

Pin Descriptions

Pin Names	Description
$A_{0}-A_{7}$	Data Register A Inputs/
	3-STATE Outputs
$B_{0}-B_{7}$	Data Register B Inputs/
	3-STATE Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Select Inputs
OEAB, $\overline{O E B A}$	Output Enable Inputs

Connection Diagram

Truth Table
(Note 1)

Inputs						Inputs/Outputs		Operating Mode
OEAB	$\overline{\text { OEBA }}$	CPAB	CPBA	SAB	SBA	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\sim	\sim	X	X			Store A and B Data
X	H	\sim	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\checkmark	\sim	X	X	Input	Output	Store A in Both Registers
L	X	H or L	\checkmark	X	X	Not Specified	Input	Hold A, Store B
L	L	\checkmark	\sim	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	H or L	X	H	X			Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

Note 1: The data output functions may be enabled or disabled by various signals at OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

Logic Diagram

[^0]
Functional Description

In the transceiver mode, data present at the HIGH imped-
ance port may be stored in either the A or B register or
both.
The select (SAB, SBA) controls can multiplex stored and
real-time.
The examples below demonstrate the four fundamental
bus-management functions that can be performed with the LVTH652.

Data on the A or B data bus, or both can be stored in the internal D-type flip-flop by LOW-to-HIGH transitions at the appropriate Clock Inputs (CPAB, CPBA) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

Absolute Maximum Ratings(Note 2)				
Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	
IK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{V}^{\text {a }}$ (mA
TK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
\%	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at LOW State	
$\overline{\mathrm{ICC}}$	DC Supply Current per Supply Pin	± 64		mA
TGND	DC Ground Current per Ground Pin	± 128		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	V	
I_{OH}	HIGH Level Output Current		V	
I_{OL}	LOW Level Output Current	-32	mA	
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	85	

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 3: I_{O} Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
$\overline{\mathrm{V}_{\text {IK }}}$	Input Clamp Diode Voltage			2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{cc}}-0.1 \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		2.7-3.6		0.8			
$\overline{\mathrm{V}} \mathrm{OH}$	Output HIGH Voltage		2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
			2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	
			3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		2.7		0.2	V	$\mathrm{l}^{\mathrm{OL}}=100 \mu \mathrm{~A}$	
			2.7		0.5	V	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	
			3.0		0.4	V	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	
			3.0		0.5	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	
			3.0		0.55	V	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	
$\overline{I_{\text {(HOLD })}}$	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
			-75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		
$\overline{I_{(O D)}}$	Bushold Input Over-Drive Current to Change State			3.0	500		$\mu \mathrm{A}$	(Note 4)
			-500			$\mu \mathrm{A}$	(Note 5)	
\bar{T}	Input Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
		Control Pins	3.6		± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
		Data Pins	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	
					1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cC }}$	
IofF	Power OFF Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{IPU} / \mathrm{PD}$	Power Up/Down 3-STATE Output Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
Iozl	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	
${ }_{\text {IOZH }}$	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$	
lozh^{+}	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {CCH }}$	Power Supply Current		3.6		0.19	mA	Outputs HIGH	
${ }^{\text {CCL }}$	Power Supply Current		3.6		5	mA	A or B Port Outputs LOW	
$\mathrm{I}_{\text {CCz }}$	Power Supply Current		3.6		0.19	mA	Outputs Disabled	
ICCZ^{+}	Power Supply Current		3.6		0.19	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \text { Outputs Disabled } \end{aligned}$	
$\overline{\Delta \mathrm{l}_{\mathrm{CC}}}$	Increase in Power Supply Current (Note 6)		3.6		0.2	mA	$\begin{aligned} & \text { One Input at } \mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} \\ & \text { Other Inputs at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIG
Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW
Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 7)

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
		(V)	Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		0.8		V	(Note 8)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SOIC package. Guaranteed parameter, but not tested.
Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

24-Lead Molded Small Outline Package, TSSOP JEDEC
Package Number MTC24

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

