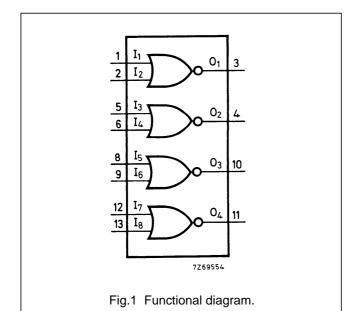
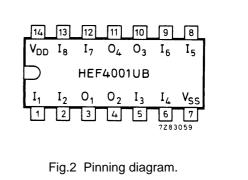

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

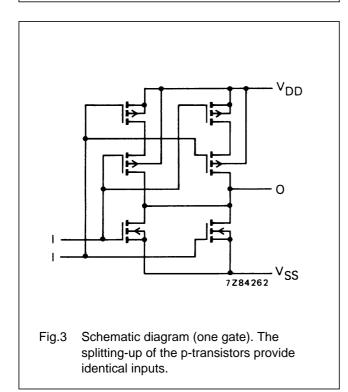

HEF4001UB


gates

Quadruple 2-input NOR gate

DESCRIPTION

The HEF4001UB is a quadruple 2-input NOR gate. This unbuffered single stage version provides a direct implementation of the NOR function. The output impedance and output transition time depends on the input voltage and input rise and fall times applied.



HEF4001UBP(N):	14-lead DIL; plastic			
	(SOT27-1)			
HEF4001UBD(F):	14-lead DIL; ceramic (cerdip)			
	(SOT73)			
HEF4001UBT(D):	14-lead SO; plastic			
	(SOT108-1)			
(): Package Designator North America				

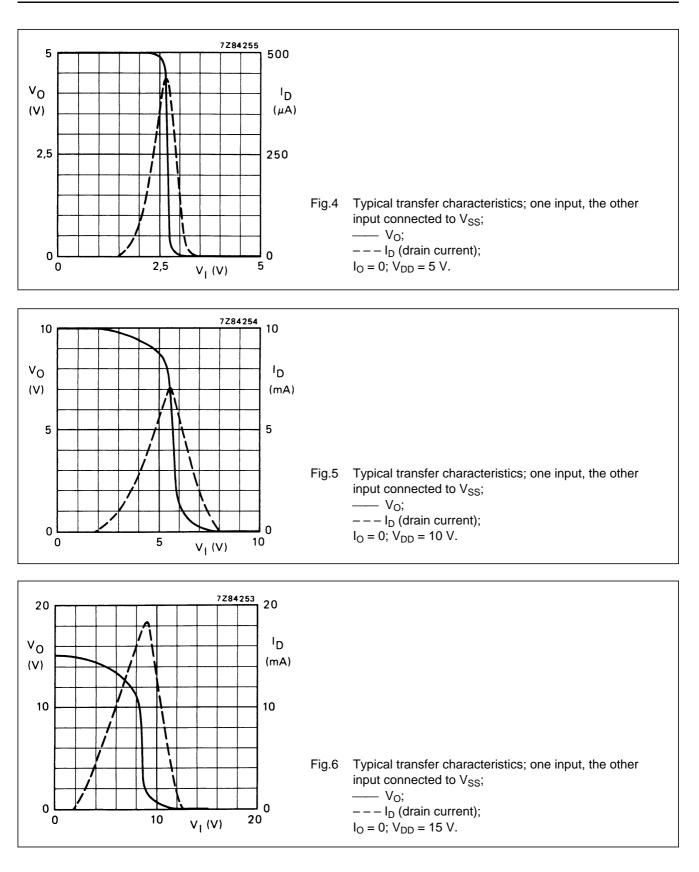
FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications for V_{IH}/V_{IL} unbuffered stages

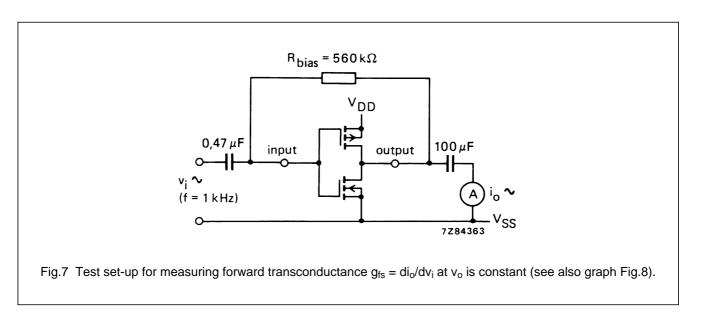
HEF4001UB gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns


	V _{DD} V	SYMBOL	ТҮР.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		65	130	ns	30 ns + (0,70 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	30	60	ns	17 ns + (0,27 ns/pF) C _L
	15		25	50	ns	15 ns + (0,20 ns/pF) C _L
	5		40	80	ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		75	150	ns	15 ns + (1,20 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	6 ns + (0,48 ns/pF) C _L
	15		20	40	ns	4 ns + (0,32 ns/pF) C _L
	5		60	110	ns	10 ns + (1,00 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
Input capacitance		C _{IN}	-	10	pF	

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	500 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	5000 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	30 000 f _i + Σ (f _o C _L) × V _{DD} ²	$f_o = output freq. (MHz)$
			C _L = load capacitance (pF)
			$\Sigma(f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)


gates

HEF4001UB

Quadruple 2-input NOR gate

HEF4001UB gates

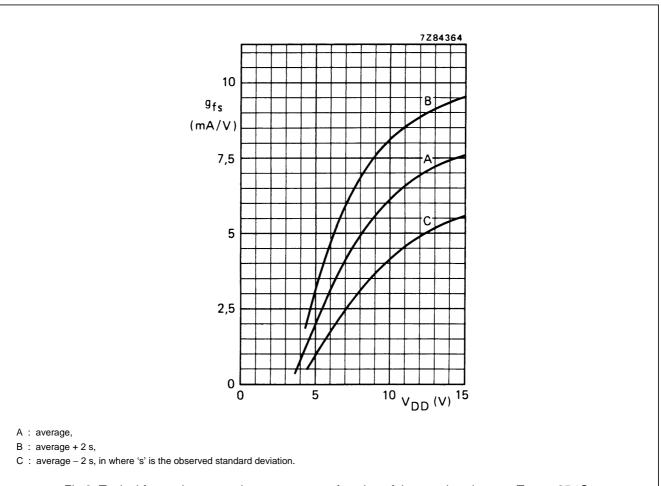
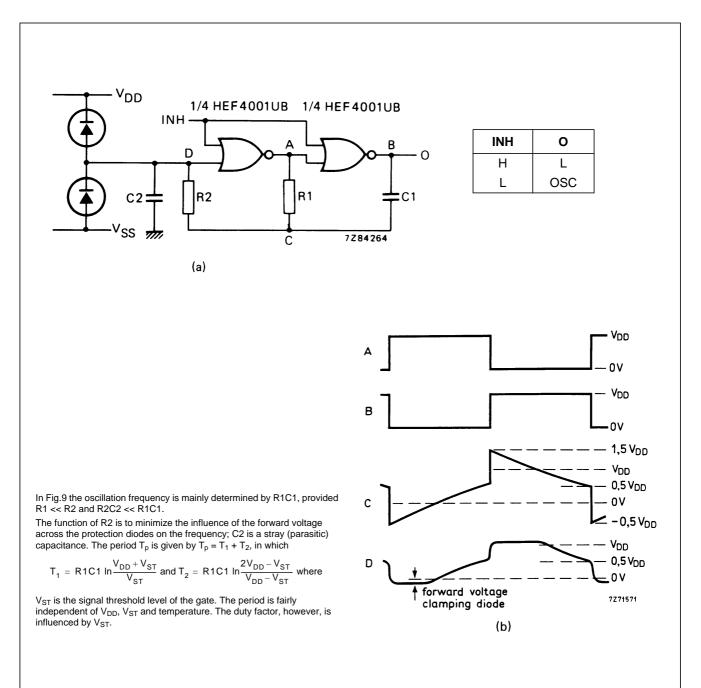


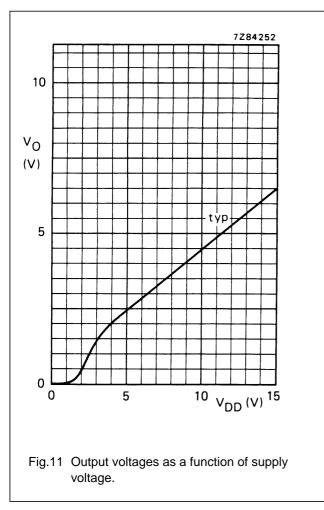
Fig.8 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.

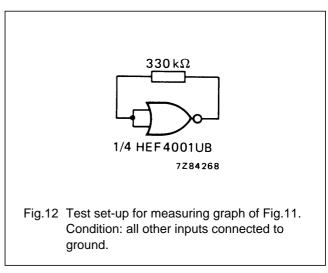
HEF4001UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4001UB are shown below. Because of the fact that this circuit is unbuffered, it is suitable for use in (partly) analogue circuits.






Fig.9 (a) Astable relaxation oscillator using two HEF4001UB gates; the diodes may be BAW62; C2 is a parasitic capacitance.

(b) Waveforms at the points marked A, B, C and D in the circuit diagram.

HEF4001UB gates

NOTES

If a gate is just used as an amplifying inverter, there are two possibilities:

- Connecting the inputs together gives simpler wiring, but makes the device output not completely symmetrical.
- 2. Connecting one input to V_{SS} will give the device a symmetrical output.

HEF4001UB gates

7284251.1 7284257.1 50 20 1DD (mA) gain (v_0/v_1) 15 týp týp 25 10 5 0 0 ¹⁰ v_{DD} (v) ¹⁵ ¹⁰ V_{DD} (V) ¹⁵ 5 5 0 0 Fig.13 Voltage gain (V_0/V_1) as a function of supply Fig.14 Supply current as a function of supply voltage. voltage. 330kΩ 330 kΩ input · output 1/4 HEF4001UB 1/4 HEF4001UB 7Z84268 INH 7Z84270 Fig.15 Test set-up for measuring graphs of Figs 13 Fig.16 Example of an analogue amplifier with and 14. Condition: all other inputs inhibit using one HEF4001UB gate. connected to ground.