HEF4001B

Quad 2-input NOR gate

Rev. 04 — 31 July 2007

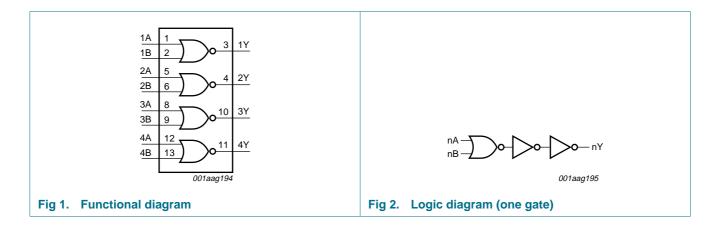
Product data sheet

1. General description

The HEF4001B is a quad 2-input NOR gate. The outputs are fully buffered for the highest noise immunity and pattern insensitivity to output impedance.

The device is suitable for use over the both the industrial (-40 °C to +85 °C) and automotive (-40 °C to +125 °C) temperature ranges.

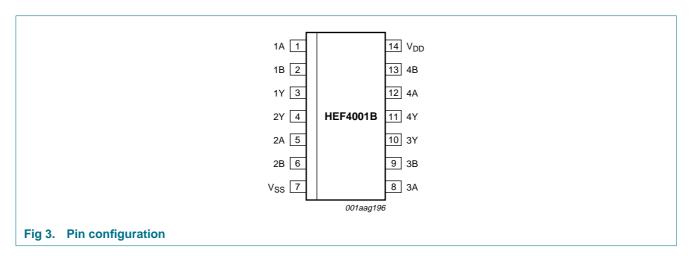
2. Features


- Fully static operation
- Typical propagation delay of 25 ns at 10 V
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Inputs and outputs are protected against electrostatic effects
- Operates across the automotive temperature range from -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

	•			
Туре	Package			
number	Temperature range	Name	Description	Version
HEF4001BP	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
HEF4001BT	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
HEF4001BU	–40 °C to +125 °C	-	bare die	-


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol [1]	Pin	Description
nA	1, 5, 8, 12	input
nB	2, 6, 9, 13	input
nY	3, 4, 10, 11	output
V _{SS}	7	ground (0 V)
V _{SS}	14	supply voltage

^{[1] &#}x27;n' Is a variable that represents the gates 1 to 4

6. Functional description

Table 3. Function table [1][2]

Input		Output
nA	nB	nY
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

^{[1] &#}x27;n' Is a variable that represents the gates 1 to 4

[2] H = HIGH voltage level;

L = LOW voltage level.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
V_{I}	input voltage		-0.5	$V_{DD} + 0.5$	V
I _{I/O}	input/output current		-	±10	mA
T _{stg}	storage temperature		-65	+150	°C
T_{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to + 70 } ^{\circ}\text{C}$			
		DIP14	<u>[1]</u> _	750	mW
		SO14	[2] _	500	mW
Р	power dissipation	per output	-	100	mW

^[1] For DIP14 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 12 mW/K.

8. Static characteristics

Table 5. Static characteristics

 $V_{SS} = 0 \ V$; $V_{I} = V_{SS} \ or \ V_{DD}$; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = -	⊦125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
I_{DD}	supply current	all valid input	5 V	-	1.0	-	1.0	-	7.5	-	7.5	μΑ
		combinations; $I_O = 0 A$	10 V	-	2.0	-	2.0	-	15.0	-	15.0	μΑ
		10 - 0 A	15 V	-	4.0	-	4.0	-	30.0	-	30.0	μΑ
V_{OL}	LOW-level	I I _O < 1 μA	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
V_{OH}	HIGH-level	I _O < 1 μA	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V_{IL}	LOW-level	I _O < 1 μA	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V_{IH}	HIGH-level	I _O < 1 μA	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
I _{OL}	LOW-level	$V_0 = 0.4 \ V$	5 V	0.52	-	0.44	-	0.36	-	0.36	-	mΑ
	output current	$V_0 = 0.5 \ V$	10 V	1.3	-	1.1	-	0.9	-	0.9	-	mΑ
		V _O = 1.5 V	15 V	3.6	-	3.0	-	2.4	-	2.4	-	mA

^[2] For SO14 packages: above $T_{amb} = 70 \, ^{\circ}\text{C}$, P_{tot} derates linearly with 8 mW/K.

 Table 5.
 Static characteristics ...continued

 $V_{SS} = 0 \ V$; $V_I = V_{SS} \ or \ V_{DD}$; unless otherwise specified.

Symbol	Parameter	Conditions	V _{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = -	+125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
I_{OH}	HIGH-level	$V_0 = 2.5 \text{ V}$	5 V	-1.7	-	-1.4	-	-1.1	-	-1.1	-	mA
output current		$V_0 = 4.6 \text{ V}$	5 V	-0.52	-	-0.44	-	-0.36	-	-0.36	-	mA
		$V_0 = 9.5 V$	10 V	-1.3	-	-1.1	-	-0.9	-	-0.9	-	mA
		$V_0 = 13.5 \text{ V}$	15 V	-3.6	-	-3.0	-	-2.4	-	-2.4	-	mΑ
I _I	input leakage current		15 V	-	±0.3	-	±0.3	-	±1.0	-	±1.0	μΑ
Cı	input capacitance			-	-	-	7.5	-	-	-	-	pF

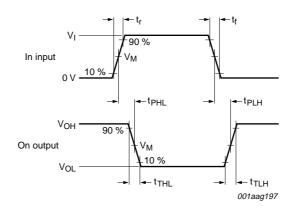
9. Dynamic characteristics

Table 6. Dynamic characteristics

 T_{amb} = 25 °C; C_L = 50 pF; t_r = t_f ≤ 20 ns; waveforms see Figure 4; test circuit see Figure 5; unless otherwise specified.

Symbol	Parameter	Extrapolation formula[1]	V_{DD}	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW propagation delay	$33 + 0.55 \times C_{L}$	5 V	-	60	120	ns
		$14 + 0.23 \times C_{L}$	10 V	-	25	50	ns
		$12 + 0.16 \times C_L$	15 V	-	20	40	ns
t _{PLH}	LOW to HIGH propagation delay	$23 + 0.55 \times C_{L}$	5 V	-	50	100	ns
		$14 + 0.23 \times C_{L}$	10 V	-	25	45	ns
		$12 + 0.16 \times C_{L}$	15 V	-	20	35	ns
t _{THL}	HIGH to LOW output transition time	$10 + 1.0 \times C_{L}$	5 V	-	60	120	ns
		$9 + 0.42 \times C_L$	10 V	-	30	60	ns
		$6 + 0.28 \times C_L$	15 V	-	20	40	ns
t _{TLH}	LOW to HIGH output transition time	$10 + 1.0 \times C_{L}$	5 V	-	60	120	ns
		$9 + 0.42 \times C_L$	10 V	-	30	60	ns
		$6 + 0.28 \times C_L$	15 V	-	20	40	ns

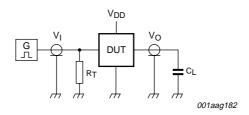
^[1] The typical value of the propagation delay and output transition time can be calculated with the extrapolation formula (C_L in pF).


Table 7. Dynamic power dissipation

 $V_{SS} = 0 \ V; \ t_r = t_f \le 20 \ ns; \ T_{amb} = 25 \ ^{\circ}C.$

Symbol	Parameter	V_{DD}	Typical formula	Where
P_{D}	dynamic power dissipation	5 V	$P_D = 1100 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 (\mu W)$	f_i = input frequency in MHz;
			$P_D = 5000 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 (\mu W)$	
		15 V	$P_D = 14200 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 (\mu W)$	C _L = output load capacitance in pF;
				$\Sigma(f_0 \times C_L)$ = sum of the outputs;
				V _{DD} = supply voltage in V.

#EF4001B_4 © NXP B.V. 2007. All rights reserved.


10. Waveforms

Measurement points: $V_M = 0.5V_{DD}$.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 4. Propagation delay, output transition time

Test data is given in Table 8.

Definitions for test circuit:

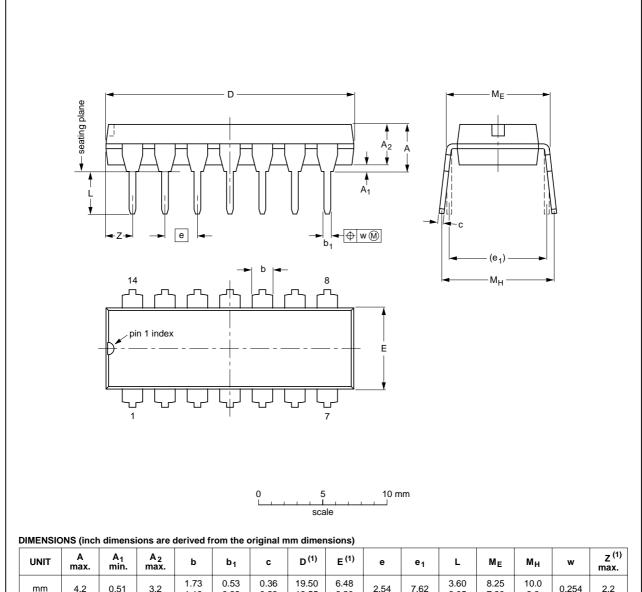
DUT = Device Under Test

 C_L = load capacitance including jig and probe capacitance.

 $R_{T} = \mbox{termination}$ resistance should be equal to the output impedance Z_{o} of the pulse generator.

Fig 5. Test circuit

Table 8. Test data


Supply voltage	Input		Load
V_{DD}	VI	t _r , t _f	CL
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

HEF4001B_4 © NXP B.V. 2007. All rights reserved.

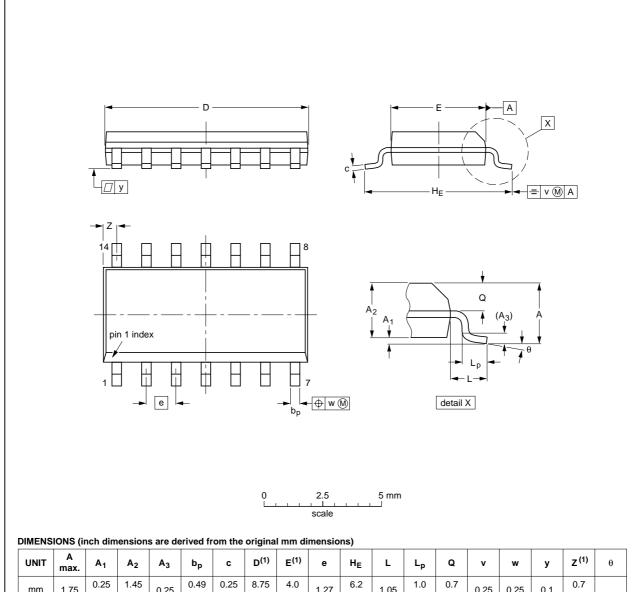
11. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E (1)	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note


1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13

Fig 6. Package outline SOT27-1 (DIP14)

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012				99-12-27 03-02-19

Fig 7. Package outline SOT108-1 (SO14)

HEF4001B_4 © NXP B.V. 2007. All rights reserved.

12. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
HEF4001B_4	20070731	Product data sheet	-	HEF4001B_CNV_3		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 Temperature range maximum increased from 85 °C to 125 °C throughout the data sheet. 					
	 Package Soutline". 	OT73 removed from Section	n 3 "Ordering information	n" and Section 11 "Package		
	 Section 7 "Limiting values" and Section 8 "Static characteristics" added, taken from the HE4000B Family Specifications data sheet. 					
	 Typical temperature coefficient for propagation delays and output transitions removed 					
HEF4001B_CNV_3	19950101	Product specification	-	HEF4001B_CNV_2		
HEF4001B_CNV_2	19950101	Product specification	-	-		

13. Legal information

14. Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.2 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

16. Contents

1	General description
2	Features
3	Ordering information 1
4	Functional diagram 1
5	Pinning information 2
5.1	Pinning
5.2	Pin description 2
6	Functional description 2
7	Limiting values
8	Static characteristics 3
9	Dynamic characteristics 4
10	Waveforms
11	Package outline 6
12	Revision history 8
13	Legal information9
14	Data sheet status 9
14.1	Definitions
14.2	Disclaimers
14.3	Trademarks 9
15	Contact information 9
16	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

