

Connection Diagram

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
LE $_{n}$	Latch Enable Input
$\mathrm{I}_{0}-\mathrm{I}_{31}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{31}$	3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
A	O_{1}	O_{0}	$\overline{\mathrm{OE}}_{1}$	LE_{1}	I_{0}	I_{1}
B	O_{3}	O_{2}	GND	GND	I_{2}	I_{3}
C	O_{5}	O_{4}	$\mathrm{V}_{\text {CC1 }}$	$\mathrm{V}_{\mathrm{CC} 1}$	I_{4}	I_{5}
D	O_{7}	O_{6}	GND	GND	I_{6}	I_{7}
E	O_{9}	O_{8}	GND	GND	18	I_{9}
F	O_{11}	O_{10}	$\mathrm{V}_{\text {CC1 }}$	$\mathrm{V}_{\text {CC1 }}$	I_{10}	I_{11}
G	O_{13}	O_{12}	GND	GND	I_{12}	I_{13}
H	O_{14}	O_{15}	$\overline{\mathrm{OE}}_{2}$	LE_{2}	I_{15}	I_{14}
J	O_{17}	O_{16}	$\overline{\mathrm{OE}}_{3}$	LE_{3}	I_{16}	I_{17}
K	O_{19}	O_{18}	GND	GND	I_{18}	I_{19}
L	O_{21}	O_{20}	$\mathrm{V}_{\mathrm{CC} 2}$	$\mathrm{V}_{\mathrm{CC} 2}$	I_{20}	I_{21}
M	O_{23}	O_{22}	GND	GND	l_{22}	I_{23}
N	O_{25}	O_{24}	GND	GND	I_{24}	I_{25}
P	O_{27}	O_{26}	$\mathrm{V}_{\mathrm{CC} 2}$	$\mathrm{V}_{\mathrm{CC} 2}$	I_{26}	I_{27}
R	O_{29}	O_{28}	GND	GND	I_{28}	I_{29}
T	O_{30}	O_{31}	$\overline{\mathrm{OE}}_{4}$	LE_{4}	I_{31}	I_{30}

Truth Table

Inputs			Outputs
L_{1}	OE_{1}	$\mathrm{I}_{0}-\mathrm{I}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}
Inputs			Outputs
LE_{3}	$\overline{\mathrm{OE}}_{3}$	$\mathrm{I}_{16}-\mathrm{l}_{23}$	$\mathrm{O}_{16}-\mathrm{O}_{23}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Inputs			Outputs
$L E E_{2}$	OE_{2}	$\mathrm{I}_{8} \mathrm{l}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}
Inputs			Outputs
LE_{4}	$\overline{\mathrm{OE}}_{4}$	$\mathrm{I}_{24} \mathrm{l}_{31}$	$\mathrm{O}_{24}-\mathrm{O}_{31}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Functional Description

The LVT322373 and LVTH322373 contain thirty-two D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 32-bit operation. The following description applies to each byte. When the Latch Enable (LE E_{n}) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e, a latch output will change states each time its D input changes. When LE E_{n} is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE n. The 3-STATE standard outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}_{n}$) input. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagrams

Byte 3 (16:23)

Byte 4 (24:31)

$V_{C C 1}$ is associated with Bytes 1 and 2.
$\mathrm{V}_{\mathrm{CC} 2}$ is associated with Bytes 3 and 4.
Note: Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-50	$V_{1}<$ GND	mA
$\mathrm{I}_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
Io	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at LOW State	
$I_{\text {cc }}$	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH Level Output Current		-12	mA
I_{OL}	LOW Level Output Current		12	mA
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions
beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied
Note 4: I_{O} Absolute Maximum Rating must be observed.
DC Electrical Characteristics

Symbol	Parameter		$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
$\overline{\mathrm{V}_{\text {IK }}}$	Input Clamp Diode Voltage			2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or	
V_{IL}	Input LOW Voltage		2.7-3.6		0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$	
V_{OH}	Output HIGH Voltage		$2.7-3.6$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
			3.0	2.0			$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	
$\overline{\mathrm{V}_{\mathrm{OL}}}$	Output LOW Voltage		2.7		0.2	V	$\mathrm{l}^{\text {OL }}=100 \mu \mathrm{~A}$	
			3.0		0.8		$\mathrm{IOL}^{\text {a }}=12 \mathrm{~mA}$	
$\overline{l_{\text {(HOLD })}}$	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
				-75			$\mathrm{V}_{1}=2.0 \mathrm{~V}$	
$I_{\text {(OD) }}$	Bushold Input Over-Drive Current to Change State		3.0	500		$\mu \mathrm{A}$	(Note 5)	
			-500		(Note 6)			
I	Input Current			3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
		Control Pins	3.6		± 1	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		
		Data Pins	3.6		-5	$\mathrm{V}_{1}=0 \mathrm{~V}$		
					1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		
IofF	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
IPU/PD	Power up/down 3-STATE Output Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	
lozl	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	
$\mathrm{I}_{\text {OzH }}$	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$	
lozh^{+}	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current	$\left(\mathrm{V}_{\mathrm{CC} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{CC} 2}\right)$	3.6		0.19	mA	Outputs HIGH	
$\mathrm{I}_{\text {CLL }}$	Power Supply Current	$\left(\mathrm{V}_{\mathrm{CC} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{CC} 2}\right)$	3.6		5	mA	Outputs LOW	
$\mathrm{I}_{\text {čz }}$	Power Supply Current	($\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$)	3.6		0.19	mA	Outputs Disabled	

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president of fairchild SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
