SEMICONDUCTOR

MM74C42 BCD-to-Decimal Decoder

General Description

The MM74C42 one-of-ten decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. This decoder produces a logical "0" at the output corresponding to a four bit binary input from zero to nine, and a logical "1" at the other outputs. For binary inputs from ten to fifteen all outputs are logical "1".

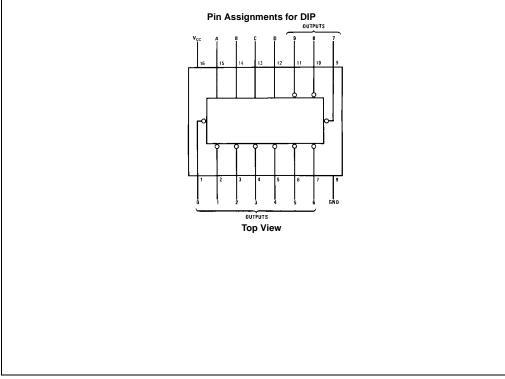
Features

- Supply voltage range: 3V to 15V
- Tenth power TTL compatible: drive 2 LPTTL loads
- High noise immunity: 0.45 V_{CC} (typ.)

- Low power: 50 nW (typ.)
- Medium speed operation: 10 MHz (typ.) with 10V V_{CC}

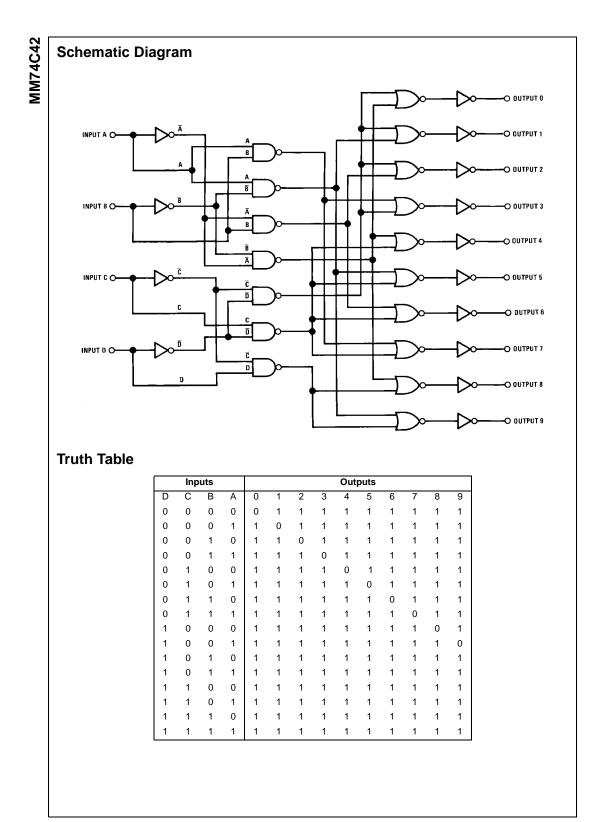
October 1987

Revised January 1999


Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers

Ordering Code:


Order Number	Package Number	Package Description	
MM74C42N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS005882.prf

www.fairchildsemi.com

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

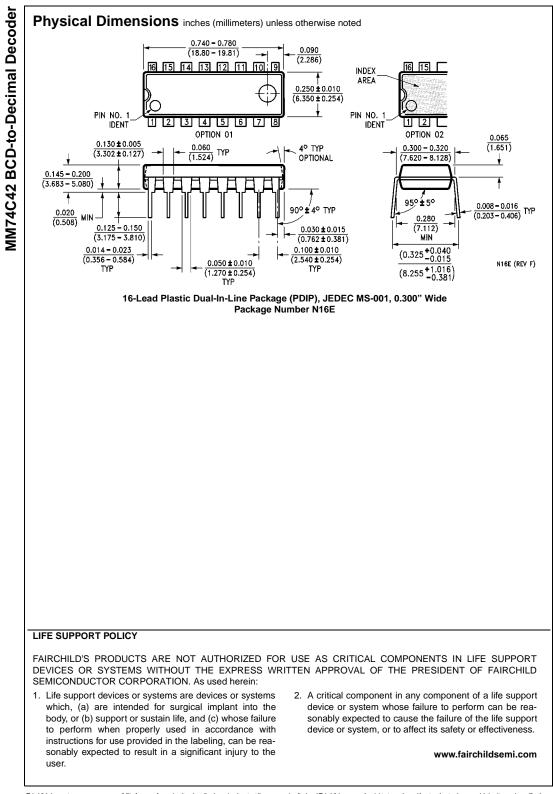
Voltage at Any Pin (Note 1)	-0.3V to V _{CC} + 0.3V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V

Absolute Maximum V_{CC} Lead Temperature (Soldering, 10 seconds) MM74C42

18V

260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.


DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	Mos					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V
V _{OUT(0)} L	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	V
IN(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$			1.0	μΑ
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0			μΑ
сс	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ
CMOS/LPTT	LINTERFACE	÷				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT DR	IVE (see Family Characteristics Da	ta Sheet) T _A = 25°C (short circuit current)				
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-1.75			mA
SOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-8.0			mA
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$	1.75			mA
SINK	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V, V_{OUT} = V_{CC}$	8.0			mA
	ectrical Characteris $C_L = 50 \text{ pF}$, unless otherwise sp	()				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
pd	Propagation Delay Time to	$V_{CC} = 5.0V$		200	300	ns
	Logical "0" or "1"	$V_{CC} = 10V$		90	140	ns
C _{IN}	Input Capacitance	(Note 3)		5		pF

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note— AN-90.

Fairchild does not assume any responsibility for use of any circuitry described, no dircuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.