SEMICONDUCTOR

74LVTH16501 Low Voltage 18-Bit Universal Bus Transceivers with Bushold and 3-STATE Outputs

General Description

FAIRCHILD

The LVTH16501 is an 18-bit universal bus transceiver combining D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and $\overline{OEBA}),$ latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs.

The LVTH16501 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The transceiver is designed for low voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16501 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power up/down high impedance provides glitch-free bus loading

March 2001

Revised March 2001

- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16501
- ESD Performance: Human-Body Model > 2000V Machine Model > 200V
 - Charged-Device Model > 1000V

Ordering Code:

Order Number	Package Number	Package Description
4LVTH16501MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
4LVTH16501MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
		by appending the suffix letter "X" to the ordering code.

Connection Diagram

	•		
OEAB —		, 56	- GND
	2	55	- CLKAE
LEAB -			
A ₁	3	54	— В ₁
GND —	4	53	- GND
A ₂ —	5	52	— в ₂
A3 —	6	51	— B ₃
v _{cc} —	7	50	-v _{cc}
A4 —	8	49	— B ₄
A ₅ —	9	48	— B ₅
A ₆ —	10	47	— B ₆
GND —	11	46	— GND
A ₇ —	12	45	— B ₇
A ₈ —	13	44	— B ₈
A ₉ —	14	43	— В ₉
A ₁₀ -	15	42	— B ₁₀
A ₁₁ -	16	4 1	— B _{1 1}
A ₁₂ -	17	40	— B ₁₂
GND —	18	39	— GND
A ₁₃ -	19	38	— В ₁₃
A14	20	37	— В ₁₄
A ₁₅ -	21	36	— B ₁₅
v _{cc} —	22	35	-v _{cc}
A ₁₆ -	23	34	— B ₁₆
A ₁₇ -	24	33	— В ₁₇
GND —	25	32	- GND
A ₁₈ -	26	31	— B ₁₈
OEBA -	27	30	- CLKBA
LEBA —	28	29	- GND

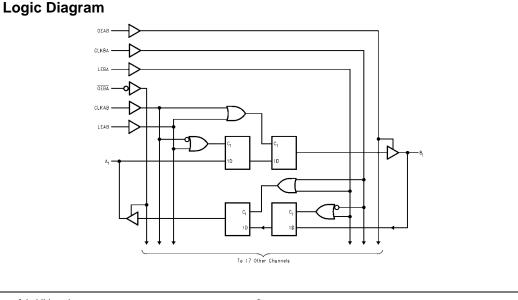
Pin Descriptions

Pin Names	Description
A ₁ -A ₁₈	Data Register A Inputs/3-STATE Outputs
A ₁ –A ₁₈ B ₁ –B ₁₈	Data Register B Inputs/3-STATE Outputs
CLKAB, CLKBA	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEAB, OEBA	Output Enable Inputs

Function Table (Note 1)

	Inp	outs		Output
OEAB	LEAB	CLKAB	An	B _n
L	Х	Х	Х	Z
Н	Н	Х	L	L
н	Н	Х	н	н
н	L	\uparrow	L	L
н	L	Ŷ	н	н
н	L	Н	Х	B ₀ (Note 2)
н	L	L	Х	B ₀ (Note 2) B ₀ (Note 3)

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial ↑ = LOW-to-HIGH Clock Transition Z = High Impedance


Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA. OEBA is active LOW

Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. Note 3: Output level before the indicated steady-state input conditions were established.

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the LOW-to-HIGH transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and OEBA is active-LOW).

Symbol	Parameter	Value	Conditions	Units
/ _{cc}	Supply Voltage	-0.5 to +4.6		V
V _I	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 5)	V
IK	DC Input Diode Current	-50	V _I < GND	mA
ОК	DC Output Diode Current	-50	V _O < GND	mA
0	DC Output Current	64	V _O > V _{CC} Output at HIGH State	
		128	V _O > V _{CC} Output at LOW State	mA
сс	DC Supply Current per Supply Pin	±64		mA
GND	DC Ground Current per Ground Pin	±128		mA
Г _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

Note 4: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 5: I_O Absolute Maximum Rating must be observed.

74LVTH16501

DC Electrical Characteristics

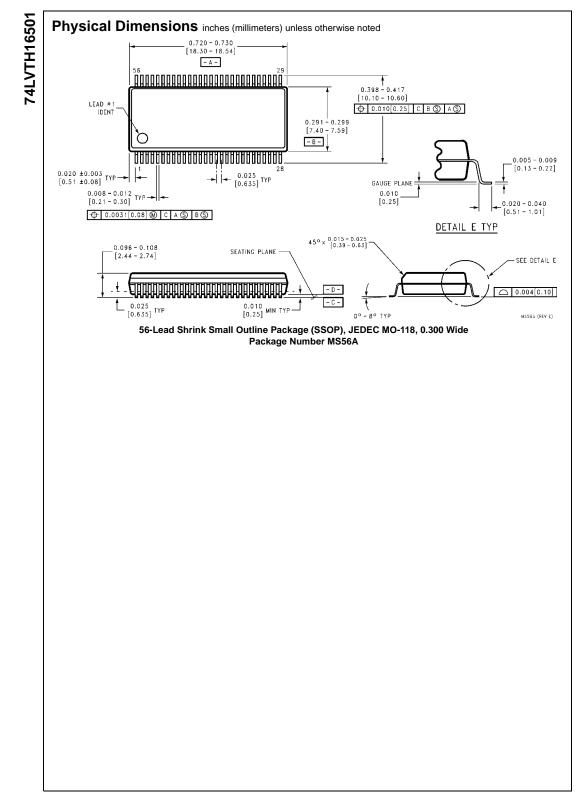
0	Deservation		V _{cc}	T _A = -40°C	C to +85°C	Units Cond	O an allition of
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
VIH	Input HIGH Voltage		2.7–3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7–3.6		0.8	v	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive	1	3.0	75		μΑ	$V_{I} = 0.8V$
			3.0	-75		μΑ	$V_{I} = 2.0V$
I(OD)	Bushold Input Over-Drive		3.0	500		μΑ	(Note 6)
	Current to Change State		3.0	-500		μΑ	(Note 7)
I _I	Input Current		3.6		10	μΑ	$V_{I} = 5.5V$
		Control Pins	3.6		±1	μΑ	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
		Data Pins	3.0		1	μΑ	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μA	$0V \le V_1 \text{ or } V_0 \le 5.5V$
I _{PU/PD}	Power up/down 3-STATE Output Current		0–1.5V		±100	μΑ	$V_O = 0.5V$ to 3.0V $V_I = GND$ or V_{CC}
I _{OZL}	3-STATE Output Leakage Cu	rrent	3.6		-5	μA	$V_{0} = 0.0V$
I _{OZH}	3-STATE Output Leakage Cu	rrent	3.6		5	μA	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage Cu	rrent	3.6		10	μA	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current		3.6	1	5	mA	Outputs LOW
I _{CCZ}	Power Supply Current		3.6	1 1	0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled
ΔI _{CC}	Increase in Power Supply Cu (Note 8)	rrent	3.6		0.2	mA	One Input at $V_{CC} - 0.6V$ Other Inputs at V_{CC} or GN

Note 7: An external driver must solice at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

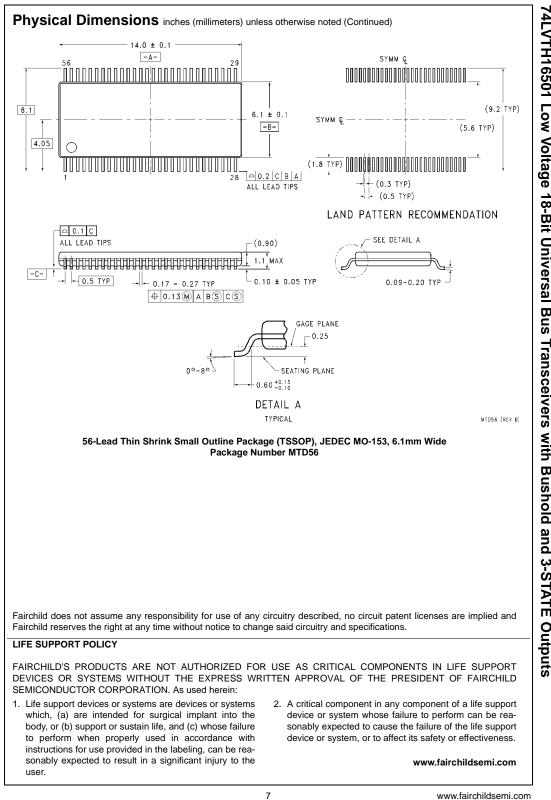
Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V _{cc}		$T_A = 25^\circ C$		Units	Conditions
Symbol	Falameter	(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)


Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

Min Max Min Max Min Max Min Max Max MAX CLKAB or CLKBA to B or A 150 150 N PLH Propagation Delay 1.3 5.1 1.3 5.6 PLH Data to Outputs 1.3 5.1 1.3 5.6 PLH Propagation Delay 1.5 5.5 1.5 6.1 PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PLH Propagation Delay 1.3 56 1.3 6.2 PLH Propagation Delay 1.3 5.1 1.3 5.7 PLH Propagation Delay 1.3 5.1 1.3 5.7 PLH Output Enable Time 1.3 5.4 1.3 6.2 PLZ Output Disable Time 1.7 5.8 1.7 6.6 R A or B before LE, CLK HIGH 2.4 1.6 1.7 6.3 S Setup Time A be	Symbol			T _A = -40	°C to +85°C,	C _L = 50 pF, R	t _L = 500 Ω	
MAX CLKAB or CLKBA to B or A 150 150 M PLH Propagation Delay 1.3 5.1 1.3 5.6 M PHL Data to Outputs 1.3 5.1 1.3 5.6 M PHL Data to Outputs 1.5 5.5 1.5 6.1 M PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 M PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 6.2 M PLH Propagation Delay 1.3 5.1 1.3 5.7 M PLH Propagation Delay 1.3 5.1 1.3 5.7 M PLH Propagation Delay 1.3 5.4 1.3 6.2 M PLT Output Enable Time 1.3 5.4 1.3 6.2 M PLZ Output Disable Time 1.7 5.8 1.7 6.6 M S Setup Time A before CLKAB 2.1		ſ	Parameter	V _{CC} = 3	$.3\pm0.3V$	V _{CC} =	Units	
Propagation Delay 1.3 5.1 1.3 5.6 PHL Data to Outputs 1.3 4.7 1.3 5.3 PLH Propagation Delay 1.5 5.5 1.5 6.1 PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PHL Propagation Delay 1.3 5.6 1.3 6.2 PHL CLKBA or LEAB to B or A 1.3 5.1 1.3 5.7 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 6.2 PHL Output Enable Time 1.3 5.4 1.3 6.2 PHZ Output Disable Time 1.7 5.8 1.7 6.3 S Setup Time A before CLKAB 2.1 2.4 1.6 H Hold Time A or B before LE, CLK HIGH 2.4 1.6 1.0 W Pulse Width LE HIGH 3.3 3.3 1.0 1.0 OSLH Output to Output Skew (Note 11) I.0				Min	Max	Min	Max	
PHL Data to Outputs 1.3 4.7 1.3 5.3 PLH Propagation Delay 1.5 5.5 1.5 6.1 PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PHL Propagation Delay 1.3 56 1.3 6.2 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PZH Output Enable Time 1.3 5.4 1.3 6.2 PHZ Output Disable Time 1.7 5.9 1.7 6.6 PLZ 0utput Disable Time 1.7 5.8 1.7 6.3 S Setup Time A before CLKAB 2.1 2.4 1.6 A or B before LE, CLK HIGH 2.4 1.6 1.0 1.0 1.0 H Hold Time A or B after LE 1.7 1.7 1.7 1.7 W Pulse Width LE HIGH 3.3 3.3 1.0 1.0 1.0 1.0 OSLH <td>MAX</td> <td>CLKAB or CLKBA to B or A</td> <td></td> <td>150</td> <td></td> <td>150</td> <td></td> <td>MHz</td>	MAX	CLKAB or CLKBA to B or A		150		150		MHz
PHL Data to Outputs 1.3 4.7 1.3 5.3 PLH Propagation Delay 1.5 5.5 1.5 6.1 PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PLH Propagation Delay 1.3 56 1.3 6.2 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PHL Output Enable Time 1.3 5.4 1.3 6.2 PHZ Output Disable Time 1.7 5.8 1.7 6.3 PLZ 1.7 5.8 1.7 6.3 1.6 S Setup Time A before CLKAB 2.1 2.4 1.6 A or B before LE, CLK HGH 2.4 1.6 1.6 1.6 W Pulse Width LE HIGH 3.3 3.3 1.0 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0	PLH	Propagation Delay		1.3	5.1	1.3	5.6	ns
LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PLH Propagation Delay 1.3 56 1.3 6.2 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PHL Output Enable Time 1.3 5.1 1.3 5.6 PZL Output Enable Time 1.3 5.4 1.3 6.2 PHZ Output Disable Time 1.7 5.9 1.7 6.6 PLZ 1.7 5.8 1.7 6.3 1.4 S Setup Time A before CLKAB 2.1 2.4 1.6 PL A or B before LE, CLK HIGH 2.4 1.6 1.6 1.6 H Hold Time A or B after CLK 1.0 1.0 1.0 1.0 W Pulse Width LE HIGH 3.3 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	PHL	Data to Outputs		1.3	4.7	1.3	5.3	113
PHL LEBA or LEAB to B or A 1.5 5.1 1.5 5.7 PLH Propagation Delay 1.3 56 1.3 6.2 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 P2H Output Enable Time 1.3 5.1 1.3 5.6 P2L 1.3 5.4 1.3 6.2 1.3 PHZ Output Enable Time 1.7 5.9 1.7 6.6 PLZ 1.7 5.8 1.7 6.3 1.5 S Setup Time A before CLKAB 2.1 2.4 1.6 S Setup Time A or B before LE, CLK HIGH 2.4 1.6 1.0 H Hold Time A or B after LE 1.7 1.7 1.7 W Pulse Width LE HIGH 3.3 3.3 1.0 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 1.0 OSHL Output to Output Skew is defined as the absolute value of the difference betwee	PLH							ns
CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PHL CLKBA or CLKAB to B or A 1.3 5.1 1.3 5.7 PZH Output Enable Time 1.3 5.4 1.3 6.2 PHZ Output Disable Time 1.7 5.9 1.7 6.6 PLZ 1.7 5.8 1.7 6.3 1.3 S Setup Time A before CLKAB 2.1 2.4 1.6 B before LE, CLK HIGH 2.4 1.6 1.6 1.6 1.7 H Hold Time A or B after CLK 1.0 1.0 1.0 1.0 W Pulse Width LE HIGH 3.3 3.3 1.0								
Dutput Enable Time 1.3 4.9 1.3 5.6 PZL 0utput Enable Time 1.3 5.4 1.3 6.2 PHZ 0utput Disable Time 1.7 5.9 1.7 6.6 PLZ 1.7 5.8 1.7 6.3 1.7 6.3 S Setup Time A before CLKAB 2.1 2.4 1.6 1.6 A or B before LE, CLK HIGH 2.4 1.6 1.6 1.7 1.6 H Hold Time A or B after CLK 1.0 1.0 1.0 1.0 W Pulse Width LE HIGH 3.3 3.3 1.0								ns
Price 1.3 5.4 1.3 6.2 Price 1.7 5.9 1.7 6.6 Price 1.7 5.8 1.7 6.3 Price 1.7 5.8 1.7 6.3 Setup Time A before CLKAB 2.1 2.4 1.6 B before CLKBA 2.1 2.4 1.6 1.6 A or B before LE, CLK HIGH 2.4 1.6 1.6 1.7 M Hold Time A or B after CLK 1.0 1.0 1.0 MW Pulse Width LE HIGH 3.3 3.3 1.0 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 1.0 OSHL Output to Output skew (Note 11) 1.0 1.0 1.0 1.0 1.0 OSHL Output to Output switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). 1.0 1.0 1.0 OSHL Settige Tables of the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). 1.0 1.0 1.0 Symbol Parameter Conditions Typical Unit								
PHZ Output Disable Time 1.7 5.9 1.7 6.6 PLZ 1.7 5.8 1.7 6.3 1.7 5.8 1.7 6.3 S Setup Time A before CLKAB 2.1 2.4 1.6 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.7 6.3 1.6 1.6 1.6 1.6 1.0		Output Enable Time						ns
PLZ 1.7 5.8 1.7 6.3 S Setup Time A before CLKAB 2.1 2.4 1.6 B before CLKBA 2.1 2.4 1.6 1.6 1.6 A or B before LE, CLK HIGH 2.4 1.6 1.7 1.7 1.7 H Hold Time A or B after LE, CLK LOW 2.4 1.6 1.6 W Pulse Width LE HIGH 3.3 3.3 1.7 W Pulse Width LE HIGH 3.3 3.3 1.0 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 1.0 OSHL Output to Output skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Typical Units		Output Disable Time						
A before CLKAB 2.1 2.4 B before CLKBA 2.1 2.4 A or B before LE, CLK HIGH 2.4 1.6 A or B before LE, CLK HIGH 2.4 1.6 A or B before LE, CLK HIGH 2.4 1.6 A or B before LE, CLK LOW 2.4 1.6 M A or B after CLK 1.0 1.0 M Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 DSHL Output to Output Skew (Note 11) 1.0 1.0 1.0 Specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units								ns
B before CLKBA 2.1 2.4 A or B before LE, CLK HIGH 2.4 1.6 A or B before LE, CLK LOW 2.4 1.6 H Hold Time A or B before LE, CLK LOW 2.4 1.6 M Hold Time A or B after CLK 1.0 1.0 M Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 DSHL 0.10 1.0 1.0 1.0 ONE 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units		Setup Time	A before CLKAB		0.0		0.0	
A or B before LE, CLK HIGH 2.4 1.6 A or B before LE, CLK LOW 2.4 1.6 H Hold Time A or B after CLK 1.0 1.0 W Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 OSHL Output to Output Skew (Note 11) 1.0 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units	>							-
H Hold Time A or B after CLK 1.0 1.0 A or B after LE 1.7 1.7 1.7 W Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 OSHL Output to Output Skew (Note 11) 1.0 1.0 1.0 OSHL Image: State Control of the difference between the actual propagation delay for any two separate outputs of the same device. 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. 1.0 1.0 Symbol Parameter Conditions Typical Units								ns
A or B after LE 1.7 1.7 W Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 OSHL 1.0 1.0 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units				2.4		1.6		_
A or B after LE 1.7 1.7 W Pulse Width LE HIGH 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 1.0 OSHL Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. Separate outputs witching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units	н	Hold Time	A or B after CLK	1.0		1.0		
CLK HIGH or LOW 3.3 3.3 OSLH Output to Output Skew (Note 11) 1.0 1.0 OSHL 1.0 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions			A or B after LE	1.7		1.7		ns
OSLH Output to Output Skew (Note 11) 1.0 <th< th=""><td>W</td><td>Pulse Width</td><td>LE HIGH</td><td>3.3</td><td></td><td>3.3</td><td></td><td>ns</td></th<>	W	Pulse Width	LE HIGH	3.3		3.3		ns
OSHL 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions			CLK HIGH or LOW	3.3		3.3		
OSHL 1.0 1.0 Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t _{OSHL}) or LOW-to-HIGH (t _{OSLH}). Capacitance (Note 12) Symbol Parameter Conditions Typical Units	OSLH	Output to Output Skew (Note	ə 11)		1.0		1.0	ns
	Symbol	Parameter	Conc	litions		Typical		Units
IN Input capacitance $V_{CC} = 0V, V_1 = 0V$ or V_{CC} 4 pF	IN	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V$	сс		4		pF
$V_{\rm LO}$ Input/Output Capacitance $V_{\rm CC} = 3.0$ V, $V_{\rm O} = 0$ V or $V_{\rm CC}$ 8 pF	I/O	Input/Output Capacitance	$V_{CC} = 3.0V, V_{O} = 0V c$	r V _{CC}		8		pF
$\label{eq:VC} \begin{array}{ c c c c } \hline \mbox{Input/Output Capacitance} & V_{CC} = 3.0V, \ V_{O} = 0V \ \mbox{or} \ V_{CC} & 8 \ \mbox{pF} \\ \hline \mbox{Note 12: Capacitance is measured at frequency f} = 1 \ \mbox{MHz, per MIL-STD-883, Method 3012.} \end{array}$						8		pF


74LVTH16501

5

www.fairchildsemi.com

6

