

February 2001 Revised August 2001

74LVTH322374

Low Voltage 32-Bit D-Type Flip-Flop with 3-STATE Outputs and 25 Ω Series Resistors in the Outputs (Preliminary)

General Description

The LVTH322374 contains thirty-two non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable $(\overline{\text{OE}})$ are common to each byte and can be shorted together for full 32-bit operation.

The LVTH322374 is designed with equivalent 25Ω series resistance in both the HIGH and LOW states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The LVTH322374 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These flip-flops are designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH322374 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

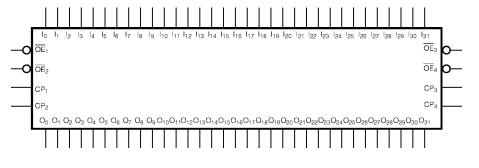
Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Power Down high impedance provides glitchfree bus loading
- \blacksquare Outputs include equivalent series resistance of 25Ω to make external termination resistors unnecessary and reduce overshoot and undershoot
- ESD performance:

Human-body model > 2000V

Machine model > 200V

Charged-device model > 1000V

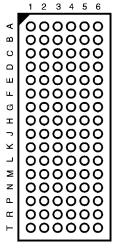

■ Packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

Ordering Code:

Order Number	Package Number	Package Description				
74LVTH322374GX (Note 1)		96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [Tape and Reel]				
Note 1: BGA package available in Tape and Reel only						

Note 1: BGA package available in Tape and Reel only

Logic Symbol



© 2001 Fairchild Semiconductor Corporation

DS500429

www.fairchildsemi.com

Connection Diagram

(Top Thru View)

Pin Descriptions for FBGA

Pin Names	Description
ŌEn	Output Enable Input (Active LOW)
CP _n	Clock Pulse Input
I ₀ -I ₃₁	Inputs
O ₀ -O ₃₁	3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₁	O ₀	ŌE ₁	CP ₁	I ₀	I ₁
В	O ₃	02	GND	GND	l ₂	l ₃
С	O ₅	04	V _{CC1}	V _{CC1}	I ₄	I ₅
D	07	O ₆	GND	GND	I ₆	l ₇
Е	O ₉	Ο ₈	GND	GND	I ₈	l ₉
F	O ₁₁	O ₁₀	V _{CC1}	V _{CC1}	I ₁₀	I ₁₁
G	O ₁₃	O ₁₂	GND	GND	I ₁₂	I ₁₃
Н	O ₁₄	O ₁₅	OE ₂	CP ₂	I ₁₅	I ₁₄
J	O ₁₇	O ₁₆	OE ₃	CP ₃	I ₁₆	I ₁₇
K	O ₁₉	O ₁₈	GND	GND	I ₁₈	I ₁₉
L	O ₂₁	O ₂₀	V_{CC2}	V_{CC2}	I ₂₀	l ₂₁
М	O ₂₃	O ₂₂	GND	GND	l ₂₂	l ₂₃
N	O ₂₅	O ₂₄	GND	GND	l ₂₄	l ₂₅
Р	O ₂₇	O ₂₆	V_{CC2}	V_{CC2}	I ₂₆	l ₂₇
R	O ₂₉	O ₂₈	GND	GND	I ₂₈	l ₂₉
Т	O ₃₀	O ₃₁	ŌE ₄	CP ₄	I ₃₁	I ₃₀

Truth Tables

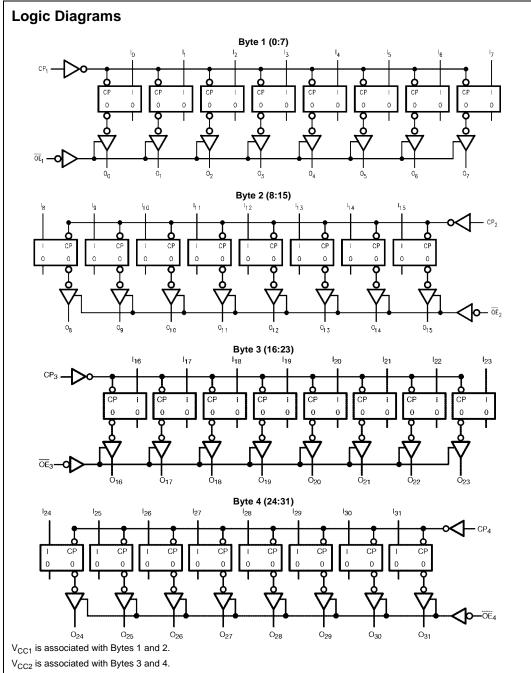
	Inputs		Outputs
CP ₁	OE ₁	I ₀ –I ₇	O ₀ -O ₇
~	L	Н	Н
~	L	L	L
L	L	X	O _o
Х	Н	X	Z

	Inputs		Outputs
CP ₃	OE ₃	I ₁₆ -I ₂₃	O ₁₆ -O ₂₃
~	L	Н	Н
~	L	L	L
L	L	X	O _o
Х	Н	X	Z

H = HIGH Voltage Level L = LOW Voltage Level

	Inputs					
CP ₂	OE ₂	I ₈ -I ₁₅	O ₈ -O ₁₅			
	L	Н	Н			
~	L	L	L			
L	L	Χ	O _o			
Χ	Н	Χ	Z			

	Inputs		Outputs
CP ₄	OE₄	I ₂₄ –I ₃₁	O ₂₄ -O ₃₁
~	L	Н	Н
~	L	L	L
L	L	Χ	O_{o}
Х	Н	Χ	Z


Z = HIGH Impedance

Functional Description

The LVTH322374 consists of thirty-two edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 32-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

X = Immaterial

O_o = Previous O_o before HIGH-to-LOW of CP

Note: Please note that these diagrams are provided for the understanding of logic operation and should not be used to estimate propagation delays.

mΑ

mΑ

°C

 I_CC

 I_{GND}

 T_{STG}

Absolute Maximum Ratings(Note 2) Symbol Parameter Value Conditions Units Supply Voltage -0.5 to +4.6 V_{CC} DC Input Voltage V_{I} -0.5 to +7.0 Vo DC Output Voltage Output in 3-STATE -0.5 to +7.0 ٧ Output in HIGH or LOW State (Note 3) -0.5 to +7.0 DC Input Diode Current -50 $V_I < GND$ mΑ DC Output Diode Current -50 V_O < GND mΑ lok DC Output Current 64 V_O > V_{CC} Output at HIGH State mΑ 128 Output at LOW State

±64

±128

-65 to +150

Recommended Operating Conditions

DC Supply Current per Supply Pin

Storage Temperature

DC Ground Current per Ground Pin

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH Level Output Current		-32	mA
I _{OL}	LOW Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 3: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Зупівої	Farameter		(V)	Min	Max	Ullits	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{ОН}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2		V	$I_{OH} = -100 \mu A$
			3.0	2.0		V	I _{OH} = -12 mA
√ _{OL}	Output LOW Voltage		2.7		0.2	V	$I_{OL} = 100 \mu A$
			3.0		0.8	V	I _{OL} = 12 mA
I(HOLD)	Bushold Input Minimum Drive		3.0	75		^	$V_{I} = 0.8V$
			3.0	-75		μΑ	$V_1 = 2.0V$
I(OD)	Bushold Input Over-Drive		3.0	500		μА	(Note 4)
	Current to Change State		3.0	-500		μΛ	(Note 5)
I	Input Current		3.6		10		$V_{I} = 5.5V$
		Control Pins	3.6		±1	μΑ	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5		$V_I = 0V$
	Data Fil	Dala FIIIS	3.0		1		$V_I = V_{CC}$
OFF	Power Off Leakage Current		0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
PU/PD	Power Up/Down 3-STATE		0-1.5V		±100	^	$V_0 = 0.5V \text{ to } 3.0V$
	Output Current		0-1.50		±100	μА	$V_I = GND \text{ or } V_{CC}$
OZL	3-STATE Output Leakage Current		3.6		-5	μΑ	$V_0 = 0.5V$
OZH	3-STATE Output Leakage Current		3.6		5	μΑ	V _O = 3.0V
OZH ⁺	3-STATE Output Leakage Current		3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$
ССН	Power Supply Current (V _{CC1} or	r V _{CC2})	3.6		0.19	mA	Outputs HIGH
CCL	Power Supply Current (V _{CC1} or	r V _{CC2})	3.6		5	mA	Outputs LOW
ccz	Power Supply Current (V _{CC1} or	r V _{CC2})	3.6		0.19	mA	Outputs Disabled

www.fairchildsemi.com

DC Electrical Characteristics (Continued)

Symbol	Parameter	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Oymboi	i arameter	(V)	Min	Max	Oillia	Conditions	
I _{CCZ} +	Power Supply Current (V _{CC1} or V _{CC2})	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
						Outputs Disabled	
Δl _{CC}	Increase in Power Supply Current (V _{CC1} or V _{CC2})	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
	(Note 6)					Other Inputs at V _{CC} or GND	

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

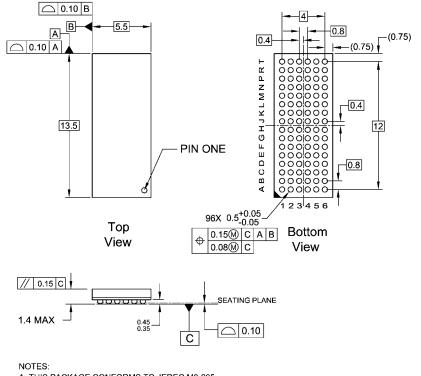
Dynamic Switching Characteristics (Note 7)

Symbol	Parameter	v _{cc}	V_{CC} $T_A = 25^{\circ}C$		Units	Conditions	
Symbol	Farameter	(V)	Min	Тур	Max	Oilles	$C_L = 50$ pF, $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.

 $\textbf{Note 8:} \ \text{Max number of outputs defined as (n). } \ n-1 \ \text{data inputs are driven 0V to 3V. Output under test held LOW.}$

AC Electrical Characteristics


		T _A = -40				
Symbol	Parameter		3V ± 0.3V	V _{CC} = 2.7V		Units
		Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	160		160		MHz
t _{PHL}	Propagation Delay	2.2	4.9	2.2	5.1	ns
t _{PLH}	CP to On	2.0	5.3	2.0	6.2	110
t _{PZL}	Output Enable Time	1.8	4.9	1.8	6.0	ns
t _{PZH}		1.8	5.6	1.8	6.9	115
t _{PLZ}	Output Disable Time	2.0	5.0	2.0	5.1	ns
t _{PHZ}		2.4	5.4	2.4	5.7	115
t _S	Setup Time	1.8		2.0		ns
t _H	Hold Time	0.8		0.1		ns
t _W	Pulse Width	3.0		3.0		ns

Capacitance (Note 9)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = OPEN, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 9: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- B. ALL DIMENSIONS IN MILLIMETERS
- C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE

96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A **Preliminary**

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com