INTEGRATED CIRCUITS

DATA SHEET

74LVC11Triple 3-input AND gate

Product specification Supersedes data of 1998 Apr 28 2004 Jan 13

Triple 3-input AND gate

74LVC11

FEATURES

• Wide supply voltage range from 1.2 to 3.6 V

• Inputs accept voltages up to 5.5 V

• CMOS low power consumption

· Direct interface with TTL levels

· Output capability: standard

· I_{CC} category: SSI

• In accordance with JEDEC standard no. 8-1A

ESD protection:

HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

DESCRIPTION

The 74LVC11 is a high-performance, low power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC11 provides the 3-input AND function.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f \le 2.5 \, \text{ns}$.

SYMBOL PARAMETER t _{PHL} /t _{PLH} propagation delay nA, nB, nC to nY C _I input capacitance	CONDITIONS	TYPICAL	UNIT	
t _{PHL} /t _{PLH}	propagation delay nA, nB, nC to nY	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	3.7	ns
Cı	input capacitance		5.0	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	26	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_0 = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC} .

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE		PACE	(AGE	
I I PE NOWBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
74LVC11D	–40 to +85 °C	14	SO14	plastic	SOT108-1
74LVC11DB	-40 to +85 °C	14	SSOP14	plastic	SOT337-1
74LVC11PW	–40 to +85 °C	14	TSSOP14	plastic	SOT402-1
74LVC11BQ	-40 to +85 °C	14	DHVQFN14	plastic	SOT762-1

Triple 3-input AND gate

74LVC11

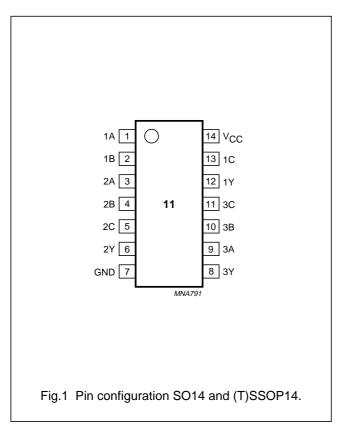
FUNCTION TABLE

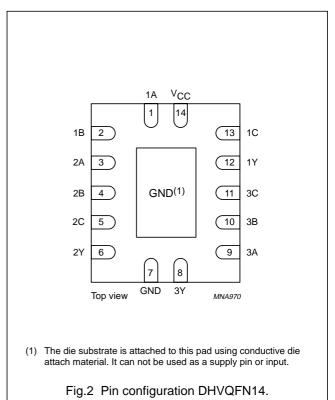
See note 1.

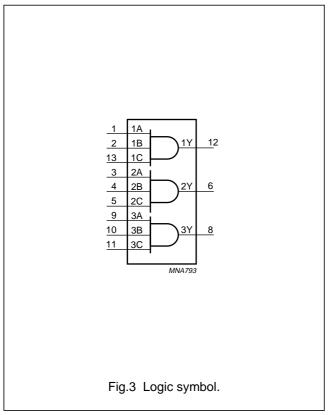
	INPUT	OUTPUT	
nA	nB	nC	nY
L	L	L	L
L	L	H	L
L	Н	L	L
L	Н	Н	L
Н	L	L	L
Н	L	H	L
Н	Н	L	L
Н	Н	Н	Н

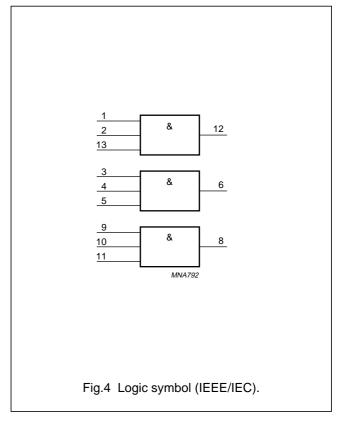
Note

L = LOW voltage level.

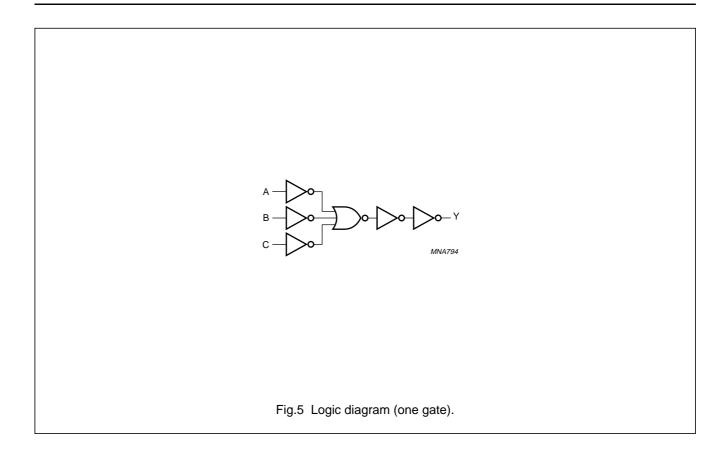

PINNING


PIN	SYMBOL	DESCRIPTION
1	1A	data input
2	1B	data input
3	2A	data input
4	2B	data input
5	2C	data input
6	2Y	data output
7	GND	ground (0 V)
8	3Y	data output
9	3A	data input
10	3B	data input
11	3C	data input
12	1Y	data output
13	1C	data input
14	V _{CC}	positive supply voltage


^{1.} H = HIGH voltage level.


Triple 3-input AND gate

74LVC11



Triple 3-input AND gate

74LVC11

Triple 3-input AND gate

74LVC11

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
VI	input voltage		0	5.5	V
Vo	output voltage		0	V _{CC}	V
T _{amb}	operating ambient temperature		-40	+85	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.2 to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 to 3.6 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V _I < 0	_	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{OK}	output diode current	$V_O > V_{CC}$ or $V_O < 0$	_	±50	mA
Vo	output voltage	note 1	-0.5	V _{CC} + 0.5	V
Io	output source or sink current	$V_{O} = 0$ to V_{CC}	_	±50	mA
I _{GND} , I _{CC}	V _{CC} or GND current		_	±100	mA
T _{stg}	storage temperature range		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 \text{ to } +125 \text{ °C}; \text{ note } 2$	_	500	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. For SO14 packages: above 70 °C the value of P_D derates linearly with 8 mW/K.
 - For (T)SSOP14 packages: above 60 $^{\circ}$ C the value of P_D derates linearly with 5.5 mW/K.

For DHVQFN14 packages: above 60 °C the value of P_D derates linearly with 4.5 mW/K.

Triple 3-input AND gate

74LVC11

DC CHARACTERISTICS

At recommended operating conditions voltages are referenced to GND (ground = 0 V).

OVMBOL	DADAMETED	TEST COND	TIONS	54151	TVD (1)	BAA W		
SYMBOL	PARAMETER	OTHER V _C		MIN.	TYP. ⁽¹⁾	MAX.	UNIT	
T _{amb} = -40) °C to +85 °C	•	•	•	•		•	
V _{IH}	HIGH level input voltage		1.2	V _{CC}	_	_	V	
			2.7 to 3.6	2.0	_	_	V	
V _{IL}	LOW-level input voltage		1.2	_	_	GND	V	
			2.7 to 3.6	_	_	0.8	V	
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_0 = -12 \text{ mA}$	2.7	V _{CC} – 0.5	_	_	V	
		$I_{O} = -100 \mu\text{A}$	3.0	V _{CC} – 0.2	V _{CC}	_	V	
		$I_0 = -12 \text{ mA}$	3.0	V _{CC} – 0.6		_	V	
		$I_0 = -24 \text{ mA}$	3.0	V _{CC} – 1.0	_	_	V	
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		I _O = 12 mA	2.7	_	_	0.40	V	
		I _O = 100 μA	3.0	_	GND	0.20	V	
		I _O = 24 mA	3.0	_	_	0.55	V	
ILI	input leakage current	$V_I = 5.5 \text{ V or GND}$	3.6	_	±0.1	±5	μΑ	
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	3.6	-	0.1	10	μΑ	
ΔI_{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 0.6 \text{ V};$ $I_{O} = 0$	2.7 to 3.6	-	5	500	μΑ	

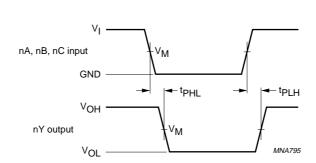
Note

1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

AC CHARACTERISTICS

GND = 0 V; t_{r} = $t_{f} \leq$ 2.5 ns; C_{L} = 50 pF; R_{L} = 500 $\Omega.$

SYMBOL	PARAMETER	TEST CONDIT	TIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNIT
STIVIBUL	PARAMETER	WAVEFORMS	V _{CC} (V)	IVIIIN.		WAA.	UNIT
T _{amb} = -40 to +85 °C		•					
t _{PHL} /t _{PLH}	propagation delay	see Figs 6 and 7	2.7	_	_	7.0	ns
			3.0 to 3.6	_	3.7	6.2	ns

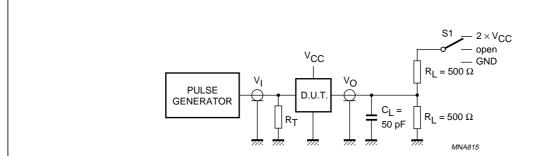

Note

1. Typical value is measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

Triple 3-input AND gate

74LVC11

AC WAVEFORMS



 V_M = 1.5 V at $V_{CC} \ge 2.7$ V.

 V_{M} = 0.5V $_{CC}$ at V_{CC} < 2.7 V.

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Fig.6 Input (nA, nB and nC) to output (nY) propagation delays.

SWITCH POSITION TEST S1 tput/tput open	POSITION
TEST	S1
t _{PLH} /t _{PHL}	open

V _{CC}	VI
<2.7 V	V _{CC}
2.7 to 3.6 V	2.7 V

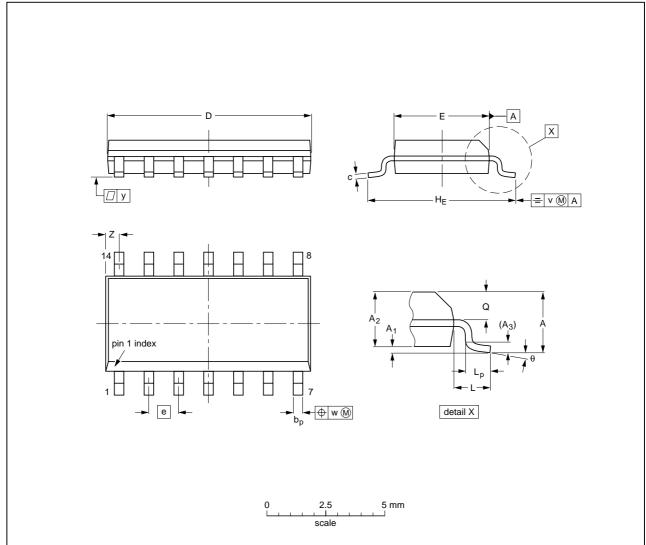
Definitions for test circuit:

 R_L = load resistor.

 C_L = load capacitance including jig and probe capacitance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.7 Load circuitry for switching times.


Triple 3-input AND gate

74LVC11

PACKAGE OUTLINES

SO14: plastic small outline package; 14 leads; body width 3.9 mm

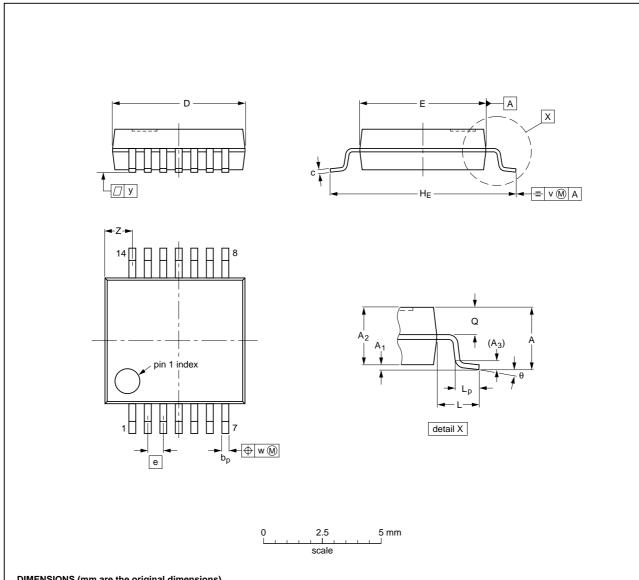
SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.


OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			99-12-27 03-02-19

Triple 3-input AND gate

74LVC11

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT337-1		MO-150				-99-12-27 03-02-19	


2004 Jan 13 10

Triple 3-input AND gate

74LVC11

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

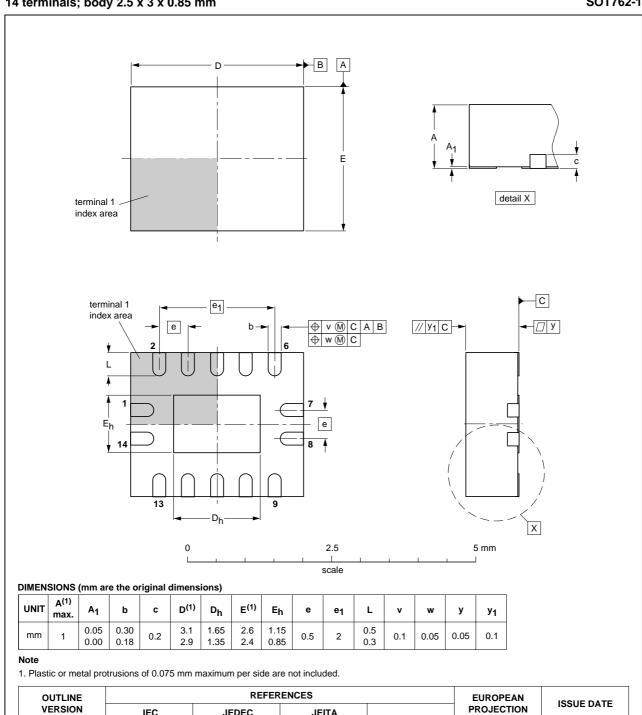
SOT402-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT402-1		MO-153				-99-12-27 03-02-18	

2004 Jan 13 11

Triple 3-input AND gate

74LVC11

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT762-1		MO-241				02-10-17 03-01-27	

Triple 3-input AND gate

74LVC11

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/04/pp14

Date of release: 2004 Jan 13

Document order number: 9397 750 10501

Let's make things better.

Philips Semiconductors

