INTEGRATED CIRCUITS # DATA SHEET # 74HC4066; 74HCT4066 Quad bilateral switches Product specification Supersedes data of 2003 Jun 17 2004 Nov 11 ## **Quad bilateral switches** 74HC4066; 74HCT4066 #### **FEATURES** - · Very low ON-resistance: - 50 Ω (typical) at V_{CC} = 4.5 V - 45 Ω (typical) at V_{CC} = 6.0 V - -35Ω (typical) at $V_{CC} = 9.0 V$. - Complies with JEDEC standard no. 7A - · ESD protection: HBM EIA/JESD22-A114-B exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V. • Specified from -40 °C to +85 °C and -40 °C to +125 °C. #### **GENERAL DESCRIPTION** The 74HC4066 and 74HCT4066 are high-speed Si-gate CMOS devices and are pin compatible with the HEF4066B. They are specified in compliance with JEDEC standard no. 7A. The 74HC4066 and 74HCT4066 have four independent analog switches. Each switch has two input/output pins (pins nY or nZ) and an active HIGH enable input pin (pin nE). When pin nE = LOW the belonging analog switch is turned off. The 74HC4066 and 74HCT4066 are pin compatible with the 74HC4016 and 74HCT4016 but exhibit a much lower on-resistance. In addition, the on-resistance is relatively constant over the full input signal range. #### **QUICK REFERENCE DATA** GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns. | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | |------------------------------------|--|--|----------|-----------|------| | STWIBUL | PARAMETER | CONDITIONS | 74HC4066 | 74HCT4066 | UNII | | t _{PZH} /t _{PZL} | turn-on time nE to Vos | $C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$ | 11 | 12 | ns | | t _{PHZ} /t _{PLZ} | turn-off time nE to Vos | $C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$ | 13 | 16 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per switch | notes 1 and 2 | 11 | 12 | pF | | Cs | maximum switch capacitance | | 8 | 8 | pF | #### Notes 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma[(C_L + C_S) \times V_{CC}^2 \times f_o]$ where: f_i = input frequency in MHz; f_0 = output frequency in MHz; C_L = output load capacitance in pF; C_S = maximum switch capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma[(C_L + C_S) \times V_{CC}^2 \times f_o] = \text{sum of the outputs.}$ 2. For 74HC4066 the condition is $V_I = GND$ to V_{CC} . For 74HCT4066 the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$. ## Quad bilateral switches 74HC4066; 74HCT4066 ### **FUNCTION TABLE** See note 1. | INPUT nE | SWITCH | |----------|--------| | L | off | | Н | on | ### Note 1. H = HIGH voltage level. L = LOW voltage level. #### **ORDERING INFORMATION** | TVDE NUMBER | PACKAGE | | | | | | | | |-------------|-------------------|------|----------|----------|----------|--|--|--| | TYPE NUMBER | TEMPERATURE RANGE | PINS | PACKAGE | MATERIAL | CODE | | | | | 74HC4066N | −40 °C to 125 °C | 14 | DIP14 | plastic | SOT27-1 | | | | | 74HCT4066N | −40 °C to 125 °C | 14 | DIP14 | plastic | SOT27-1 | | | | | 74HC4066D | −40 °C to 125 °C | 14 | SO14 | plastic | SOT108-1 | | | | | 74HCT4066D | −40 °C to 125 °C | 14 | SO14 | plastic | SOT108-1 | | | | | 74HC4066DB | −40 °C to 125 °C | 14 | SSOP14 | plastic | SOT337-1 | | | | | 74HCT4066DB | –40 °C to 125 °C | 14 | SSOP14 | plastic | SOT337-1 | | | | | 74HC4066PW | −40 °C to 125 °C | 14 | TSSOP14 | plastic | SOT402-1 | | | | | 74HCT4066PW | −40 °C to 125 °C | 14 | TSSOP14 | plastic | SOT402-1 | | | | | 74HC4066BQ | –40 °C to 125 °C | 14 | DHVQFN14 | plastic | SOT762-1 | | | | | 74HCT4066BQ | −40 °C to 125 °C | 14 | DHVQFN14 | plastic | SOT762-1 | | | | #### **PINNING** | PIN | SYMBOL | DESCRIPTION | |-----|-----------------|----------------------------| | 1 | 1Y | independent input/output | | 2 | 1Z | independent input/output | | 3 | 2Z | independent input/output | | 4 | 2Y | independent input/output | | 5 | 2E | enable input (active HIGH) | | 6 | 3E | enable input (active HIGH) | | 7 | GND | ground (0 V) | | 8 | 3Y | independent input/output | | 9 | 3Z | independent input/output | | 10 | 4Z | independent input/output | | 11 | 4Y | independent input/output | | 12 | 4E | enable input (active HIGH) | | 13 | 1E | enable input (active HIGH) | | 14 | V _{CC} | supply voltage | ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches 74HC4066; 74HCT4066 #### RECOMMENDED OPERATING CONDITIONS | SYMBOL | PARAMETER | CONDITIONS | 74HC4066 | | | 7. | UNIT | | | |---------------------------------|---------------------------|----------------------------|----------|------|-----------------|------|------|-----------------|------| | STIVIBUL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | UNII | | V _{CC} | supply voltage | | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | GND | _ | V _{CC} | GND | _ | V _{CC} | V | | Vs | switch voltage | | GND | _ | V _{CC} | GND | _ | V _{CC} | V | | T _{amb} | ambient temperature | see DC and AC | -40 | +25 | +85 | -40 | +25 | +85 | °C | | | | characteristics per device | -40 | _ | +125 | -40 | _ | +125 | °C | | t _r , t _f | input rise and fall times | V _{CC} = 2.0 V | _ | 6.0 | 1000 | _ | 6.0 | 500 | ns | | | | V _{CC} = 4.5 V | _ | _ | 500 | _ | _ | _ | ns | | | | V _{CC} = 6.0 V | _ | _ | 400 | _ | _ | _ | ns | | | | V _{CC} = 10.0 V | _ | _ | 250 | _ | _ | _ | ns | #### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------------------------|--------------------------------|--|------|-------|------| | V _{CC} | supply voltage | | -0.5 | +11.0 | V | | I _{IK} | input diode current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | _ | ±20 | mA | | I _{SK} | switch diode current | $V_{\rm S} < -0.5 \; \text{V or} \; V_{\rm S} > V_{\rm CC} + 0.5 \; \text{V}$ | _ | ±20 | mA | | Is | switch current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$; note 1 | _ | ±25 | mA | | I _{CC} , I _{GND} | V _{CC} or GND current | | _ | ±50 | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}; \text{ note } 2$ | _ | 500 | mW | | Ps | power dissipation per switch | | _ | 100 | mW | #### Notes - To avoid drawing V_{CC} current out of pin nZ, when switch current flows in pin nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into pin nZ, no V_{CC} current will flow out of pin nY. In this case there is no limit for the voltage drop across the switch, but the voltages at pins nY and nZ may not exceed V_{CC} or GND. - 2. For DIP14 packages: above 70 °C derate linearly with 12 mW/K. - For SO14 packages: above 70 °C derate linearly with 8 mW/K. - For SSOP14 and TSSOP16 packages: above 60 $^{\circ}\text{C}$ derate linearly with 5.5 mW/K. - For DHVQFN14 packages: above 60 $^{\circ}\text{C}$ derate linearly with 4.5 mW/K. ## Quad bilateral switches 74HC4066; 74HCT4066 ## **DC CHARACTERISTICS** ## Family 74HC4066 Voltages are referenced to GND (ground = 0 V); V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nY or nZ, whichever is assigned as an output. | CVMDOL | DADAMETED | TEST CONDITIONS | | | TVD | MAX. | | |--------------------------|------------------------------------|---|---------------------|------|------|--------|------| | SYMBOL | PARAMETER | OTHER | V _{CC} (V) | MIN. | TYP. | IVIAA. | UNIT | | T _{amb} = -40 ° | °C to +85 °C; note 1 | | | | | | | | V _{IH} | HIGH-level input | | 2.0 | 1.5 | 1.2 | - | ٧ | | | voltage | | 4.5 | 3.15 | 2.4 | - | V | | | | | 6.0 | 4.2 | 3.2 | - | V | | | | | 9.0 | 6.3 | 4.7 | - | ٧ | | V _{IL} | LOW-level input voltage | | 2.0 | _ | 0.8 | 0.50 | ٧ | | | | | 4.5 | _ | 2.1 | 1.35 | ٧ | | | | | 6.0 | _ | 2.8 | 1.80 | ٧ | | | | | 9.0 | _ | 4.3 | 2.70 | ٧ | | ILI | input leakage current | V _I = V _{CC} or GND | 6.0 | _ | _ | ±1.0 | μΑ | | | | | 10.0 | _ | _ | ±2.0 | μΑ | | I _{S(OFF)} | analog switch current
OFF-state | per channel; $V_I = V_{IH}$ or V_{IL} ;
$V_S = V_{CC} - GND$; see Fig.7 | 10.0 | _ | _ | ±1.0 | μΑ | | I _{S(ON)} | analog switch current ON-state | $V_I = V_{IH}$ or V_{IL} ; $V_S = V_{CC} - GND$; see Fig.8 | 10.0 | _ | _ | ±1.0 | μΑ | | I _{CC} | quiescent supply | $V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; | 6.0 | _ | _ | 20.0 | μΑ | | | current | $V_{os} = V_{CC}$ or GND | 10.0 | _ | _ | 40.0 | μΑ | ## Quad bilateral switches 74HC4066; 74HCT4066 | OVMDOL | PARAMETER | TEST CONDITIONS | | | TVD | MAY | | |-------------------------|------------------------------------|---|---------------------|------|------|------|------| | SYMBOL | | OTHER | V _{CC} (V) | MIN. | TYP. | MAX. | UNIT | | $T_{amb} = -40^{\circ}$ | °C to +125 °C | | | | | | | | V _{IH} | HIGH-level input | | 2.0 | 1.5 | _ | - | ٧ | | | voltage | | 4.5 | 3.15 | _ | - | V | | | | | 6.0 | 4.2 | _ | - | V | | | | | 9.0 | 6.3 | _ | _ | V | | V _{IL} | LOW-level input voltage | | 2.0 | - | - | 0.50 | V | | | | | 4.5 | - | - | 1.35 | ٧ | | | | | 6.0 | - | - | 1.80 | ٧ | | | | | 9.0 | - | - | 2.70 | ٧ | | ILI | input leakage current | V _I = V _{CC} or GND | 6.0 | _ | _ | ±1.0 | μΑ | | | | | 10.0 | - | - | ±2.0 | μΑ | | I _{S(OFF)} | analog switch current
OFF-state | per channel; $V_I = V_{IH}$ or V_{IL} ;
$V_S = V_{CC} - GND$; see Fig.7 | 10.0 | _ | _ | ±1.0 | μΑ | | I _{S(ON)} | analog switch current ON-state | $V_I = V_{IH}$ or V_{IL} ; $V_S = V_{CC} - GND$; see Fig.8 | 10.0 | _ | _ | ±1.0 | μΑ | | I _{CC} | quiescent supply | $V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND | 6.0 | - | - | 40.0 | μΑ | | | current | | 10.0 | _ | _ | 80.0 | μΑ | ## Note ^{1.} All typical values are measured at T_{amb} = 25 °C. ## Quad bilateral switches 74HC4066; 74HCT4066 ### Family 74HCT4066 Voltages are referenced to GND (ground = 0 V); V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nY or nZ, whichever is assigned as an output. | OVMDOL | PARAMETER | TEST CONDITIONS | | TVD | BAAV | | | |------------------------|---|---|---------------------|------|------|------|------| | SYMBOL | | OTHER | V _{CC} (V) | MIN. | TYP. | MAX. | UNIT | | T _{amb} = -40 |) °C to +85 °C; note 1 | | | • | | - | • | | V _{IH} | HIGH-level input voltage | | 4.5 to 5.5 | 2.0 | 1.6 | - | V | | V _{IL} | LOW-level input voltage | | 4.5 to 5.5 | _ | 1.2 | 0.8 | ٧ | | ILI | input leakage current | $V_I = V_{CC}$ or GND | 5.5 | _ | _ | ±1.0 | μА | | I _{S(OFF)} | analog switch current
OFF-state | per channel; $V_I = V_{IH}$ or V_{IL} ;
$V_S = V_{CC} - GND$; see Fig.7 | 5.5 | - | _ | ±1.0 | μΑ | | I _{S(ON)} | analog switch current ON-state | $V_I = V_{IH}$ or V_{IL} ; $V_S = V_{CC} - GND$; see Fig.8 | 5.5 | _ | _ | ±1.0 | μА | | I _{CC} | quiescent supply current | $V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND | 4.5 to 5.5 | - | _ | 20.0 | μΑ | | ΔI_{CC} | additional quiescent supply current per input | $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND | 4.5 to 5.5 | - | 100 | 450 | μΑ | | T _{amb} = -40 |) °C to +125 °C | | | • | | • | | | V _{IH} | HIGH-level input voltage | | 4.5 to 5.5 | 2.0 | - | - | V | | V _{IL} | LOW-level input voltage | | 4.5 to 5.5 | _ | - | 0.8 | V | | ILI | input leakage current | $V_I = V_{CC}$ or GND | 5.5 | _ | - | ±1.0 | μА | | I _{S(OFF)} | analog switch current
OFF-state | per channel; $V_I = V_{IH}$ or V_{IL} ; $V_S = V_{CC} - GND$; see Fig.7 | 10.0 | - | _ | ±1.0 | μΑ | | I _{S(ON)} | analog switch current ON-state | $V_I = V_{IH}$ or V_{IL} ; $V_S = V_{CC} - GND$; see Fig.8 | 10.0 | _ | _ | ±1.0 | μА | | I _{CC} | quiescent supply current | $V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND | 4.5 to 5.5 | _ | _ | 40.0 | μΑ | | Δl _{CC} | additional quiescent supply current per input | $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND | 4.5 to 5.5 | - | _ | 490 | μΑ | ## Note ^{1.} All typical values are measured at T_{amb} = 25 °C. ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches 74HC4066; 74HCT4066 ## Resistance R_{ON} for 74HC4066 and 74HCT4066 For 74HC4066: V_{CC} = 2.0, 4.5, 6.0 and 9.0 V; for 74HCT4066: V_{CC} = 4.5 V; note 1; V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; see Fig.9. | OVMBOL | DADAMETED | TEST CONDITIO | RAINI | TVD | NA A V | | | | |--------------------------|-------------------------------|---|---------------------|---------------------|--------|--------------|------|------| | SYMBOL | PARAMETER | OTHER | I _S (μΑ) | V _{CC} (V) | MIN. | . TYP.
 | MAX. | UNIT | | T _{amb} = -40 ° | °C to +85 °C; note 2 | | • | • | • | 1 | • | | | R _{ON(peak)} | ON-resistance | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = V_{CC}$ to GND | 100 | 2.0 | _ | _ | _ | Ω | | | (peak) | | 1000 | 4.5 | _ | 54 | 118 | Ω | | | | | | 6.0 | _ | 42 | 105 | Ω | | | | | | 9.0 | _ | 32 | 88 | Ω | | R _{ON(rail)} | ON-resistance | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = GND$ | 100 | 2.0 | _ | 80 | - | Ω | | | (rail) | | 1000 | 4.5 | _ | 35 | 95 | Ω | | | | | | 6.0 | _ | 27 | 82 | Ω | | | | | | 9.0 | _ | 20 | 70 | Ω | | | | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = V_{CC}$ | 100 | 2.0 | _ | 100 | - | Ω | | | | | 1000 | 4.5 | _ | 42 | 106 | Ω | | | | | | 6.0 | _ | 35 | 94 | Ω | | | | | | 9.0 | _ | 27 | 78 | Ω | | ΔR_{ON} | maximum | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = V_{CC}$ to GND | _ | 2.0 | _ | - | - | Ω | | | variation of | | | 4.5 | _ | 5 | - | Ω | | | ON-resistance between any two | | | 6.0 | _ | 4 | - | Ω | | | channels | | | 9.0 | - | 3 | - | Ω | | T _{amb} = -40 ° | °C to +125 °C | | • | 1 | | • | | | | R _{ON(peak)} | ON-resistance | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = V_{CC}$ to GND | 100 | 2.0 | _ | _ | _ | Ω | | u , | (peak) | | 1000 | 4.5 | _ | _ | 142 | Ω | | | | | | 6.0 | _ | _ | 126 | Ω | | | | | | 9.0 | _ | _ | 105 | Ω | | R _{ON(rail)} | ON-resistance | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = GND$ | 100 | 2.0 | _ | _ | _ | Ω | | , | (rail) | | 1000 | 4.5 | _ | _ | 115 | Ω | | | | | | 6.0 | _ | _ | 100 | Ω | | | | | | 9.0 | _ | _ | 85 | Ω | | | | $V_I = V_{IH}$ or V_{IL} ; $V_{is} = V_{CC}$ | 100 | 2.0 | _ | _ | _ | Ω | | | | | 1000 | 4.5 | _ | _ | 128 | Ω | | | | | | 6.0 | _ | _ | 113 | Ω | | | | | | 9.0 | _ | _ | 95 | Ω | #### **Notes** - 1. At supply voltages approaching 2 V, the analog ON-resistance switch becomes extremely non-linear. Therefore, it is recommended that these devices are being used to transmit digital signals only, when using these supply voltages. - 2. All typical values are measured at T_{amb} = 25 °C. ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches 74HC4066; 74HCT4066 ### **AC CHARACTERISTICS** ## Type 74HC4066 GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nY or nZ, whichever is assigned as an output. | OVMDOL | DADAMETED | TEST CONDITIONS | TEST CONDITIONS | | | MAY | | |------------------------------------|------------------------------------|--|---------------------|------|------|------|------| | SYMBOL | PARAMETER | OTHER | V _{CC} (V) | MIN. | TYP. | MAX. | UNIT | | T _{amb} = -40 | °C to +85 °C; note 1 | - | <u>'</u> | | • | ' | • | | t _{PHL} /t _{PLH} | propagation delay | R _L = ∞; see Fig.19 | 2.0 | _ | 8 | 75 | ns | | | V _{is} to V _{os} | | 4.5 | _ | 3 | 15 | ns | | | | 6.0 | - | 2 | 13 | ns | | | | | | 9.0 | - | 2 | 10 | ns | | t _{PZH} /t _{PZL} | turn-on time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 2.0 | - | 36 | 125 | ns | | | | | 4.5 | - | 13 | 25 | ns | | | | | 6.0 | - | 10 | 21 | ns | | | | | 9.0 | _ | 8 | 16 | ns | | t _{PHZ} /t _{PLZ} | turn-off time nE to Vos | R_L = 1 kΩ; see Figs 20 and 21 | 2.0 | _ | 44 | 190 | ns | | | | | 4.5 | _ | 16 | 38 | ns | | | | | 6.0 | _ | 13 | 33 | ns | | | | | 9.0 | _ | 16 | 26 | ns | | T _{amb} = -40 | °C to +125 °C | • | | | • | • | • | | t _{PHL} /t _{PLH} | propagation delay | R _L = ∞; see Fig.19 | 2.0 | _ | _ | 90 | ns | | | V _{is} to V _{os} | | 4.5 | _ | _ | 18 | ns | | | | | 6.0 | _ | _ | 15 | ns | | | | | 9.0 | - | - | 12 | ns | | t _{PZH} /t _{PZL} | turn-on time nE to Vos | R_L = 1 kΩ; see Figs 20 and 21 | 2.0 | - | _ | 150 | ns | | | | | 4.5 | - | - | 30 | ns | | | | | 6.0 | - | _ | 26 | ns | | | | | 9.0 | - | _ | 20 | ns | | t _{PHZ} /t _{PLZ} | turn-off time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 2.0 | - | _ | 225 | ns | | | | | 4.5 | - | _ | 45 | ns | | | | | 6.0 | - | _ | 38 | ns | | | | | 9.0 | _ | _ | 30 | ns | #### Note 1. All typical values are measured at T_{amb} = 25 °C. ## Quad bilateral switches 74HC4066; 74HCT4066 ## **Type 74HCT4066** GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nY or nZ, whichever is assigned as an output. | SYMBOL | PARAMETER | TEST CONDITIONS | | | TYP. | MAX. | UNIT | | | |--|--|--|---------------------|------|------|--------|------|--|--| | | PARAMETER | OTHER | V _{CC} (V) | MIN. | 116. | IVIAA. | UNII | | | | $T_{amb} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}; \text{ note } 1$ | | | | | | | | | | | t _{PHL} /t _{PLH} | propagation delay V _{is} to V _{os} | R _L = ∞; see Fig.19 | 4.5 | _ | 3 | 15 | ns | | | | t _{PZH} /t _{PZL} | turn-on time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 4.5 | _ | 12 | 30 | ns | | | | t _{PHZ} /t _{PLZ} | turn-off time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 4.5 | _ | 20 | 44 | ns | | | | $T_{amb} = -40$ ° | C to +125 °C | | • | | | | | | | | t _{PHL} /t _{PLH} | propagation delay V _{is} to V _{os} | R _L = ∞; see Fig.19 | 4.5 | _ | _ | 18 | ns | | | | t _{PZH} /t _{PZL} | turn-on time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 4.5 | - | - | 36 | ns | | | | t _{PHZ} /t _{PLZ} | turn-off time nE to Vos | $R_L = 1 \text{ k}\Omega$; see Figs 20 and 21 | 4.5 | _ | _ | 53 | ns | | | #### Note 1. All typical values are measured at T_{amb} = 25 °C. #### 74HC4066 and 74HCT4066 At recommended conditions and typical values; GND = 0 V; $t_r = t_f = 6 \text{ ns}$; V_{is} is the input voltage at pins nY or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nY or nZ, whichever is assigned as an output. | SYMBOL | PARAMETER | CONDITIONS | TYP. | UNIT | | | |---------------------------|--|---|--------------------------|---------------------|-------|------| | STWIBOL | PARAMETER | OTHER | V _{is(p-p)} (V) | V _{CC} (V) | 1115. | ONII | | d _{sin} | sine wave distortion | $f = 1 \text{ kHz}$; $R_L = 10 \text{ k}Ω$; $C_L = 50 \text{ pF}$; | 4.0 | 4.5 | 0.04 | % | | | | | 8.0 | 9.0 | 0.02 | % | | | | $f = 10 \text{ kHz}$; $R_L = 10 \text{ k}Ω$; $C_L = 50 \text{ pF}$; | 4.0 | 4.5 | 0.12 | % | | | | see Fig.17 | 8.0 | 9.0 | 0.06 | % | | α _{OFF(feedthr)} | switch OFF signal | $R_L = 600 \Omega$; $C_L = 50 pF$; $f = 1 MHz$; | note 1 | 4.5 | -50 | dB | | | feed-through | see Figs 11 and 18 | | 9.0 | -50 | dB | | $\alpha_{\rm ct(s)}$ | crosstalk between any two | $R_L = 600 \Omega$; $C_L = 50 pF$; $f = 1 MHz$; | note 1 | 4.5 | -60 | dB | | | switches | see Fig.13 | | 9.0 | -60 | dB | | V _{ct(p-p)} | crosstalk voltage between | $R_L = 600 \Omega$; $C_L = 50 pF$; $f = 1 MHz$; | _ | 4.5 | 110 | mV | | | any input to any switch (peak-to-peak value) | see Fig.15 (nE, square wave between V_{CC} and GND, $t_r = t_f = 6$ ns) | | 9.0 | 220 | mV | | f _{max} | minimum frequency | $R_L = 50 \Omega$; $C_L = 10 pF$; see Figs 12 | note 2 | 4.5 | 180 | MHz | | | response (-3 dB) | and 16 | | 9.0 | 200 | MHz | | Cs | maximum switch capacitance | | _ | _ | 8 | pF | #### **Notes** - 1. Adjust input voltage V_{is} is 0 dBM level (0 dBM = 1 mW into 600 Ω). - 2. Adjust input voltage V_{is} is 0 dBM level at V_{os} for 1 MHz (0 dBM = 1 mW into 50 Ω). ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches ## 74HC4066; 74HCT4066 Fig.13 Test circuit for measuring crosstalk between any two switches; channels ON condition. ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches ## 74HC4066; 74HCT4066 ## Quad bilateral switches ## 74HC4066; 74HCT4066 #### **AC WAVEFORMS** ## Quad bilateral switches 74HC4066; 74HCT4066 ### **TEST CIRCUIT AND WAVEFORMS** | TEST | SWITCH | V _{is} | |------------------|-----------------|-----------------| | t _{PZH} | GND | V _{CC} | | t_{PZL} | V _{CC} | GND | | t _{PHZ} | GND | V _{CC} | | t_{PLZ} | V _{CC} | GND | | other | open | pulse | Definitions for test circuit: R_L = Load resistance. $t_{\rm f}$ = 6 ns; when measuring f_{max} , there is no constraint to $t_{\rm f}$ and $t_{\rm f}$ with 50 % duty factor. C_L = Load capacitance including jig and probe capacitance. R_T = Termination resistance should be equal to the output impedance Z_O of the pulse generator. Fig.21 Test circuit for measuring AC performance. | | | | t _r and t _f | | |-----------|-----------------|----------------|-----------------------------------|-------| | FAMILY | AMPLITUDE | V _M | f _{max} ; PULSE
WIDTH | OTHER | | 74HC4066 | V _{CC} | 50 % | <2 ns | 6 ns | | 74HCT4066 | 3.0 V | 1.3 V | <2 ns | 6 ns | Fig.22 Input pulse definitions. ## Quad bilateral switches 74HC4066; 74HCT4066 ### **PACKAGE OUTLINES** DIP14: plastic dual in-line package; 14 leads (300 mil) SOT27-1 #### . . inches 0.17 0.02 0.13 1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included. 0.068 0.044 0.021 0.015 0.014 0.009 0.77 0.73 0.26 0.24 0.1 0.3 0.14 0.12 0.32 0.31 0.39 0.33 0.01 0.087 | OUTLINE | | REFER | ENCES | | EUROPEAN | EUROPEAN ISSUE DATE | | |---------|--------|--------|-----------|--|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | 1330E DATE | | | SOT27-1 | 050G04 | MO-001 | SC-501-14 | | | 99-12-27
03-02-13 | | ## Quad bilateral switches ## 74HC4066; 74HCT4066 ### SO14: plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN PROJECTION ISSUE DATE | | |----------|--------|--------|-------|--------------------------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT108-1 | 076E06 | MS-012 | | | 99-12-27
03-02-19 | 2004 Nov 11 22 ## Quad bilateral switches ## 74HC4066; 74HCT4066 SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm SOT337-1 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | | REFER | ENCES | | EUROPEAN | ISSUE DATE | | |-----|--------|-----------|-----------------|-----------------|---------------------------------|--| | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | | MO-150 | | | | 99-12-27
03-02-19 | | | _ | IEC | IEC JEDEC | IEC JEDEC JEITA | IEC JEDEC JEITA | IEC JEDEC JEITA PROJECTION | | ## Quad bilateral switches 74HC4066; 74HCT4066 TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | |----------|-----|--------|--------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT402-1 | | MO-153 | | | 99-12-27
03-02-18 | ## Quad bilateral switches 74HC4066; 74HCT4066 DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1 ### Quad bilateral switches 74HC4066: 74HCT4066 #### **DATA SHEET STATUS** | LEVEL | DATA SHEET
STATUS ⁽¹⁾ | PRODUCT
STATUS ⁽²⁾⁽³⁾ | DEFINITION | |-------|-------------------------------------|-------------------------------------|--| | I | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. | | II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. | | III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). | #### Notes - 1. Please consult the most recently issued data sheet before initiating or completing a design. - 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. - 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. #### **DEFINITIONS** **Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### **DISCLAIMERS** Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. ## Philips Semiconductors – a worldwide company #### **Contact information** For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. © Koninklijke Philips Electronics N.V. 2004 under patent- or other industrial or intellectual property rights. SCA76 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license Printed in The Netherlands R44/05/pp27 Date of release: 2004 Nov 11 Document order number: 9397 750 14188 Let's make things better. Philips Semiconductors