ADC122S655

Dual 12-Bit, 200 kSPS to 500 kSPS, Simultaneous Sampling A/D Converter

General Description

The ADC122S655 is a dual 12-bit, 200 kSPS to 500 kSPS simultaneous sampling Analog-to-Digital (A/D) converter. The analog inputs on both channels are sampled simultaneously to preserve their relative phase information to each other. The converter is based on a successive-approximation register architecture where the differential nature of the analog inputs is maintained from the internal track-and-hold circuits throughout the A/D converter to provide excellent common-mode signal rejection. The ADC122S655 features an external reference that can be varied from 1.0 V to V_{A}.
The ADC122S655's serial data output is binary 2's complement and is compatible with several standards, such as SPITM, QSPITM, MICROWIRETM ${ }^{\text {TM }}$, and many common DSP serial interfaces. The serial clock (SCLK) and chip select bar $(\overline{\mathrm{CS}})$ are shared by both channels.
Operating from a single 5 V analog supply and a reference voltage of 2.5 V , the total power consumption while operating at 500 kSPS is typically 11 mW . With the ADC122S655 operating in power-down mode, the power consumption reduces to $3 \mu \mathrm{~W}$. The differential input, low power consumption, and small size make the ADC122S655 ideal for direct connection to sensors in motor control applications.
Operation is guaranteed over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ and clock rates of 6.4 MHz to 16 MHz. The ADC122S655 is available in a 10 -lead MSOP package.

Features

- True Simultaneous Sampling Differential Inputs
- Guaranteed performance from 200 kSPS to 500 kSPS
- External Reference
- Wide Input Common-Mode Voltage Range
- Single High-Speed Serial Data Output
- Operating Temperature Range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- SPI $^{\text {TM }} / \mathrm{QSP} I^{\text {TM }} / \mathrm{MICROWIRE}{ }^{\text {TM }} / D S P$ compatible Serial Interface

Key Specifications

- Conversion Rate

200 kSPS to 500 kSPS

- INL
± 1 LSB (max) ± 0.95 LSB (max)

71 dBc (min)
-72 dBc (min)
11.25 bits (min)

- ENOB
- Power Consumption at 500 kSPS
- Converting, $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V} \quad 11 \mathrm{~mW}$ (typ)
- Power-Down, $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \quad 3 \mu \mathrm{~W}$ (typ)

Applications

- Motor Control
- Power Meters/Monitors
- Multi-Axis Positioning Systems
- Instrumentation and Control Systems
- Data Acquisition Systems
- Medical Instruments
- Direct Sensor Interface

Connection Diagram

Ordering Information

Order Code	Temperature Range	Description	Top Mark
ADC122S655CIMM	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	10-Lead MSOP Package, 1000 Units Tape \& Reel	X96C
ADC122S655CIMMX	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	10-Lead MSOP Package, 3500 Units Tape \& Reel	X96C
ADC122S655EB		Evaluation Board	

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No．	Symbol	Description
1	$\mathrm{V}_{\text {REF }}$	Voltage Reference Input．A voltage reference between 1 V and V_{A} must be applied to this input． $\mathrm{V}_{\text {REF }}$ must be decoupled to GND with a minimum ceramic capacitor value of 0.1 $\mu \mathrm{F}$ ．A bulk capacitor value of $1.0 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ in parallel with the $0.1 \mu \mathrm{~F}$ is recommended for enhanced performance．
2	CHA＋	Non－Inverting Input for Channel A．CHA＋is the positive analog input for the differential signal applied to Channel A．
3	CHA－	Inverting Input for Channel A．CHA－is the negative analog input for the differential signal applied to Channel A．
4	CHB－	Inverting Input for Channel B．CHB－is the negative analog input for the differential signal applied to Channel B．
5	CHB＋	Non－Inverting Input for Channel B．CHB＋is the positive analog input for the differential signal applied to Channel B．
6	GND	Ground．GND is the ground reference point for all signals applied to the ADC122S655．
7	$\mathrm{V}_{\text {A }}$	Analog Power Supply input．A voltage source between 4.5 V and 5.5 V must be applied to this input． V_{A} must be decoupled to GND with a minimum ceramic capacitor value of 0.1 $\mu \mathrm{F}$ ．A bulk capacitor value of $1.0 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ in parallel with the $0.1 \mu \mathrm{~F}$ is recommended for enhanced performance．
8	$\mathrm{D}_{\text {OUT }}$	Serial Data Output for Channel A and Channel B．The serial data output word is comprised of 4 null bits， 12 data bits（ChA conversion result）， 4 null bits，and 12 data bits（ChB conversion result）．During a conversion，the data is output on the falling edges of SCLK and is valid on the rising edges．
9	SCLK	Serial Clock．SCLK is used to control data transfer and serves as the conversion clock．
10	$\overline{\mathrm{CS}}$	Chip Select Bar．$\overline{\mathrm{CS}}$ is active low．The ADC122S655 is actively converting when $\overline{\mathrm{CS}}$ is LOW and Power－Down Mode when $\overline{\mathrm{CS}}$ is HIGH．A conversion begins on the fall of $\overline{\mathrm{CS}}$ ．

Absolute Maximum Ratings
 (Notes 1, 2)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Analog Supply Voltage V_{A}	-0.3 V to 6.5 V
Voltage on Any Pin to GND	-0.3 V to $\left(\mathrm{V}_{\mathrm{A}}+0.3 \mathrm{~V}\right)$
Input Current at Any Pin (Note 3)	$\pm 10 \mathrm{~mA}$
Package Input Current (Note 3)	$\pm 50 \mathrm{~mA}$
Power Consumption at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	See (Note 4)
ESD Susceptibility (Note 5)	
Human Body Model	2500 V
Machine Model	250 V
Charge Device Model	1000 V
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1,2)
$\begin{array}{lr}\text { Operating Temperature Range } & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C} \\ \text { Supply Voltage, } \mathrm{V}_{\mathrm{A}} & +4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \text { Reference Voltage, } \mathrm{V}_{\text {REF }} & 1.0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{A}}\end{array}$
Input Common-Mode Voltage, V_{CM} See Figure 9 (Sect 2.3)
Digital Input Pins Voltage Range 0 to V_{A}
Clock Frequency
Differential Analog Input Voltage
6.4 MHz to 16 MHz
$-V_{\text {REF }}$ to $+V_{\text {REF }}$

Package Thermal Resistance

Package	$\theta_{\text {JA }}$
$10-\mathrm{lead} \mathrm{MSOP}$	$240^{\circ} \mathrm{C} / \mathrm{W}$

Soldering process must comply with National Semiconductor's Reflow Temperature Profile specifications. Refer to www.national.com/packaging. (Note 6)

ADC122S655 Converter Electrical Characteristics (Note 7)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=6.4$ to $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, unless otherwise noted. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits are at $T_{A}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Typical	Limits	Units
STATIC CONVERTER CHARACTERISTICS						
	Resolution with No Missing Codes				12	Bits
INL	Integral Non-Linearity			± 0.5	± 1	LSB (max)
	Integral Non-Linearity Matching			0.02		LSB
DNL	Differential Non-Linearity			± 0.4	± 0.95	LSB (max)
	Differential Non-Linearity Matching			0.02		LSB
OE	Offset Error			0.2	± 3	LSB (max)
	Offset Error Matching			0.1		LSB
GE	Positive Gain Error			-2	± 5	LSB (max)
	Positive Gain Error Matching			0.2		LSB
	Negative Gain Error			3	± 8	LSB (max)
	Negative Gain Error Matching			0.2		LSB
DYNAMIC CONVERTER CHARACTERISTICS						
SINAD	Signal-to-Noise Plus Distortion Ratio	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{kHz},-0.1 \mathrm{dBFS}$		72.5	69.5	$\mathrm{dBc}(\mathrm{min})$
SNR	Signal-to-Noise Ratio	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.1 \mathrm{dBFS}$		73.2	71	$\mathrm{dBc}(\min)$
THD	Total Harmonic Distortion	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{kHz},-0.1 \mathrm{dBFS}$		-83	-72	dBc (max)
SFDR	Spurious-Free Dynamic Range	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{kHz},-0.1 \mathrm{dBFS}$		84	72	$\mathrm{dBc}(\min)$
ENOB	Effective Number of Bits	$\mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz},-0.1 \mathrm{dBFS}$		11.8	11.25	bits (min)
FPBW	-3 dB Full Power Bandwidth	Output at 70.7% FS with FS Input	Differential Input	26		MHz
			Single-Ended Input	22		MHz
ISOL	Channel-to-Channel Isolation	$\mathrm{f}_{\text {IN }}<1 \mathrm{MHz}$		-90		dBc
ANALOG INPUT CHARACTERISTICS						
$\mathrm{V}_{\text {IN }}$	Differential Input Range				$-\mathrm{V}_{\text {REF }}$	V (min)
					$+\mathrm{V}_{\text {REF }}$	V (max)
$\mathrm{I}_{\text {DCL }}$	DC Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}$ or $\mathrm{V}_{\text {IN }}=-\mathrm{V}_{\text {REF }}$			± 1	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {INA }}$	Input Capacitance	In Track Mode		20		pF
		In Hold Mode		3		pF
CMRR	Common Mode Rejection Ratio	See the Specification Definitions for the test condition		-90		dB

Symbol	Parameter	Conditions	Typical	Limits	Units
$V_{\text {REF }}$	Reference Voltage Range			1.0	V （min）
				$\mathrm{V}_{\text {A }}$	V （max）
DIGITAL INPUT CHARACTERISTICS					

V_{IH}	Input High Voltage			$\mathbf{2 . 4}$
V_{IL}	Input Low Voltage		$\mathrm{V}(\mathrm{min})$	
I_{IN}	Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{A}	$\mathbf{0 . 8}$	$\mathrm{V}(\mathrm{max})$
$\mathrm{C}_{\mathrm{IND}}$	Input Capacitance			$\pm \mathbf{1}$

DIGITAL OUTPUT CHARACTERISTICS

V_{OH}	Output High Voltage	$\mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{A}}-0.02$	$\mathrm{V}_{\mathrm{A}}-0.2$	V （min）
		$\mathrm{I}_{\text {SOURCE }}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{A}}-0.09$		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A}$	0.01	0.4	V （max）
		$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$	0.08		V
$\mathrm{I}_{\text {OZH，}}, \mathrm{I}_{\text {OZL }}$	TRI－STATE Leakage Current	Force 0 V or V_{A}		± 1	$\mu \mathrm{A}$（max）
$\mathrm{C}_{\text {OUT }}$	TRI－STATE Output Capacitance	Force 0 V or V_{A}	2	4	pF（max）
	Output Coding		Binary 2＇S Complement		

V_{A}	Analog Supply Voltage			4.5	V （min）
				5.5	V （max）
I_{VA}（Conv）	Analog Supply Current，Continuously Converting	$\begin{aligned} & \mathrm{f}_{\mathrm{SCLK}}=16 \mathrm{MHz}, \mathrm{f}_{\mathrm{S}}=500 \mathrm{kSPS}, \mathrm{f}_{\mathrm{IN}}=20 \\ & \mathrm{kHz}, \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V} \end{aligned}$	2.2	2.75	mA （max）
$\mathrm{I}_{\text {VREF }}$ （Conv）	Reference Current，Continuously Converting	$\begin{aligned} & \mathrm{f}_{\mathrm{SCLK}}=16 \mathrm{MHz}, \mathrm{f}_{\mathrm{S}}=500 \mathrm{kSPS}, \mathrm{~V}_{\text {REF }}= \\ & 2.5 \mathrm{~V} \end{aligned}$	50	60	$\mu \mathrm{A}(\mathrm{max})$
$\mathrm{IVA}^{\text {（PD）}}$	Analog Supply Current，Power Down Mode（ $\overline{C S}$ high）	$\mathrm{f}_{\text {SCLK }}=16 \mathrm{MHz}, \mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}$	15		$\mu \mathrm{A}$
		$\mathrm{f}_{\text {SCLK }}=0, \mathrm{~V}_{\mathrm{A}}=5.0 \mathrm{~V}$（Note 8）	0.5	1.1	$\mu \mathrm{A}$（max）
$\mathrm{I}_{\text {VREF }}$（PD）	Reference Current，Power Down Mode （ $\overline{\mathrm{CS}}$ high）	$\mathrm{f}_{\text {SCLK }}=16 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	0.05		$\mu \mathrm{A}$
		$\mathrm{f}_{\text {SCLK }}=0, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$（Note 8）	0.05	0.1	$\mu \mathrm{A}(\max)$
PWR （Conv）	Power Consumption，Continuously Converting	$\begin{aligned} & \mathrm{f}_{\mathrm{SCLK}}=16 \mathrm{MHz}, \mathrm{f}_{\mathrm{S}}=500 \mathrm{kSPS}, \mathrm{f}_{\mathrm{IN}}=20 \\ & \mathrm{kHz}, \mathrm{~V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$	11.1	13.9	mW（max）
$\begin{aligned} & \text { PWR } \\ & \text { (PD) } \\ & \hline \end{aligned}$	Power Consumption，Power Down Mode （ $\overline{\mathrm{CS}}$ high）	$\mathrm{f}_{\text {SCLK }}=16 \mathrm{MHz}, \mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$	75		$\mu \mathrm{W}$
		$\mathrm{f}_{\text {SCLK }}=0, \mathrm{~V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$	2.6	5.8	$\mu \mathrm{W}$（max）
PSRR	Power Supply Rejection Ratio	See the Specification Definitions for the test condition	－85		dB

AC ELECTRICAL CHARACTERISTICS

$f_{\text {SCLK }}$	Maximum Clock Frequency		20	$\mathbf{1 6}$	$\mathrm{MHz}(\mathrm{min})$
$\mathrm{f}_{\mathrm{SCLK}}$	Minimum Clock Frequency		1.6	$\mathbf{6 . 4}$	$\mathrm{MHz}(\mathrm{max})$
f_{S}	Maximum Sample Rate		625	$\mathbf{5 0 0}$	$\mathrm{kSPS}(\mathrm{min})$
	Minimum Sample Rate		50	$\mathbf{2 0 0}$	$\mathrm{kSPS}(\mathrm{min})$
$\mathrm{t}_{\mathrm{ACQ}}$	Track／Hold Acquisition Time			$\mathbf{3}$	SCLK cycles
$\mathrm{t}_{\mathrm{CONV}}$	Conversion Time			$\mathbf{1 2}$	SCLK cycles
t_{AD}	Aperture Delay		6		ns

ADC122S655 Timing Specifications
 (Note 7)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=6.4 \mathrm{MHz}$ to $16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, unless otherwise noted. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$: all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical	Limits	Units
$\mathrm{t}_{\mathrm{cssu}}$	$\overline{\mathrm{CS}}$ Setup Time prior to an SCLK rising edge		4	7	ns (min)
			1/f fSLK	1/f $\mathrm{f}_{\text {SCLK }}-3$	ns (max)
$\mathrm{t}_{\text {EN }}$	$\mathrm{D}_{\text {Out }}$ Enable Time after the falling edge of $\overline{\mathrm{CS}}$		9	20	ns (max)
t_{DH}	$\mathrm{D}_{\text {OUT }}$ Hold time after an SCLK Falling edge		9	6	ns (min)
t_{DA}	$\mathrm{D}_{\text {Out }}$ Access time after an SCLK Falling edge		20	26	ns (max)
${ }^{\text {DIS }}$	$\mathrm{D}_{\text {OUT }}$ Disable Time after the rising edge of $\overline{\mathrm{CS}}$ (Note 10)		10	20	ns (max)
t_{CH}	SCLK High Time			25	ns (min)
t_{CL}	SCLK Low Time			25	ns (min)
t_{r}	$\mathrm{D}_{\text {Out }}$ Rise Time		7		ns
t_{f}	$\mathrm{D}_{\text {OUT }}$ Fall Time		7		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the maximum Operating Ratings is not recommended.
Note 2: All voltages are measured with respect to GND $=0 \mathrm{~V}$, unless otherwise specified.
Note 3: When the input voltage at any pin exceeds the power supplies (that is, $\mathrm{V}_{\mathrm{IN}}<G N D$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{A}}$), the current at that pin should be limited to 10 mA . The 50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to five.
Note 4: The absolute maximum junction temperature ($T_{\jmath} m a x$) for this device is $150^{\circ} \mathrm{C}$. The maximum allowable power dissipation is dictated by $T_{\jmath} m a x$, the junction-to-ambient thermal resistance $\left(\theta_{J A}\right)$, and the ambient temperature $\left(T_{A}\right)$, and can be calculated using the formula $P_{D} M A X=\left(T_{J} \max -T_{A}\right) / \theta_{J A}$. The values for maximum power dissipation listed above will be reached only when the ADC122S655 is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.
Note 5: Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model is a 220 pF capacitor discharged through 0Ω. Charge device model simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.
Note 6: Reflow temperature profiles are different for lead-free packages.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Guaranteed by design, characterization, or statistical analysis and is not tested at final test.
Note 9: While the maximum sample rate is $\mathrm{f}_{\text {SCLK }} / 32$, the actual sample rate may be lower than this by having the $\overline{\mathrm{CS}}$ rate slower than $\mathrm{f}_{\text {SCLK }} / 32$.
Note 10: $t_{\text {DIS }}$ is the time for $D_{\text {OUT }}$ to change 10%.

Timing Diagrams

FIGURE 1. ADC122S655 Single Conversion Timing Diagram

FIGURE 2. ADC122S655 Continuous Conversion Timing Diagram

FIGURE 3. Dout $_{\text {Rise }}$ and Fall Times

30051911
FIGURE 4. Dout $_{\text {Hold and Access Times }}$

FIGURE 5. Valid $\overline{C S}$ Assertion Times

FIGURE 6. Voltage Waveform for $\mathrm{t}_{\text {DIS }}$

Specification Definitions

APERTURE DELAY is the time between the fourth falling edge of SCLK and the time when the input signal is acquired or held for conversion.
COMMON MODE REJECTION RATIO (CMRR) is a measure of how well in-phase signals common to both input pins are rejected.
To calculate CMRR, the change in output offset is measured while the common mode input voltage is changed from 2 V to 3V.

CMRR $=20$ LOG (Δ Output Offset / Δ Common Input)
CONVERSION TIME is the time required, after the input voltage is acquired, for the ADC to convert the input voltage to a digital word.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB.
DUTY CYCLE is the ratio of the time that a repetitive digital waveform is high to the total time of one period. The specification here refers to the SCLK.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion or SINAD. ENOB is defined as (SINAD - 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.
FULL POWER BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input.
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from negative full scale ($1 / 2$ LSB below the first code transition) through positive full scale ($1 / 2$ LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value.
MISSING CODES are those output codes that will never appear at the ADC outputs. The ADC122S655 is guaranteed not to have any missing codes.
NEGATIVE FULL-SCALE ERROR is the difference between the differential input voltage at which the output code transitions from negative full scale to the next code and $-\mathrm{V}_{\text {REF }}+0.5$ LSB.
NEGATIVE GAIN ERROR is the difference between the negative full-scale error and the offset error.
OFFSET ERROR is the difference between the differential input voltage at which the output code transitions from code 000h to 001h and $1 / 2$ LSB.

POSITIVE FULL-SCALE ERROR is the difference between the differential input voltage at which the output code transitions to positive full scale and $\mathrm{V}_{\text {REF }}$ minus 1.5 LSB .
POSITIVE GAIN ERROR is the difference between the positive full-scale error and the offset error.
POWER SUPPLY REJECTION RATIO (PSRR) is a measure of how well a change in supply voltage is rejected. PSRR is calculated from the ratio of the change in offset error for a given change in supply voltage, expressed in dB. For the ADC122S655, V_{A} is changed from 4.5 V to 5.5 V .

$$
\text { PSRR }=20 \text { LOG }\left(\Delta \text { Offset } / \Delta V_{A}\right)
$$

SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB , of the rms value of the input signal to the rms value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or d.c.
SIGNAL TO NOISE PLUS DISTORTION (S/N+D or SINAD) Is the ratio, expressed in dB , of the rms value of the input signal to the rms value of all of the other spectral components below half the clock frequency, including harmonics but excluding d.c.
SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB , between the desired signal amplitude to the amplitude of the peak spurious spectral component, where a spurious spectral component is any signal present in the output spectrum that is not present at the input and may or may not be a harmonic.
TOTAL HARMONIC DISTORTION (THD) is the ratio of the rms total of the first five harmonic components at the output to the rms level of the input signal frequency as seen at the output, expressed in dB. THD is calculated as

$$
T H D=20 \cdot \log _{10} \sqrt{\frac{A_{f 2}{ }^{2}+\cdots+A_{f 6}{ }^{2}}{A_{f 1}{ }^{2}}}
$$

where $A_{f 1}$ is the RMS power of the input frequency at the output and $A_{f 2}$ through $A_{f 6}$ are the RMS power in the first 5 harmonic frequencies.
THROUGHPUT TIME is the minimum time required between the start of two successive conversion.

Typical Performance Characteristics $\mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{kSPS}, \mathrm{f}_{\text {SLLLK }}=$ $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.

30051921
DNL vs. V_{A}

30051923

30051922
INL vs. V_{A}

30051924
INL vs. $\mathbf{V}_{\text {REF }}$

Typical Performance Characteristics $V_{A}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{kSPS}, \mathrm{f}_{\text {SCLK }}=$ $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.

DNL vs. SCLK FREQUENCY

30051925
DNL vs. TEMPERATURE

30051929

INL vs. SCLK FREQUENCY

30051926
INL vs. TEMPERATURE

30051930
THD vs. V_{A}

Typical Performance Characteristics
$\mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{kSPS}, \mathrm{f}_{\mathrm{SCLK}}=$ $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.

30051937
SINAD vs. SCLK FREQUENCY

30051941
SINAD vs. INPUT FREQUENCY

30051936
THD vs. SCLK FREQUENCY

THD vs. INPUT FREQUENCY

Typical Performance Characteristics $V_{A}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{kSPS}, \mathrm{f}_{\text {SCLK }}=$ $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.

30051972

30051974

THD vs. TEMPERATURE

30051971

30051955

Typical Performance Characteristics
$\mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{kSPS}, \mathrm{f}_{\mathrm{SCLK}}=$ $16 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.

Functional Description

The ADC122S655 is a dual 12-bit, simultaneous sampling Analog-to-Digital (A/D) converter. The converter is based on a successive-approximation register (SAR) architecture where the differential nature of the analog inputs is maintained from the internal track-and-hold circuits throughout the A/D converter. The analog inputs on both channels are sampled simultaneously to preserve their relative phase information to each other. The architecture and process allow the ADC122S655 to acquire and convert dual analog signals at sample rates up to 500 kSPS while consuming very little power.
The ADC122S655 requires an external reference, external clock, and an analog power supply. The analog supply (V_{A}) can range from 4.5 V to 5.5 V and the external reference can be any voltage between 1 V and V_{A}. The value of the reference voltage determines the range of the analog input, while the reference input current depends upon the conversion rate.
Analog inputs are presented at the inputs of Channel A and Channel B. Upon initiation of a conversion, the differential input at these pins is sampled on the internal capacitor array. The analog input signals are disconnected from the external circuitry while a conversion is in progress.
The external clock can take on values as indicated in the Electrical Characteristics Table. The duty cycle of the clock is essentially unimportant, provided the minimum clock high and low times are met. The minimum clock frequency is set by internal capacitor leakage. Each conversion requires thirytwo clock cycles to complete.
The ADC122S655 offers a high-speed serial data output that is binary 2 's complement and compatible with several standards, such as SPI ${ }^{\text {TM }}$, QSPI ${ }^{\text {TM }}$, MICROWIRE ${ }^{\text {TM }}$, and many common DSP serial interfaces. The digital conversion result of Channel A and Channel B is clocked out on the falling edges of the SCLK input and is provided serially at $D_{\text {OUT }}$, most significant bit first. The result of Channel A is output before the result of Channel B, with four zeros in between the two results. The digital data provided on $D_{\text {OUT }}$ is that of the conversion currently in progress. With $\overline{\mathrm{CS}}$ held low after the result of Channel B is output, the ADC122S655 will continuously convert the analog inputs until $\overline{\mathrm{CS}}$ is de-asserted (brought high). Having a single, serial $\mathrm{D}_{\text {OUT }}$ makes the ADC122S655 an excellent replacement for two independent ADCs that are part of a daisy chain configuration and allows a system designer to save valuable board space and power.

1.0 REFERENCE INPUT

The externally supplied reference voltage sets the analog input range. The ADC122S655 will operate with a reference voltage in the range of 1 V to V_{A}.
Operation with a reference voltage below 1 V is also possible with slightly diminished performance. As the reference voltage ($\mathrm{V}_{\mathrm{REF}}$) is reduced, the range of acceptable analog input voltages is reduced. Assuming a proper common-mode input voltage, the differential peak-to-peak input range is limited to twice $\mathrm{V}_{\text {REF }}$. See Section 2.3 for more details. Reducing the value of $\mathrm{V}_{\text {REF }}$ also reduces the size of the least significant bit (LSB). The size of one LSB is equal to twice the reference voltage divided by 4096. When the LSB size goes below the noise floor of the ADC122S655, the noise will span an increasing number of codes and overall performance will suffer. For example, dynamic signals will have their SNR degrade, while D.C. measurements will have their code uncertainty increase. Since the noise is Gaussian in nature, the effects of
this noise can be reduced by averaging the results of a number of consecutive conversions.
Additionally, since offset and gain errors are specified in LSB, any offset and/or gain errors inherent in the A/D converter will increase in terms of LSB size as the reference voltage is reduced.
The reference input and the analog inputs are connected to the capacitor array through a switch matrix when the input is sampled. Hence, the current requirements at the reference and at the analog inputs are a series of transient spikes that occur at a frequency dependent on the operating sample rate of the ADC122S655.
The reference current changes only slightly with temperature. See the curves, "Reference Current vs. SCLK Frequency" and "Reference Current vs. Temperature" in the Typical Performance Curves section for additional details.

2.0 ANALOG SIGNAL INPUTS

The ADC122S655 has dual differential inputs where the effective input voltage that is digitized is CHA + minus CHA(DIFFINA) and CHB+ minus CHB- (DIFFINB). As is the case with all differential input A / D converters, operation with a fully differential input signal or voltage will provide better performance than with a single-ended input. However, the ADC122S655 can be presented with a single-ended input as shown in Section 2.2 and the Application Circuits.
The current required to recharge the input sampling capacitor will cause voltage spikes at the + and - inputs. Do not try to filter out these noise spikes. Rather, ensure that the noise spikes settle out during the acquisition period (three SCLK cycles after the fall of $\overline{\mathrm{CS}}$). This is true for both Channel A and Channel B since both channels are converted simultaneously on the fourth falling edge of SCLK after $\overline{\mathrm{CS}}$ is asserted.

2.1 Differential Input Operation

With a fully differential input voltage or signal, a positive full scale output code (011111111111 b or 7FFh) will be obtained when DIFFINA or DIFFINB is greater than or equal to $\mathrm{V}_{\text {REF }}$ 1.5 LSB. A negative full scale code (100000000000 b or 800h) will be obtained when DIFFINA or DIFFINB is greater than or equal to $-\mathrm{V}_{\text {REF }}+0.5$ LSB. This ignores gain, offset and linearity errors, which will affect the exact differential input voltage that will determine any given output code. Figure 7 shows the ADC122S655 being driven by a full-scale differential source.

30051980
FIGURE 7. Differential Input

2.2 Single-Ended Input Operation

For single-ended operation, the non-inverting inputs of the ADC122S655 can be driven with a signal that has a maximum to minimum value range that is equal to or less than twice the reference voltage. The inverting inputs should be biased at a stable voltage that is halfway between these maximum and minimum values. In order to utilize the entire dynamic range of the ADC122S655, the reference voltage is limited at V_{A} / 2. This allows the non-inverting inputs the maximum swing range of ground to V_{A}. Figure 8 shows the ADC122S655 being driven by a full-scale single-ended source. Even though the design of the ADC122S655 is optimized for a differential input, there is very little performance degradation while operating the ADC122S655 in single-ended fashion.

FIGURE 8. Single-Ended Input

2.3 Input Common Mode Voltage

The allowable input common mode voltage (V_{CM}) range depends upon the supply and reference voltages used for the ADC122S655. The ranges of V_{CM} for differential and singleended operation are depicted in Figure 9 and Figure 10. Equations for calculating the minimum and maximum common mode voltages for differential and single-ended operation are shown in Table 1.

FIGURE 9. V_{CM} range for Differential Input operation

FIGURE 10. V_{CM} range for single-ended operation
TABLE 1. Allowable V_{CM} Range

Input Signal	Minimum $V_{\text {CM }}$	Maximum $V_{\text {CM }}$
Differential	$\mathrm{V}_{\text {REF }} / 2$	$\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\text {REF }} / 2$
Single-Ended	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\text {REF }}$

3.0 SERIAL DIGITAL INTERFACE

The ADC122S655 communicates via a synchronous serial interface as shown in the Timing Diagram section. $\overline{C S}$, chip select, initiates conversions and frames the serial data transfers. SCLK (serial clock) controls both the conversion process and the timing of the serial data. $\mathrm{D}_{\text {OUT }}$ is the serial data output pin, where the conversion results of Channel A and Channel B are sent as a serial data stream, with the result of Channel A output before the result of Channel B.
A serial frame is initiated on the falling edge of $\overline{\mathrm{CS}}$ and ends on the rising edge of $\overline{C S}$. The ADC122S655's $\mathrm{D}_{\text {Out }}$ is in a high impedance state when $\overline{\mathrm{CS}}$ is high (asserted) and is active when $\overline{\mathrm{CS}}$ is low (de-asserted); thus $\overline{\mathrm{CS}}$ acts as an output enable. A timing diagram for a single conversion is shown in Figure 1.
During the first three cycles of SCLK, the ADC122S655 is in acquisition mode ($\mathrm{t}_{\mathrm{ACQ}}$), tracking the input voltage on both Channel A and Channel B. For the next twelve SCLK cycles ($\mathrm{t}_{\text {conv }}$), the conversion of Channel A and Channel B is accomplished simultaneously and data is presented on $\mathrm{D}_{\text {out }}$, one bit at a time. SCLK falling edges one through four clock out leading zeros while falling edges five through sixteen clock out the conversion result of Channel A, MSB first. The process is repeated in order to clock out the result of Channel B , with SCLK falling edges seventeen through twenty clocking out four zeros followed by falling edges twenty-one through thirty-two clokcing out the conversion result of Channel B. If there is more than one conversion in a frame (continuous conversion mode), the ADC122S655 will re-enter acquisition mode on the falling edge of SCLK after the $\mathrm{N}^{*} 32$ rising edge of SCLK and re-enter conversion mode on the $\mathrm{N}^{*} 32+4$ falling edge of SCLK as shown in Figure 2. " N " is an integer value.
The ADC122S655 can enter acquisition mode under three different conditions. The first condition involves $\overline{\mathrm{CS}}$ going low (asserted) with SCLK high. In this case, the ADC122S655 enters acquisition mode on the first falling edge of SCLK after $\overline{\mathrm{CS}}$ is asserted. In the second condition, $\overline{\mathrm{CS}}$ goes low with SCLK low. Under this condition, the ADC122S655 automatically enters acquisition mode and the falling edge of $\overline{C S}$ is
seen as the first falling edge of SCLK. In the third condition, $\overline{\mathrm{CS}}$ and SCLK go low simultaneously and the ADC122S655 immediately enters acquisition mode. While there is no timing restriction with respect to the falling edges of $\overline{\mathrm{CS}}$ and the falling edge of SCLK, see Figure 5 for setup and hold time requirements for the falling edge of $\overline{\mathrm{CS}}$ with respect to the rising edge of SCLK.

3.1 CS Input

The $\overline{\mathrm{CS}}$ (chip select bar) is an active low input that is TTL and CMOS compatible. The ADC122S655 transitions from acquisition mode, to conversion mode, to power-down mode when $\overline{\mathrm{CS}}$ is low and is always in power-down mode when $\overline{\mathrm{CS}}$ is high. The falling edge of $\overline{\mathrm{CS}}$ marks the beginning of a conversion where the input to Channel A and Channel B are tracked by the input sampling capacitor. The rising edge of $\overline{C S}$ marks the end of a conversion window. As a result, $\overline{C S}$ frames the conversion window and can be used to control the sample rate of the ADC122S655. While the SCLK frequency is limited to a range of 6.4 MHz to 16 MHz , the frequency of $\overline{\mathrm{CS}}$ has no limitation. This allows a system designer to operate the ADC122S655 at sample rates approaching zero samples per second if conserving power is very important. See Burst Mode Operation for more details. Multiple conversions can occur within a given conversion frame with each conversion requiring thirty-two SCLK cycles. This is referred to as continuous conversion mode and is shown in Figure 2 of the Timing Diagram section.
Proper operation requires that the fall of $\overline{\mathrm{CS}}$ not occur simultaneously with a rising edge of SCLK. If the fall of CS occurs during the rising edge of SCLK, the data might be clocked out one bit early. Whether or not the data is clocked out early depends upon how close the $\overline{\mathrm{CS}}$ transition is to the SCLK transition, the device temperature, and characteristics of the individual device. To ensure that the MSB is always clocked out at a given time (the 5th falling edge of SCLK), it is essential that the fall of $\overline{\mathrm{CS}}$ always meet the timing requirement specified in the Timing Specification table.

3.2 SCLK Input

The SCLK (serial clock) serves two purposes in the ADC122S655. It is used by the ADC122S655 as the conversion clock and it is used as the serial clock to output the conversion results. The SCLK input is TTL and CMOS compatible. Internal settling time requirements limit the maximum clock frequency while internal capacitor leakage limits the minimum clock frequency. The ADC122S655 offers guaranteed performance with the clock rates indicated in the Electrical Characteristics Table.

3.3 Data Output(s)

The conversion result of Channel A and Channel B is output on $\mathrm{D}_{\text {OUT }}$, with the result of Channel A being output before the result of Channel B. The data output format of the ADC122S655 is binary, two's complement, as shown in Table 2. This table indicates the ideal output code for a given input voltage and does not include the effects of offset, gain error, linearity errors, or noise. Each data output bit is output on the falling edges of SCLK.

TABLE 2. Ideal Output Code vs. Input Voltage

Analog Input (+IN) - (-IN)	2's Complement Binary Output	2's Comp. Hex Code	2's Comp. Dec Code
$\mathrm{V}_{\text {REF }}-1.5$ LSB	011111111111	7 FF	2047
+0.5 LSB	000000000001	001	1
-0.5 LSB	000000000000	000	0
OV - 1.5 LSB	111111111111	FFF	-1
$-\mathrm{V}_{\text {REF }}+0.5$ LSB	100000000000	800	-2048

While data is output on the falling edges of SCLK, receiving systems have the option of capturing the data from the ADC122S655 on the subsequent rising or falling edge of SCLK. If a receiving system is going to capture data on the subsequent falling edges of SCLK, it is important to make sure that the minimum hold time after an SCLK falling edge (t_{DH}) is acceptable. See Figure 4 for $\mathrm{D}_{\text {OUt }}$ hold and access times. $\mathrm{D}_{\text {OUT }}$ is enabled on the falling edge of $\overline{\mathrm{CS}}$ and disabled on the rising edge of $\overline{C S}$. If $\overline{C S}$ is raised prior to the 16 th falling edge of SCLK, the current conversion is aborted and $D_{\text {OUT }}$ will go into its high impedance state. A new conversion will begin when $\overline{\mathrm{CS}}$ is taken LOW.

Applications Information

OPERATING CONDITIONS

We recommend that the following conditions be observed for operation of the ADC122S655:
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$
$+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+5.5 \mathrm{~V}$
$1 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{A}}$
6.4 MHz $\leq \mathrm{f}_{\text {SCLK }} \leq 16 \mathrm{MHz}$
$\mathrm{V}_{\text {См }}$: See Section 2.3

4.0 POWER CONSUMPTION

The architecture, design, and fabrication process allow the ADC122S655 to operate at conversion rates up to 500 kSPS while consuming very little power. The ADC122S655 consumes the least amount of power while operating in power down mode. For applications where power consumption is critical, the ADC122S655 should be operated in power down mode as often as the application will tolerate. To further reduce power consumption, stop the SCLK while $\overline{\mathrm{CS}}$ is high.

4.1 Burst Mode Operation

Normal operation of the ADC122S655 requires the SCLK frequency to be thirty-two times the sample rate and the $\overline{\mathrm{CS}}$ rate to be the same as the sample rate. However, in order to minimize power consumption in applications requiring sample rates below 200 kSPS , the ADC122S655 should be run with an SCLK frequency of 16 MHz and a $\overline{\mathrm{CS}}$ rate as slow as the system requires. When this is accomplished, the ADC122S655 is operating in burst mode. The ADC122S655 enters into power down mode at the end of each conversion, minimizing power consumption. This causes the converter to spend the longest possible time in power down mode. Since power consumption scales directly with conversion rate, minimizing power consumption requires determining the lowest conversion rate that will satisfy the requirements of the system.

5.0 POWER SUPPLY CONSIDERATIONS AND PCB LAYOUT

For best performance, care should be taken with the physical layout of the printed circuit board. This is especially true with a low reference voltage or when the conversion rate is high. At high clock rates there is less time for settling, so it is important that any noise settles out before the conversion begins.

5.1 Analog Power Supply

Any ADC architecture is sensitive to spikes on the power supply, reference, and ground pins. These spikes may originate from switching power supplies, digital logic, high power devices, and other sources. Power to the ADC122S655 should be clean and well bypassed. A $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor and a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor should be used to bypass the ADC122S655 supply, with the $0.1 \mu \mathrm{~F}$ capacitor placed as close to the ADC122S655 package as possible.
Since the ADC122S655 has a separate analog and reference pin, the user has two options. The first option is to tie the analog and reference supply pins together and power them with the same power supply. This is the most cost effective way of powering the ADC122S655 but it is also the least ideal. As stated previously, noise from the analog supply pin can couple into the reference supply pin and adversely affect performance. The other option involves the user powering the analog and reference supply pins with separate supply voltages. These supply voltages can have the same amplitude or they can be different. The only design constraint is that the reference supply voltage be less than the analog supply voltage.

5.2 Voltage Reference

The reference source must have a low output impedance and needs to be bypassed with a minimum capacitor value of 0.1 $\mu \mathrm{F}$. A larger capacitor value of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ placed in parallel with the $0.1 \mu \mathrm{~F}$ is preferred. While the ADC122S655 draws very little current from the reference on average, there are higher instantaneous current spikes at the reference input.
The reference input of the ADC122S655, like all A/D converters, does not reject noise or voltage variations. Keep this in mind if the reference voltage is derived from the power supply. Any noise and/or ripple from the supply that is not rejected by the external reference circuitry will appear in the digital results. The use of an active reference source is recommended. The LM4040 and LM4050 shunt reference families and the LM4132 and LM4140 series reference families are excellent choices for a reference source.

5.3 РCB Layout

Capacitive coupling between the noisy digital circuitry and the sensitive analog circuitry can lead to poor performance. The solution is to keep the analog circuitry separated from the digital circuitry and the clock line as short as possible. Digital circuits create substantial supply and ground current transients. The logic noise generated could have significant impact upon system noise performance. To avoid performance degradation of the ADC122S655 due to supply noise, avoid sharing the power supplies for V_{A} and $\mathrm{V}_{\text {REF }}$ with other digital circuity on the board.
Generally, analog and digital lines should cross each other at 90° to avoid crosstalk. However, to maximize accuracy in high resolution systems, avoid crossing analog and digital lines altogether. It is important to keep clock lines as short as possible and isolated from other lines, including other digital lines. In addition, the clock line should also be treated as a transmission line and be properly terminated. The analog input
should be isolated from noisy signal traces to avoid coupling of spurious signals into the input. Any external component (e.g., a filter capacitor) connected between the converter's input pins and ground or to the reference input pin and ground should be connected to a very clean point in the ground plane. A single, uniform ground plane and the use of split power planes are recommended. The power planes should be located within the same board layer. All analog circuitry (input amplifiers, filters, reference components, etc.) should be placed over the analog power plane. All digital circuitry and I/O lines should be placed over the digital power plane. Furthermore, the GND pin on the ADC122S655 and all the components in the reference circuitry and input signal chain that are connected to ground should be connected to the ground plane at a quiet point. Avoid connecting these points too close to the ground point of a microprocessor, microcontroller, digital signal processor, or other high power digital device.

6.0 APPLICATION CIRCUITS

The following figures are examples of the ADC122S655 in typical application circuits. These circuits are basic and will generally require modification for specific circumstances.

6.1 Data Acquisition

Figure 11 shows a basic low cost, low power data acquisition circuit. The analog supply pin is powered by the system +5 V supply and the 2.5 V reference voltage is generated by the LM4040-2.5 shunt reference.

FIGURE 11. Low cost, low power Data Acquisition System

6.2 Current Sensing Application

Figure 12 shows an example of interfacing a pair of current transducers to the ADC122S655. The current transducers convert an input current into a voltage that is converted by the ADC122S655. Since the output voltage of the current transducers are single-ended and centered around a commonmode voltage of 2.5 V , the ADC122S655 is configured with the output of the transducer driving the non-inverting inputs and the common-mode output voltage of the transducer driving the inverting input. The output of the transducer has an output range of $\pm 2 \mathrm{~V}$ around the common-mode voltage of 2.5 V . As a result, a series reference voltage of 2.0 V is connected to the ADC122S655. This will allow all of the codes of the ADC122S655 to be available for the application. This configuration of the ADC122S655 is referred to as a single-ended application of a differential ADC. All of the elements in the
application are conveniently powered by the same +5 V power
supply, keeping circuit complexity and cost to a minimum.

FIGURE 12. Interfacing the ADC122S655 to a Current Transducer

6.3 Bridge Sensor Application

Figure 13 shows an example of interfacing the ADC122S655 to a pair of bridge sensors. The application assumes that the bridge sensors require buffering and amplification to fully utilize the dynamic range of the ADC and thus optimize the performance of the entire signal path. The amplification stage for each ADC input consists of a pair of opamps from the LMP7704. The amplification stage offers the benefit of high input impedance and potentially high amplification. On the
other hand, it offers no common-mode rejection of noise coming from the bridge sensors. The application circuit assumes the bridge sensors are powered from the same +5 V power supply voltage as the analog supply pin on the ADC122S655. This has the benefit of providing the ideal common-mode input voltage for the ADC122S655 while keeping design complexity and cost to a minimum. The LM4132-4.1, a 4.1V series reference, is used as the reference voltage in the application.

FIGURE 13. Interfacing the ADC122S655 to Bridge Sensors

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench
Audio	www.national.com/audio	Analog University	www.national.com/AU
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns
Power Management	www.national.com/power	Feedback	www.national.com/feedback
Switching Regulators	www.national.com/switchers		
LDOs	www.national.com/ldo		
LED Lighting	www.national.com/led		
PowerWise	www.national.com/powerwise		
Serial Digital Interface (SDI)	www.national.com/sdi		
Temperature Sensors	www.national.com/tempsensors		
Wireless (PLL/VCO)	www.national.com/wireless		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2008 National Semiconductor Corporation For the most current product information visit us at www.national.com

| National Semiconductor | National Semiconductor Europe
 Technical Support Center |
| :--- | :--- | :--- |
| Americas Technical Support Center | Email: europe.support@ nsc.com |
| Email: | German Tel: +49 (0) 1805010 771 |
| new.feedback@ nsc.com | English Tel: +44 (0) 8708504288 |
| Tel: 1-800-272-9959 | |

National Semiconductor Japan
Technical Support Center
Email: jpn.feedback@nsc.com

[^0]
[^0]: www.national.com

