EN
		IRQ(3)	O (1)	MODEM_EN
82	80	I ² S1_BCLK	Ι	MODEM_EN
		MDM_IRQ	Ι	MODEM_EN
83	81	I ² S1_LRCLK	Ι	MODEM_EN
		MDM_SEL	O (2)	MODEM_EN
97	95	SPORT_SCLK	0	$\overline{\text{XTRA}_{\text{EN}}} * (\overline{\text{VOL}_{\text{EN}} * \text{VOL}_{\text{SEL}}})$
		LD_SEL	0	XTRA_EN
		No Connect	0	XTRA_EN * VOL_EN * VOL_SEL
98	96	SPORT_SDFS	O (2)	$\overline{\text{XTRA_EN}} * (\overline{\text{VOL_EN} * \text{VOL_SEL}})$
		LD_DRQ	I	XTRA_EN
		VOL_UP	Ι	XTRA_EN * (VOL_EN * VOL_SEL)
99	97	SPORT_SDO	0	XTRA_EN * (VOL_EN * VOL_SEL)
		LD_DACK	0	XTRA_EN
		No Connect	0	XTRA_EN * VOL_EN * VOL_SEL
100	98	SPORT_SDI	I	XTRA_EN * (VOL_EN * VOL_SEL)
		LD_IRQ	I	XTRA_EN * XTRA_IRQ
		VOL_DN		$\overline{\text{XTRA}_\text{EN}} * (\text{VOL}_\text{EN} * \text{VOL}_\text{SEL})$
		GND	Ι	XTRA_EN * XTRA_IRQ

Table XIII. AD1816 Pin Muxing

(1) IRQ pins are three-stated if not assigned to a logical device.

(2) A pull-up or pull-down resistor may be required if EEPROM is used, because this pin is three-stated while EEPROM is read.

Downloaded from Elcodis.com electronic components distributor

Table XIV. AD1816A Pin Muxing

PQFP	TQFP	Pin Function	I/O	Flags Required
1	99	I ² S0_DATA VOL_UP	I I	I ² S0_HV I ² S0_HV
2	100	I ² S0_LRCLK VOL_DN	I I	I ² S0_HV I ² S0_HV
3	1	I ² S0_BCLK GND	I I	I ² S0_HV I ² S0_HV
68	66	XCTL0/PCLKO PNPRST	0 0	RSTB_EN RSTB_EN
69	67	XCTL1/RING LD_SEL1	0 (1) 0	$\overline{\text{XTRA}_{\text{EN}}} + \overline{\text{XTRA}_{\text{CS}}}$ XTRA_EN * XTRA_CS
75	73	IRQ(15) IRQ(11)	O (2) O (2)	IRQSEL15_11 IRQSEL15_11
76	74	IRQ(11) IRQ(9) IRQ(4)	O (2) O (2) O (2)	IRQSEL4_9_11 IRQSEL4_9_11* MODEM_EN IRQSEL4_9_11* MODEM_EN
77	75	IRQ(10) IRQ(4)	O (2) O (2)	IRQSEL4_10 IRQSEL4_10
78	76	IRQ(9) IRQ(14)	O (2) O (2)	IRQSEL9_14 IRQSEL9_14
81	79	I ² S1_DATA IRQ(3)	I O (2)	MODEM_EN * SUPER_EN * IRQ_EN(MODEM_EN + SUPER_EN + IRQ_EN) * IRQSEL3_9
82	80	IRQ(9) I ² S1_BCLK MDM_IRQ	O (2) I I	(MODEM_EN + SUPER_EN + IRQ_EN) * IRQSEL3_9 MODEM_EN MODEM_EN
83	81	I ² S1_LRCLK MDM_SEL IRQ(12)	I O (4) O (2)	MODEM_EN * SUPER_EN * IRQ_ENMODEM_EN *SUPER_EN(MODEM_EN + SUPER_EN) * IRQ_EN * IRQSEL12_13
		IRQ(13)	O (2)	(MODEM_EN + SUPER_EN) * IRQ_EN * IRQSEL12_13
97	95	SPORT_SCLK LD_SEL0 No Connect	0 0 0	XTRA_EN * XTRA_HV XTRA_EN XTRA_EN * XTRA_HV
98	96	SPORT_SDFS LD_DRQ VOL_UP	O (3) I I	XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV XTRA_HV
99	97	SPORT_SDO LD_DACK VOL_DN GND	O (3) O (3) I I	XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV (XTRA_EN + XTRA_CS) * XTRA_HV XTRA_EN * XTRA_HV * XTRA_CS
100	98	SPORT_SDI LD_IRQ VOL_DN GND	I I I I	XTRA_EN * XTRA_HV XTRA_EN XTRA_EN * XTRA_HV * XTRA_CS XTRA_EN * XTRA_HV * XTRA_CS

(1) Open-drain driver with internal weak pull-up.

(2) PC_IRQ pins are three-stated if not assigned to a logical device.
(3) A pull-up or pull-down resistor may be required if EEPROM is used, because this pin is three-stated while EEPROM is read.

(4) An internal pull-up holds this pin deasserted until the EEPROM is read.

NOTE

The direction of some pins (input vs. output) depends on the flags. In order to prevent conflicts on pins that may be both inputs and outputs, the AD1816 and AD1816A disable the output drivers for those pins while the flags are being read from the EEPROM, and keep them disabled if the EEPROM data is invalid.

PROGRAMMING EXTERNAL EEPROMS

Below are the details for programming an external EEPROM or an ADI-supplied PC Program may be used. The PnP EEPROM can be written only in the "Alternate Key State"; this prevents accidental EEPROM erasure when using standard PnP setup. The procedure for writing an EEPROM is:

1) Enter PnP configuration state and fully reset the part by writing 0x07 to PnP register 0x02. This step can be eliminated if the part has not been accessed since power-up, a previous full PnP reset or assertion of the ISA bus RESET signal.

2)Send the alternate initiation key to the PnP address port. EEPROM writes are disabled if the standard PnP key is used.

3)Enter isolation state and write a CSN to enter configuration state. Do not perform any isolation reads.

4)Poll PnP register 0x05 until it equals 0x01 and wait at least 336 microseconds (ensures that EEPROM is idle).

5) Write the second byte of your serial identifier to PnP register 0x20.

6)Read PnP register 0x04.

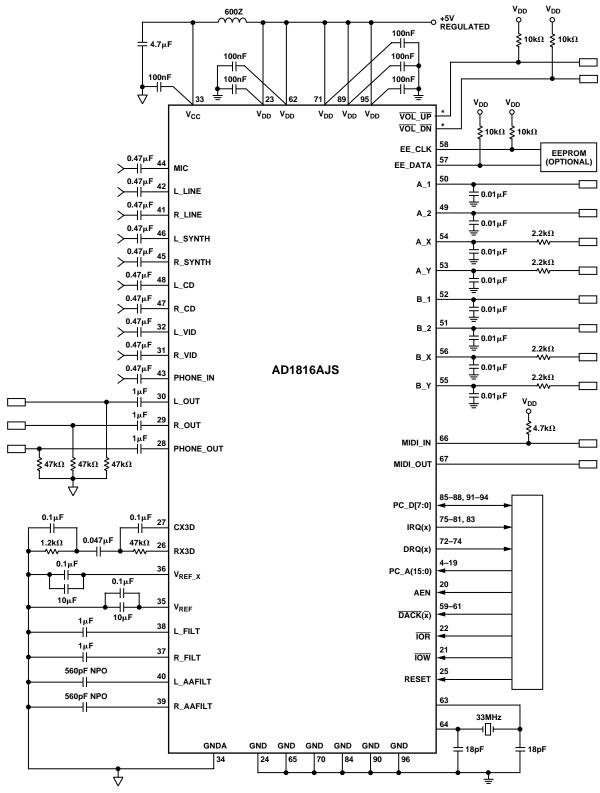
7) Wait for at least 464 microseconds, plus the EEPROM's write cycle time (up to 10 ms for a Xicor X24C02).

8)Repeat steps 4 through 7 for each byte in your PnP ROM, starting with the third byte of the serial identifier and ending with the final checksum byte. You must then continue to write filler bytes until 512 bytes, minus one more than the number of flag bytes, have been written. Finally, write the flag byte(s) (described above) and the first byte of the serial identifier.

9) Fully reset the part by writing 0x07 to PnP register 0x02.

The AD1816 or AD1816A will now act according to the contents of the EEPROM.

NOTES


Programming will not work if more than one part uses the same alternate initiation key in the system. Parts that use this alternate initiation key are the AD1816 and AD1816A.

If a 256-byte EEPROM is used, it is not necessary to wait 10 ms after writing bytes 255 to 511, because the EEPROM will ignore them anyway.

You can skip over bytes that you don't care to write by just performing a ROM read instead of a ROM write followed by a ROM read.

REFERENCE DESIGNS AND DEVICE DRIVERS

Reference designs and device drivers for the AD1816A are available via the Analog Devices Home Page on the World Wide Web at http://www.analog.com. Reference designs may also be obtained by contacting your local Analog Devices Sales representative or authorized distributor.

*LOCATION OF THIS PIN IS DETERMINED BY THE EEPROM

Figure 16. Recommended Application Circuit

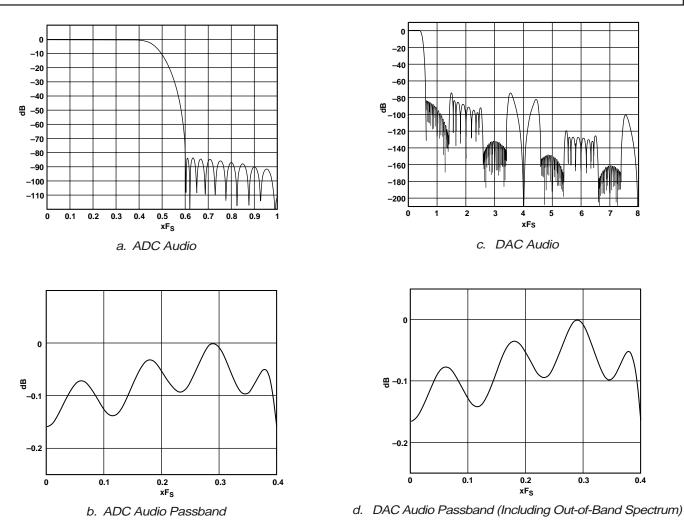
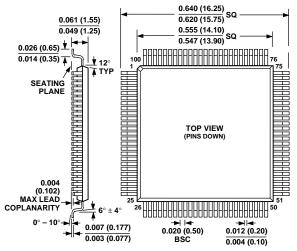



Figure 17. AD1816A Frequency Response Plots (Full-Scale Line-Level Input, 0 dB Gain). The Plots Do Not Reflect the Additional Benefits of the AD1816A Analog Filters. Out-of-Band Images Will Be Attenuated by an Additional 31.4 dB at 100 kHz.

100-Lead Plastic Quad Flatpack (S-100) 0.923 (23.45) 0.903 (22.95) 0.096 (2.45) MAX 0.791 (20.10) 0.783 (19.90) 0.742 (18.85) TYF 0.037 (0.95) 0.026 (0.65) 50 SEATING A ннннннннннннн d - 0.486 (12.35) ТҮР-0.555 (14.10) 0.547 (13.90) 0.687 (17.45) 0.667 (16.95) TOP VIEW (PINS DOWN) PIN 0.004 (0.10) 100 30 мах ſ 0.010 (0.25) • 0.015 (0.35) MIN 0.029 (0.73) 0.023 (0.57) 0.009 (0.25) 0.083 (2.10) 0.075 (1.90) **100-Lead Thin Quad Flatpack** (ST-100)

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

Downloaded from <u>Elcodis.com</u> electronic components distributor

-50-

C2969a-2-9/97