INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

Semiconductors

Philips

74HC/HCT4518

FEATURES

- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4518 are high-speed Si-gate CMOS devices and are pin compatible with the "4518" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4518 are dual 4-bit internally synchronous BCD counters with an active HIGH clock input (nCP₀) and an active LOW clock input (n \overline{CP}_1), buffered outputs from

all four bit positions (nQ_0 to nQ_3) and an active HIGH overriding asynchronous master reset input (nMR).

The counter advances on either the LOW-to-HIGH transition of nCP_0 if nCP_1 is HIGH or the HIGH-to-LOW transition of nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on nMR resets the counter (nQ_0 to $nQ_3 = LOW$) independent of nCP_0 and nCP_1 .

APPLICATIONS

- Multistage synchronous counting
- Multistage asynchronous counting
- Frequency dividers

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STIVIDOL	FARAMETER	CONDITIONS	НС	НСТ		
t _{PHL} / t _{PLH}	propagation delay nCP_0 , $n\overline{CP}_1$ to nQ_n	C _L = 15 pF; V _{CC} = 5 V	20	24	ns	
t _{PHL}	propagation delay nMR to nQ _n		13	14	ns	
f _{max}	maximum clock frequency		61	55	MHz	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per counter	notes 1 and 2	29	27	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz

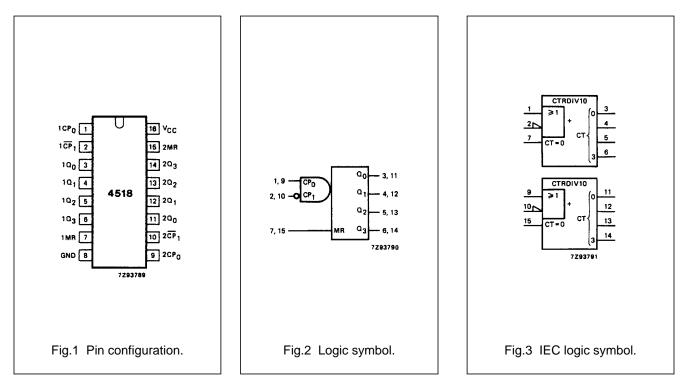
 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

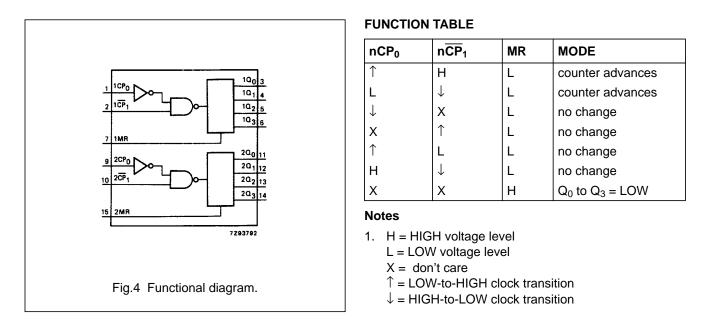
C_L = output load capacitance in pF

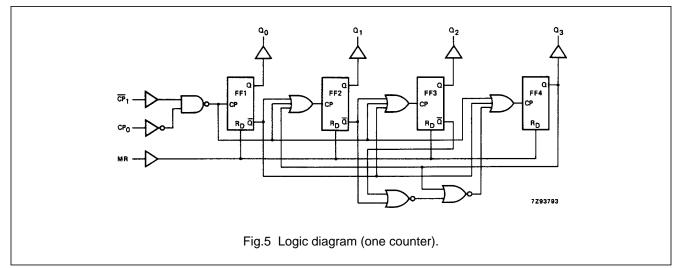
 V_{CC} = supply voltage in V

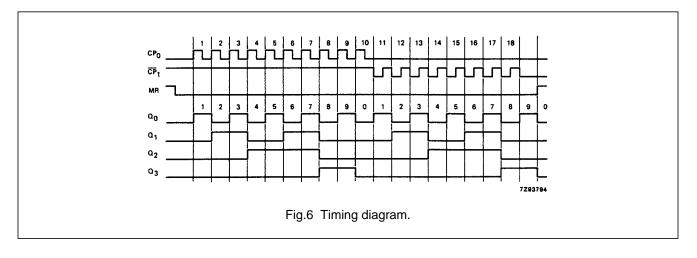
2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT4518


PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 9	1CP ₀ , 2CP ₀	clock inputs (LOW-to-HIGH, edge-triggered)
2, 10	$1\overline{CP}_1, 2\overline{CP}_1$	clock inputs (HIGH-to-LOW, edge-triggered)
3, 4, 5, 6	$1Q_0$ to $1Q_3$	data outputs
7, 15	1MR, 2MR	asynchronous master reset inputs (active HIGH)
8	GND	ground (0 V)
11, 12, 13, 14	$2Q_0$ to $2Q_3$	data outputs
16	V _{CC}	positive supply voltage

74HC/HCT4518

December 1990

74HC/HCT4518

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nCP ₀ , nCP ₁ to nQ _n		66 24 19	210 42 36		265 53 45		315 63 59	ns	2.0 4.5 6.0	Fig.9
t _{PHL}	propagation delay nMR to nQ _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.9
t _W	clock pulse width HIGH or LOW	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _W	master reset pulse width HIGH	120 24 20	39 14 11		150 30 26		180 36 31		ns	2.0 4.5 6.0	Fig.8
t _{rem}	removal time nMR to nCP ₀ , n \overline{CP}_1	0 0 0	-22 -8 -6		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time nCP ₁ to nCP ₀ ; nCP ₀ to nCP ₁	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency nCP ₀ , nCP ₁	6.0 30 35	18 55 66		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.8

74HC/HCT4518

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

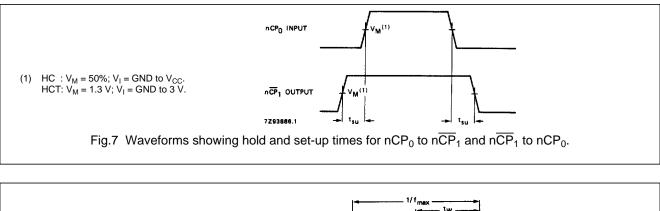
Output capability: standard I_{CC} category: MSI

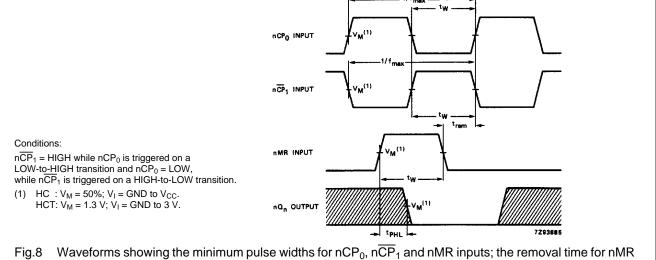
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

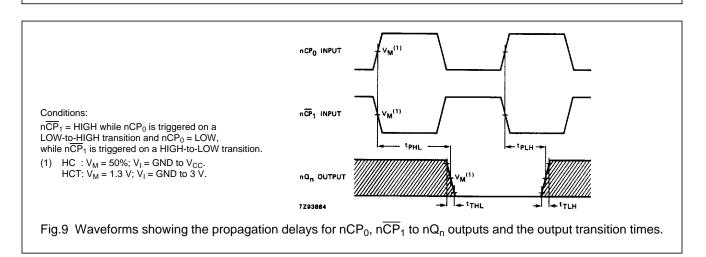
INPUT	UNIT LOAD COEFFICIENT						
nCP ₀ , nCP ₁	0.80						
nMR	1.50						

AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125			V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nCP ₀ , n \overline{CP}_1 to nQ _n		28	53		66		80	ns	4.5	Fig.9
t _{PHL}	propagation delay nMR to nQ _n		17	35		44		53	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.9
t _W	clock pulse width HIGH or LOW	20	11		25		30		ns	4.5	Fig.8
t _W	master reset pulse width HIGH	20	11		25		30		ns	4.5	Fig.8
t _{rem}	removal time nMR to nCP ₀ , n \overline{CP}_1	0	-11		0		0		ns	4.5	Fig.8
t _{su}	set-up time $n\overline{CP}_1$ to $n\overline{CP}_0$; $n\overline{CP}_0$ to $n\overline{CP}_1$	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency nCP ₀ , nCP ₁	25	50		20		17		MHz	4.5	Fig.8

December 1990


74HC/HCT4518

AC WAVEFORMS

and the propagation delay for nMR to nQ_n outputs and the maximum clock pulse frequency.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

December 1990