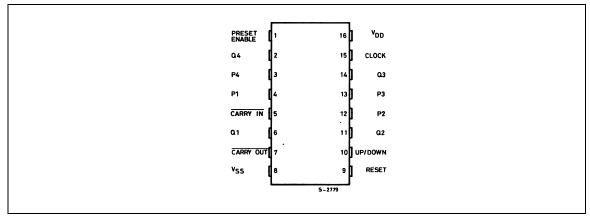

PRESETTABLE BINARY UP/DOWN COUNTER

- MEDIUM SPEED OPERATION : 8 MHz (Typ.) at 10V
- SYNCHRONOUS INTERNAL CARRY PROPAGATION
- RESET AND PRESET CAPABILITY
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

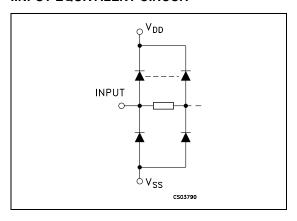
HCF4516B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP package.

It is a PRESETTABLE BINARY UP/DOWN COUNTER, consists of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as a counter. This counter can be cleared by a high level on the RESET line, and can be preset to any binary number present on the jam inputs by a high



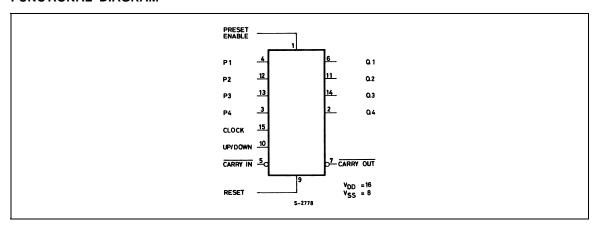
ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4516BEY	


level on the PRESET ENABLE line. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the CARRY OUT of a less significant stage to the CARRY IN of a more significant stage. HCF4516B can be cascaded in the ripple mode by connecting all clock inputs in parallel and connecting the CARRY OUT to the clock of the next stage. If the UP/DOWN input changes during a terminal count, the CARRY OUT must be gated with the clock, and the UP/DOWN input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage.

PIN CONNECTION

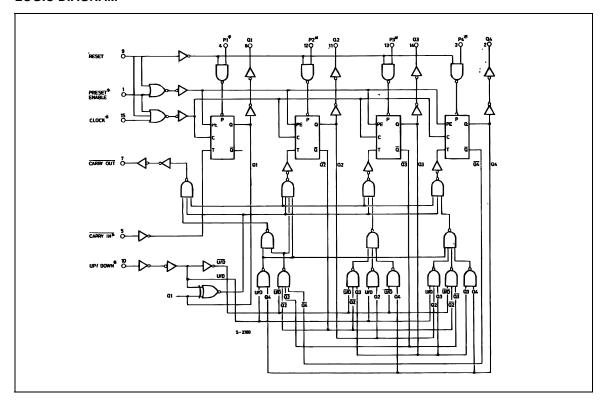
September 2002 1/11


IINPUT EQUIVALENT CIRCUIT

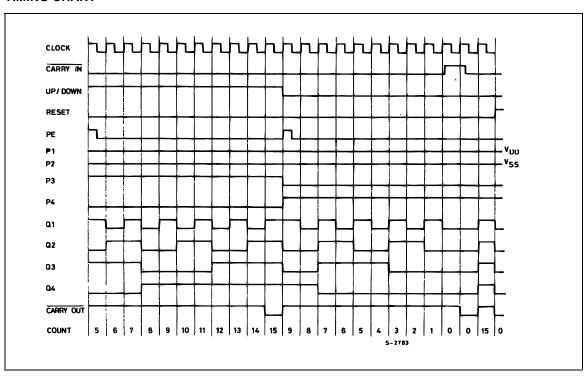
PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	PRESET ENABLE	Preset Enable Input
4, 12, 13, 3	P1 to P4	Inputs
6, 11, 14, 2	Q1 to Q4	Outputs
15	CLOCK	Clock Input
10	UP/DOWN	Up/Down Control Input
5	CARRY-IN	Carry Input
7	CARRY-OUT	Carry Output
9	RESET	Reset Input
8	V _{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

FUNCTIONAL DIAGRAM



TRUTH TABLE


CL	CARRY-IN CI	UP/DOWN	PRESET ENABLE	RESET	ACTION
X	Н	X	L	L	NO COUNT
	L	Н	L	L	COUNT UP
	L	L	L	L	COUNT DOWN
Х	Х	Х	Н	L	PRESET
Х	Х	Х	Х	Н	RESET

X : Don't Care

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

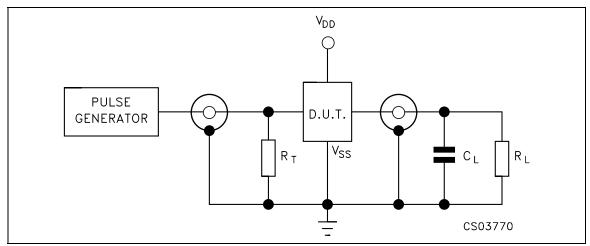
Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition				Value							
Symbol	Parameter	VI	v _o	v _o I _o	V_{DD}	Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	^
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		IIIA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mA
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

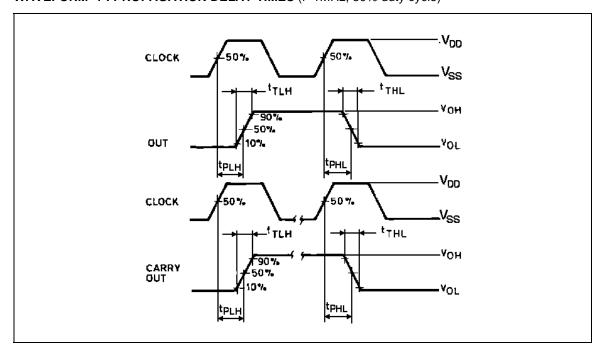
The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25 ^{\circ}\text{C}, \ \ C_{L} = 50 \text{pF}, \ R_{L} = 200 \text{K}\Omega, \ \ t_{r} = t_{f} = 20 \ \text{ns})$

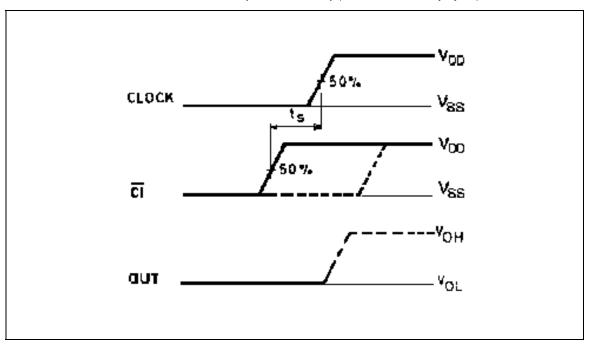

Comple at		Test Condition			Value (*)		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PHL} t _{PLH}	Propagation Delay Time	5			200	400	
	Clock to Q Output	10			100	200	ns
		15			75	150	
t _{PHL} t _{PLH}	Propagation Delay Time	5			210	420	
	Preset or Reset to Q	10			105	210	ns
	Output	15			80	160	
t _{PHL} t _{PLH}	Propagation Delay Time	5			240	480	
	Clock to Carry Out	10			120	240	ns
		15			90	180	
t _{PHL} t _{PLH}	Propagation Delay Time	5			125	250	
	Carry in to Carry Out	10			60	120	ns
		15			50	100	
t _{PHL} t _{PLH}	Propagation Delay Time	5			320	640	
	Preset or Reset to Carry	10			160	320	ns
	Out	15			125	250	
t _{THL} t _{TLH}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	
f_{MAX}	Maximum Clock	5		2	4		
	Frequency	10		4	8		MHz
		15		5.5	11		
t_W	Clock Pulse Width	5		150			
		10		75			ns
		15		60			
t _{REM} (1)	Preset Enable or Reset	5		150			
	Removal Time	10		80			ns
		15		60			
t_r , t_f (2)	Clock Rise or Fall Time	5				15	
		10				5	μs
		15				5	
t _{setup}	Carry in Setup Time	5		130			
		10		60			ns
		15		45			
t _{setup}	Up/Down Setup Time	5		360			
		10		160			ns
		15		110			
t_{W}	Preset Enable or Reset	5		220			
	Pulse Width	10		100			ns
		15		75			

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

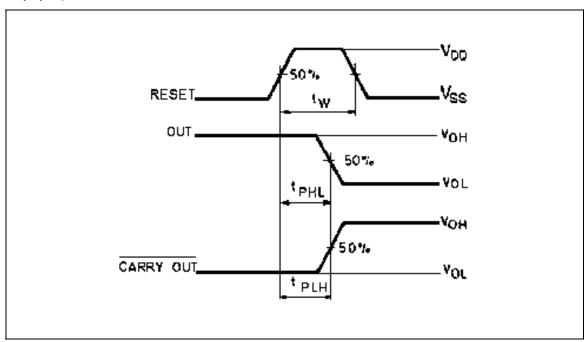
(1) Time required after the falling edge of the reset or preset enable inputs before the rising edge of the clock will trigger the counter (similar to setup time)

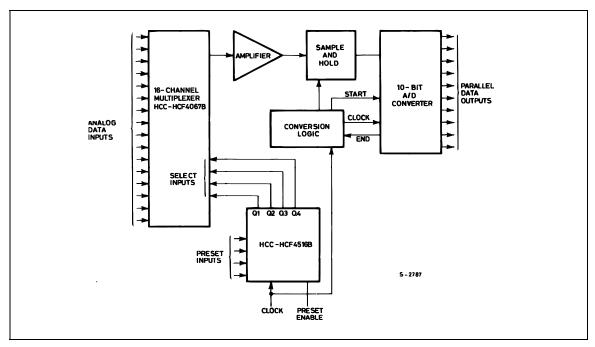

(2) If more than unit is cascaded in the parallel clocked application, trCL should be made less than or equal to the sum of the fixed propagation delay at 15pF and the transition time of the carry output driving stage for the estimated capacitive load.

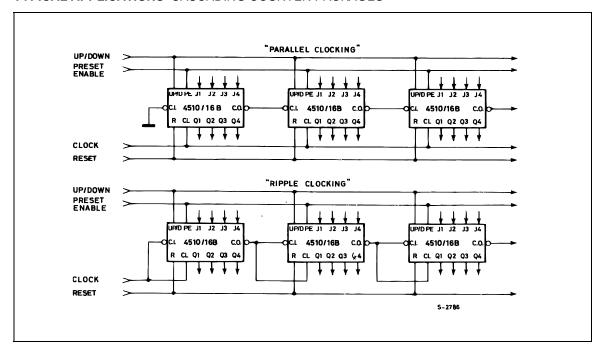
TEST CIRCUIT



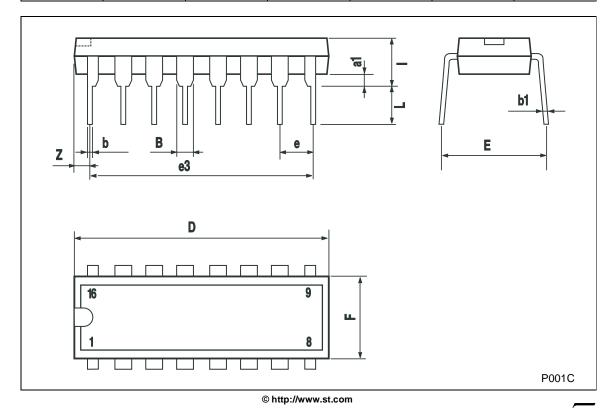
 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)


WAVEFORM 1: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)


WAVEFORM 2: MINIMUM SETUP TIME (CI TO CLOCK) (f=1MHz; 50% duty cycle)


WAVEFORM 3 : PROPAGATION DELAY TIMES, MINIMUM RESET PULSE WIDTH (f=1MHz; 50% duty cycle)

TYPICAL APPLICATIONS TIPICAL 16 CHANNEL, 10 BIT ACQUISITION SYSTEM



TYPICAL APPLICATIONS CASCADING COUNTER PACKAGES

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm.				
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

47