

Absolute Maximum Ratings(Note 2)						
Symbol	Parameter	Value	Conditions			Units V
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +4.6				
V_{1}	DC Input Voltage	-0.5 to +7.0				V
V_{O}	Output Voltage	-0.5 to +7.0	Output in 3-	TE		V
		-0.5 to +7.0	Output in	or L	(No	V
$I_{\text {IK }}$	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND			mA
l_{OK}	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$			mA
I_{0}	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	put a	tate	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	put at		
$\overline{\mathrm{ICC}}$	DC Supply Current per Supply Pin	± 64				mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128				mA
TSTG	Storage Temperature	-65 to +150				${ }^{\circ} \mathrm{C}$
Recom	nmended Operating C	ions				
Symbol	Param			Min	Max	Units
V_{CC}	Supply Voltage			2.7	3.6	V
V_{1}	Input Voltage			0	5.5	V
$\overline{\mathrm{IOH}}$	HIGH-Level Output Current		A Port B Port		$\begin{aligned} & \hline-32 \\ & -12 \end{aligned}$	mA
IOL	LOW-Level Output Current		A Port B Port		$\begin{aligned} & 64 \\ & 12 \end{aligned}$	mA
T_{A}	Free Air Operating Temperature			-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}-2.0 \mathrm{~V}$, V			0	10	ns/V

Symbol	Parameter		V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.7-3.6	2.0		V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		2.7-3.6		0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$	
V_{OH}	Output HIGH Voltage	A Port	2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	
			3.0	2.0			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	
		B Port	3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	
			2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
V_{OL}	Output LOW Voltage	A Port	2.7		0.5	V	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	
			3.0		0.4		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	
			3.0		0.5		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	
			3.0		0.55		$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	
		B Port	3.0		0.8	V	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	
			2.7		0.2	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
$\overline{l_{\text {(HOLD }}}$ (Note 4)	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
			-75		$\mathrm{V}_{1}=2.0 \mathrm{~V}$			
$\mathrm{I}_{\text {(OD) }}$ (Note 4)	Bushold Input Over-Drive			3.0	500		$\mu \mathrm{A}$	(Note 5)
			-500			(Note 6)		
I	Input Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
		Control Pins	3.6		± 1		$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
		Data Pins	3.6		-5		$\mathrm{V}_{1}=0 \mathrm{~V}$	
					1		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$	
IofF	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
IPU/PD	Power Up/Down 3-STATE Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{Cc}} \end{aligned}$	
IozL	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	
IozL (Note 4)	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	
Iozh	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$	
lozh (Note 4)	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$	
lozh^{+}	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
ICCH	Power Supply Current		3.6		0.19	mA	Outputs High	
ICCL	Power Supply Current		3.6		5	mA	Outputs Low	
$\mathrm{I}_{\text {Ccz }}$	Power Supply Current		3.6		0.19	mA	Outputs Disabled	
ICCZ^{+}	Power Supply Current		3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled	
$\triangle{ }^{\text {c }}$	Increase in Power Supply Current (Note 7)		3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND	
Note 4: Applies to Bushold versions only (74LVTH2245). Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND. Dynamic Switching Characteristics (Note 8)								
Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	$\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	
		(V)	Mi	Typ	Max			
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$			0.8		V	(Note 9)	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$ 年			-0.8		V	(Note 9)	
Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested. Note 9: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . Output under test held LOW.								

AC Electrical Characteristics

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
