AN8934FA

Video signal processing and QPSK demodulation IC for BS/CS broadcasting

- Overview

The AN8934FA is a single chip IC integrating video signal processing, QPSK demodulation, changeover switches of detection and bit-stream signals for BS/CS broadcasting.

Features

- 4.5 MHz L.P.F. for video and 5.7 MHz B.P.F. for sound built-in
- C / N detection circuit built-in
- Changeover between external input and internal signal of detection and bit-stream signals
- 2 systems of detection output (capable of 75Ω drive) and 1 system of bit-stream output (capable of 75Ω drive)
- Bit-stream signal detection circuit of external input built-in
- One crystal for base band signal processing block due to a joint use with PCM processing IC MN88831. (18.432 MHz)

Applications

- BS/CS tuner built-in TV and VCR

Pin Descriptions (continued)

Pin No.	Description	Pin No.	Description
19	4.5 MHz L.P.F. output	34	Costus output (+)
20	Pulse clamp input 1	35	Costus output (-)
21	Pulse clamp reference	36	Supply voltage (QPSK)
22	Video amp. output	37	Data output Q
23	Pulse clamp input 2	38	Data output I
24	Supply voltage (Video system)	39	GND (QPSK•clock)
25	Video signal output	40	Data clock output
26	C/N detection voltage output	41	Data lock phase error voltage input
27	Eye-pattern output Q	42	Data clock VCO output
28	Eye-pattern input Q	43	Data clock VCO input
29	QPSK AGC	44	Supply voltage (clock)
30	Eye-pattern input I	45	Internal bit-stream input
31	Eye-pattern output I	46	Noise reduction switch
32	N.C.	47	Supply voltage (inputamp.)
33	VCO phase error voltage output	48	Internal detection signal input

Parameter	Symbol		Unit
Supply voltage	V_{CC}		Vating
Supply current	I_{CC}		mA
Power dissipation ${ }^{* 2}$	P_{D}		m
Operating ambient temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {opr }}$		mW
Storage temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2; The power dissipation shown is the value for $\mathrm{T}_{\mathrm{a}}=80^{\circ} \mathrm{C}$. For the independent IC without a heat sink.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC}	4.5 to 5.5	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply current	$\mathrm{I}_{\text {тот }}$	No signal, all of V_{CC} are 5 V	60	92	120	mA
Standby current	$\mathrm{I}_{\text {STD }}$	No signal, $\mathrm{V}_{\mathrm{CC}}($ pin 47 $)=5 \mathrm{~V}$, other $\mathrm{V}_{\mathrm{CC}}(\operatorname{pin} 24,36,44)=0 \mathrm{~V}$	20	33	41	mA
Input amp. gain Int. 1	$\mathrm{G}_{12 \mathrm{Al}}$	Input is pin $48\left(\mathrm{~V}_{\text {IN48 }}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}\right)$ Output is pin $12\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$, 2 MHz square-wave)		8.5	10	dB
Input amp. gain Int. 2	$\Delta \mathrm{G}_{12 \mathrm{~A} 2}$	$\mathrm{V}_{\mathrm{IN} 48}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 8.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{12 \mathrm{Al}}\left(\mathrm{V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$, 2 MHz square-wave)		0.3	0.2	dB
Input amp. gain Int. 3	$\Delta \mathrm{G}_{12 \mathrm{~A} 3}$	$\mathrm{V}_{\mathrm{IN} 48}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}(18 \mathrm{MHz})$ Difference from $\mathrm{G}_{12 A_{1}}\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[p-\mathrm{p}]\right.$, 2 MHz square-wave)	-0.8	. 5		dB
Input amp. gain Int. 4	$\Delta \mathrm{G}_{12 \mathrm{~A} 4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN48}}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}(15.8 \mathrm{MHz}) \\ & \text { Difference from } \mathrm{G}_{12 \mathrm{Ar}}\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}],\right. \\ & 2 \mathrm{MHz} \text { square-wave) } \end{aligned}$		0.64	0.94	dB
Input amp. gain Int. 5	$\Delta \mathrm{G}_{12 \mathrm{~A} 5}$	$\mathrm{V}_{\mathrm{I} \mathrm{N} 48}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}(\mathrm{min}$. Difference from $\mathrm{G}_{12 \text { A1 }}\left(\mathrm{V}_{\mathbb{1 N} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$, 2 MHz square-wave)	$-$		-10	dB
Input amp. gain Int. 6	G_{12}	$\mathrm{V}_{\text {IN48 }}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}$ Difference from $\mathrm{G}_{12 \mathrm{AI}}\left(\mathrm{V}_{1 \mathrm{~N} 6}=\right.$ no input)	\mathbb{Q}_{1}		1	dB
Input amp. gain Int. 7	$\triangle \mathrm{G}_{13 \mathrm{Al}}$	$\mathrm{V}_{\text {IN48 }}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}$, Output isp pin 13 Difference from $\mathrm{G}_{12 \mathrm{Al}}\left(\mathrm{V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}\right.$-pp, 2 MHz square-wave)	$0^{f 1}$	0	1	dB
Input âmp. gain Int. 8	$\Delta \mathrm{G}_{13 \mathrm{~A}}$	$\mathrm{V}_{\text {IN48 }}=0.7 \mathrm{~V}[p-\mathrm{p}], 1 \mathrm{MHz}$, Outputis pin 13 Difference from $G_{12 a 1}\left(\mathrm{~V}_{\text {IN } 0}=\right.$ no input $)$	-1	0	1	dB
Input amp. gain Int. 9	$\Delta \mathrm{G}_{150}$	$V_{\text {IN48 }}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}$, Output is pin 15 Difference from $\mathrm{G}_{12 \mathrm{~A}} \mathrm{~A}^{\left(\mathrm{V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \text {, }, \text {, }\right.}$ 2 MHz quare (wave)	-1	0	1	dB
Input amp. gain Ext. 1	$\mathrm{G}_{12 \mathrm{~B} 1}$	$\begin{aligned} & \text { Lnput is pin } 3\left(\mathrm{~V}_{\text {IN } 3}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}\right) \\ & \text { Outpuras pin } 12\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right. \text {, } \\ & 2 \mathrm{MHz} \text { square-wave }) \end{aligned}$	5	6	7	dB
Input amp. gain Ext. 2	$\mathrm{ch}^{\mathrm{O}_{12 \mathrm{~B} 2} \mathrm{x}^{2}}$	$\mathrm{V}_{\text {IN } 3}^{*}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 8.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{12 \mathrm{BI} 1}\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[p-\mathrm{p}]\right.$, 2 MHz square-wave)	-0.8	-0.3	0.2	dB
Input amp. gain Ext. 3	$\Delta \mathrm{G}_{13 \mathrm{B1}}$	$\mathrm{V}_{\mathrm{IN} 3}=0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 1 \mathrm{MHz}$, Output is pin 13 Difference from $\mathrm{G}_{1281}\left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$, 2 MHz square-wave)	-1	0	1	dB
4.5MHz L.P.F. gain 1	$\mathrm{G}_{19(1)}$	$\mathrm{V}_{\text {IN17 }}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 0.1 \mathrm{MHz}$	-1	-0.3	0.4	dB
4.5MHz L.P.F. frequency characteristic 1	$\Delta \mathrm{G}_{19(1)}$	$\mathrm{V}_{\mathrm{IN} 17}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{19(1)}$	-2.2	-1.5	-0.8	dB
4.5MHz L.P.F. frequency characteristic 2	$\Delta \mathrm{G}_{19(2)}$	$\mathrm{V}_{\mathrm{IN} 17}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 4.2 \mathrm{MHz}$ Difference from $\mathrm{G}_{19(1)}$	-5.5	-3.5	-1	dB

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
4.5MHz L.P.F. frequency characteristic 3	$\Delta \mathrm{G}_{19(3)}$	$\mathrm{V}_{\mathrm{IN} 17}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 4.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{19(1)}$	-8.5	-4	-1	dB
4.5MHz L.P.F. frequency characteristic 4	$\Delta \mathrm{G}_{19(4)}$	$\mathrm{V}_{\mathrm{IN} 17}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 5.73 \mathrm{MHz}$ Difference from $\mathrm{G}_{19(1)}$	-	-50	-35	dB
4.5MHz L.P.F. group delay	$\Delta \mathrm{GD}_{19}$	$\mathrm{V}_{\mathrm{IN} 17}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$, Difference of group delay from 0.1 MHz to 3.58 MHz	-70	0	70	ns
Video amp. gain 1	$\mathrm{G}_{22(1)}$	$\mathrm{V}_{\text {IN } 20}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 0.1 \mathrm{MHz}$		14	14.6	dB
Video amp. gain 2	$\Delta \mathrm{G}_{22(2)}$	$\mathrm{V}_{\mathrm{IN} 20}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 4.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{22(1)}$	-0.6	0.2	0.2	dB
Video amp. gain 3	$\mathrm{G}_{22(3)}$	$\mathrm{V}_{\text {IN20 }}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 0.1 \mathrm{MHz}$	-	-40	-35	dB
Video amp. N.R. characteristic	$\Delta \mathrm{G}_{22(4)}$	$\mathrm{V}_{\mathrm{IN} 20}=0.02 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 4.5 \mathrm{MHz}$ Difference from $\mathrm{G}_{22(2)}$	6.5		-2.5	dB
C/N detection voltage 1	$\mathrm{V}_{26(1)}$	When $\mathrm{V}_{\text {IN } 48}=63.4 \mathrm{mV}$ and 8.9 MHz , adjust V_{8} so as to get $V_{26}=2.5 \pm 0.05 \mathrm{~V}$ and measure at $\mathrm{V}_{\mathrm{IN} 48}=0.2 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ and 8.9 MHz		0.5	1.8	V
C / N detection voltage 2	$V_{26(2)}$	When $\mathrm{V}_{\mathrm{IN} 48}=63.4 \mathrm{mV}$ and 8.9 MHz , adjust V_{8} so as to get $V_{26}=2.5 \pm 0.05 \mathrm{~V}$ and measure at $\mathrm{V}_{\text {IN } 48}=31.8 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ and 8.9 MHz	3.7	44.3		V
Video system total check		Input signal (pin 48) is BS signal of white 100% and input amp. gain is 6 dB	1.8	2	2.2	V [p-p]
Bit-stream output voltage Int.	$V_{9 A 1}$	$\mathrm{V}_{\text {IN45 }}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	0.84	1	1.16	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Bit-stream output voltage Ext.	$\Delta \mathrm{V}_{9 \mathrm{~B} 1}$	$\mathrm{V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	0.84	1	1.16	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Bit-stream detection voltage. 1	$\mathrm{V}_{14(1)}$	$\mathrm{V}_{\text {IN } 6}=0.1 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	—	0.1	1	V
Bit-stream detection voltage 2	$\mathrm{V}_{14(2)}$	$\mathrm{V}_{\text {IN6 }}=0.3 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	4	4.9	-	V
AFC control 1	$\mathrm{V}_{11(1)}$	$V_{\text {IN6 }}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	-	0.1	1	V
AFC control 2	$\mathrm{V}_{11(2)}$	$\mathrm{V}_{\text {IN6 }}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 2 \mathrm{MHz}$ square-wave	4	4.9	-	V
$\text { AFC control } 3$	$\mathrm{V}_{11(3)}$	$\mathrm{V}_{\text {IN6 }}=\text { no infut }$	4	4.9	-	V
QPSK phase detection output 1	V_{27}	$Q_{\mathrm{N} 48}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 5.7273 \mathrm{MHz}+0.05 \mathrm{MHz}$	0.45	0.6	0.75	V [p-p]
QPSK phase detection output 2		$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N} 48}=0.4 \mathrm{~V}[\mathrm{p}-\mathrm{p}], 5.7273 \mathrm{MHz}+0.05 \mathrm{MHz} \\ & \text { Difference between measured } \mathrm{V}_{31} \text { and } \mathrm{V}_{27} \end{aligned}$	-0.8	0	0.8	dB
QPSK B.P.F./L.P.F. frequency characteristic 1	$4 \mathrm{v}_{27 \mathrm{~B}}$	Difference between V_{27} at $\mathrm{V}_{\text {IN48 }}=0.4 \mathrm{~V}[p-\mathrm{p}]$, $6.2273 \mathrm{MHz}, \mathrm{f}_{27}=0.5 \mathrm{MHz}$ and that at $\mathrm{f}_{\mathrm{IN} 48}=5.7773 \mathrm{MHz}$	-3.7	-2	-0.2	dB
QPSK B.P.F./L.P.F. frequency characteristic 2	$\Delta \mathrm{V}_{27 \mathrm{C}}$	Difference between V_{27} at $\mathrm{V}_{\text {IN48 }}=0.4 \mathrm{~V}[p-\mathrm{p}]$, $6.7273 \mathrm{MHz}, \mathrm{f}_{27}=0.5 \mathrm{MHz}$ and that at $\mathrm{f}_{\mathrm{IN} 48}=5.7773 \mathrm{MHz}$	-	-18	-10	dB
QPSK B.P.F./L.P.F. frequency characteristic 3	$\Delta \mathrm{V}_{27 \mathrm{D}}$	Difference between V_{27} at $\mathrm{V}_{\text {IN48 }}=0.4 \mathrm{~V}[p-\mathrm{p}]$, $5.2273 \mathrm{MHz}, \mathrm{f}_{27}=0.5 \mathrm{MHz}$ and that at $\mathrm{f}_{\mathrm{IN} 48}=5.7773 \mathrm{MHz}$	-6	-4	-1.8	dB

Electrical Characteristics $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
QPSK B.P.F./L.P.F. frequency characteristic 4	$\Delta \mathrm{V}_{27 \mathrm{E}}$	Difference between V_{27} at $\mathrm{V}_{\text {IN48 }}=0.4 \mathrm{~V}[p-p]$, $4.7273 \mathrm{MHz}, \mathrm{f}_{27}=0.5 \mathrm{MHz}$ and that at $\mathrm{f}_{\mathrm{IN} 48}=5.7773 \mathrm{MHz}$	-	-20	-15	dB
QPSK B.P.F./L.P.F. frequency characteristic 5	$\Delta \mathrm{V}_{27 \mathrm{~F}}$	Difference between V_{27} at $\mathrm{V}_{\text {IN48 }}=0.4 \mathrm{~V}[p-\mathrm{p}]$, $3.58 \mathrm{MHz}, \mathrm{f}_{27} \approx 2.15 \mathrm{MHz}$ and that at $\mathrm{f}_{\mathrm{IN} 48}=5.7773 \mathrm{MHz}$		-40	-36	dB
Capture range 1	CR+	Input signal (pin 48) is QPSK		115	-	kHz
Capture range 2	CR-	Input signal (pin 48) is QPSK		-115	-20	kHz
Data output H	V_{H}	V_{37} and V_{38} voltages at V_{28} and $V_{30}=3.5 \mathrm{~V}$	3.5	4.1		V
Data output L	V_{L}	V_{37} and V_{38} voltages at V_{28} and $\mathrm{V}_{30}=2.9 \mathrm{~V}$	-	0.9	1.5	V
Clock free-run frequency	$\Delta \mathrm{f}_{40}$	Difference between f_{40} at $V_{41}=1 / 2 V_{C C}$ $(=2.5 \mathrm{~V})$ and 18.432 MHz	-0.35	0.55	1.45	kHz
Clock output	V_{40}	$\mathrm{V}_{41}=1 / 2 \mathrm{~V}_{\mathrm{CC}}(=2.5 \mathrm{~V})$		1.5		V[p-p]
Clock Frequency adjustment (+)	$\Delta \mathrm{f}_{40(+)}$	Difference between $\mathrm{f}_{40(+)}$ at $\mathrm{V}_{41}=4 \mathrm{~V}$ and 18.432 MHz	3.2	3.7		kHz
Clock Frequency adjustment (-)	Δf_{40}	Difference between $\mathrm{f}_{40(-)}$ at $\mathrm{V}_{41}=1 \mathrm{~V}$ and 18.432 MHz		-6.3	-4	kHz
Switch changeover voltage H	$\mathrm{V}_{\text {sw- }}$	Changeover voltage to set pin $1, \operatorname{pin} 2$, pin $4, \operatorname{pin} 10, \operatorname{pin} 11, \operatorname{pin} 46$ to high-leved		5	-	V
Switch changeover voltage L	$V_{\text {SW-L }}$	Changeover voltage to set pin $1, \mathrm{pin} 2$. pin 4, pin 10, pin 11, pin 46 to 10 w -level		0	1	V
- Design reference data Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.						
Parameter	Symbol	Conditions : ${ }^{\text {P }}$	Min	Typ	Max	Unit
DG	DG	$2 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$ at V_{023} and $\mathrm{APL}=10,50,90 \%$		1.8	3	\%
DP	DP	$2 \mathrm{~V}\left[\mathrm{p}(\mathrm{P})\right.$ at V_{223} and $\mathrm{APL}=10,50,90 \%$		1.8	3	${ }^{\circ} \mathrm{C}$
Dispersal rejection factor	$\mathrm{R}_{\text {DIS }}$	$\Delta \mathrm{f}=3 \mathrm{MHz} \overbrace{\text { DIS }}=30 \mathrm{~Hz}$		-50	-45	dB
Video luminance S / N	S/N c^{0}	Using H.P.F. 10 kHz and L.P.F. 4.2 MHz unweighted		56	50	dB
Input amp. separation 1	$\sigma^{\Delta G_{12}}$	Difference between V_{12} at inputting (1 MHz) to $\mathrm{V}_{\text {IN48 }}$ for $\mathrm{V}_{2}=$ low or inputting to $\mathrm{V}_{\text {IN3 }}$ for $\mathrm{V}_{2}=$ high and $\mathrm{G}_{12 \mathrm{Al}}$. (75 ohm termination)		-55	-45	dB
Input amp. separation 2	$\Delta \mathrm{G}_{13}$	Difference between V_{13} at inputting $(1 \mathrm{MHz})$ to $\mathrm{V}_{\text {IN48 }}$ for $\mathrm{V}_{2}=$ low or inputting to $\mathrm{V}_{\text {IN } 3}$ for $\mathrm{V}_{2}=$ high and $\mathrm{G}_{13 \mathrm{Al} \text {. }}$ (75 ohm termination)		-55	-45	dB
Bit-stream separation 1	$\Delta \mathrm{G}_{9(1)}$	$\mathrm{V}_{2}=1 \mathrm{~V}, \mathrm{~V}_{6}=3.5 \mathrm{~V}$ input is pin 45 $\left(\mathrm{V}_{\text {IN45 }}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], \mathrm{f}_{\text {IN } 45}=2 \mathrm{MHz}\right.$ square-wave $)$		-55	-45	dB
Bit-stream separation 2	$\Delta \mathrm{G}_{9(2)}$	$\begin{aligned} & \mathrm{V}_{2}=4 \mathrm{~V}, \text { input is pin } 6 \\ & \left(\mathrm{~V}_{\mathrm{IN} 6}=0.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}], \mathrm{f}_{\mathrm{IN} 6}=2 \mathrm{MHz} \text { square-wave }\right) \end{aligned}$		-55	-45	dB

Pin No.	Equivalent circuit	Impedance (Ω)	Description	DC voltage (V)
1		100 k	Switches output of pin 13 (detection output 2). - Pin 13 outputs the input signal from pin 3 at low-level and pin 48 at high-level. Open will do for low-level.	0
2		100 k	Switches output of pin 12 (detection output 1) and pin 9 (bit-stream output) - Pin 12 and pin 9 output the input signal from pin 3, pin6 at low-level and pin 48 , pin 45 at high-level respectively. Open will do for low-level.	0
3		$\begin{array}{r} 50 \mathrm{k} \\ (\pm 10 \%) \end{array}$	External input pin of base-band signal to input amp. - Input level min. 0.62 , typ. 0.67 , max. $0.72 \times[p-p]$	$0^{2.5}$
4	(4)		Mute switch of video signal - Low-level: normal operation high-level: İdeo signal mute Open will do forhigh-level.	5
5			Adjusts the gain of input amp. with this pin from- V to 3 V . Possible to adjust only the signal inputted from pin 48.	1.5
6	(6) $-\mathrm{M}^{200 \Omega}$ $40 \mathrm{k} \Omega$ $2.75 \mathrm{~V} \frac{\pi}{\mathrm{~T}}$ \& π	40 k $(\pm 10 \%)$	Input pin of bit-stream - Input level $\min .0 .4$, typ. 0.5 , max. $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	2.75
7		0	Reference voltage pin for gain adjustment volume	3

Termal Equivalent Circuits (continued)

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Impedance (Ω)	Description	DC voltage (V)
15		$\begin{gathered} 20 \\ (\pm 20 \%) \end{gathered}$	Output pin of input amp. - Output level min. 0 , typ. 1.34, max. $2 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$ - The signal which is inputted from pin 48 is always outputted from this pin.	2.5
16		200	Reference pin for automatic adjustment of each filter	3.3
17	(17)		Input pin of 4.5 MHz L.P.F - Input level min. 0.35, typ. 0.4, max. $0.6 \mathrm{~V}[\mathrm{p}=\mathrm{p}]$	2.2
18	- $+\square$		$\cdots{ }^{\text {a }}$	-
19			Output pin of 4.5 MHzL.P.F - Outputleyel min. 0.35 , typ. 0.4 , max. $0.42 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	2.2
20		$\begin{aligned} & 5^{2} \infty \gamma^{2} \\ & e^{2} \end{aligned}$	Input pin for clamp circuit of first stage and video amp. - Input level (luminance signal level) $\min .0$, typ. 0.4 , max. $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	1.2
21		600	Reference pin for pulse sampling in pulse clamp circuit	3.2

- Terminal Equivalent Circuits (continued)
Pin No.
- Terminal Equivalent Circuits (continued)

- Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Impedance (Ω)	Description	DC voltage (V)
41		100 k	Input phase error (PD signal) of PCM decoder through a lag-lead filter - Enables input voltage 0 V to V_{CC}	2.5
42		20	Output pin of data clock VCO (18.4 MHz) - Insert a crystal resonator between this pin and pin 42 - Output level min. 0.5, typ. 1, max. $1.5 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	1.8
43	(43)- 100Ω	$8.3 \mathrm{k}$	Input pin of data clock VCO Input level min. 0.4, typ. 0.6, max. 0.8 V[p-p]	
44	-			
45	(45) $40 \mathrm{k} \Omega\}$ (46) -1 $40 \mathrm{k} \Omega$	$\begin{gathered} 52 \mathrm{k} \\ (\pm 10 \%) \end{gathered}$ 80 k	Input pin of bit-stream - Input level $\min .0 .4$, typ. 0.5 , nax. $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$ Switch of noisereduction (NR) - Low-level NR off high-level: NR on Open will do for high-level.	3.2
		\bigcirc		-
48	(48)	$45 \mathrm{k}$	Internal input pin of base-band signal to input amp. - Input level min. 0.5, typ. 0.67, max. $2.2 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	3.3

- Technical Data

- On the frequency characteristics of 4.5 MHz L.P.F.

Frequency characteristics of 4.5 MHz L.P.F. (frequency characteristics from pin 17 to pin 19 of this IC) is shown roughly in figure 1.

Shown in figure 3 is the frequency characteristics to be obtained when de-emphasis filter is connected in front of this L.P.F. (figure 2).

Shown in figure 4 is the frequency characteristics to be obtained when resistor of de-emphasis filter is changed from 390Ω to 470Ω.

Thus, frequency characteristics of 4.5 MHz L.P.F. can be changed, resulting from changing the frequency characteristics of de-emphasis.

Figure 1. 4.5 MHz L.P.F. frequency characteristics

Figure 2. De-emphasis filter connection circuit

De-emphasis filter

(17) EP.P. 19
$R \gtreqless 390 \Omega$

Figure 4. Frequency characteristics of figure 2.

$$
(\mathrm{R}=470 \Omega)
$$

MHz

■ $\mathrm{P}_{\mathrm{D}}-\mathrm{T}_{\mathrm{a}}$ curves of QFP048-P-1010C

Precaution on handling

Supply voltage pins of this IC are pin 24 , pin 36 , pin 44 and pin 47 . Use with same potential for pin 24 and pin 36 out of these pins.

Application Circuit Example

Changeover between detection output (pin 12) and bit-stream output (pin 9)

	When bit-stream is inputted on pin 6		When pin 6 is no input	
V_{2}	$\mathrm{~V}_{\text {O12 }}$	$\mathrm{V}_{\mathrm{O} 9}$	$\mathrm{~V}_{\mathrm{O} 12}$	$\mathrm{~V}_{\mathrm{O} 9}$
Low-level or open	$\mathrm{V}_{\text {IN3 }}$	$\mathrm{V}_{\text {IN6 }}$	$\mathrm{V}_{\text {IN48 }}$	$\mathrm{V}_{\text {IN45 }}$
High-level	$\mathrm{V}_{\text {IN48 }}$	$\mathrm{V}_{\text {IN45 }}$		

Changeover between detection output (pin 13) and pin 11 level (at pin 10 low-level)

	When bit-stream is inputted on pin 6		When pin 6 is no input	
V_{1}	$\mathrm{~V}_{\text {O13 }}$	V_{11}	$\mathrm{~V}_{\text {O13 }}$	V_{11}
Low-level or open	$\mathrm{V}_{\text {IN3 }}$	High-level	$\mathrm{V}_{\text {IN48 }}$	High-level
High-level	$\mathrm{V}_{\text {IN48 }}$	Low-level		

Bit-stream detection (pin 14) level

	V_{14}
When pin 6 is no input	Low-level
When bit-stream is inputted on pin 6	High-level

Changeover between BS and CS mode

$\mathrm{V}_{10} \quad \mathrm{~V}_{11}$	Low-level	Highh-level or open
Low-level	BS (17 MHz[p-p])	
High-level or open	$\begin{array}{\|c} \mathrm{SCC} \\ (18 \mathrm{MHz}[\mathrm{p}-\mathrm{p}) \end{array}$	$\begin{gathered} \text { JCSAT } \\ \text { (15.8 MHz[p-p]) } \end{gathered}$

Video output

V_{4}	
Lideo NR Low-level Output High-level or open Mute	V_{46}
Low-level Low High-level or open	NR off

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

