

November 1987 Revised January 1999

MM74C221

Dual Monostable Multivibrator

General Description

The MM74C221 dual monostable multivibrator is a monolithic complementary MOS integrated circuit. Each multivibrator features a negative-transition-triggered input and a positive-transition-triggered input, either of which can be used as an inhibit input, and a clear input.

Once fired, the output pulses are independent of further transitions of the A and B inputs and are a function of the external timing components C_{EXT} and $R_{EXT}.$ The pulse width is stable over a wide range of temperature and $V_{CC}.$

Pulse stability will be limited by the accuracy of external timing components. The pulse width is approximately defined by the relationship $t_{W(OUT)} \approx C_{EXT} \; R_{EXT}.$ For further information and applications, see AN-138.

Features

■ Wide supply voltage range: 4.5V to 15V

■ Guaranteed noise margin: 1.0V■ High noise immunity: 0.45 V_{CC} (typ.)

■ Low power TTL compatibility: fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description
74MMC221N	N16E	16-Lead Plastic Dual-in-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagrams

Timing Component

Truth Table

	Inputs			Outputs			
Clear	Α	В	Q	Q			
L	Х	Х	L	Н			
Х	Н	Х	L	Н			
X	Х	L	L	Н			
Н	L	1	7	7			
Н	1	Н	7-	Ъ			

H = HIGH Level $\Rightarrow = One HIGH level pulse$ L = LOW Level $\Rightarrow = One LOW level pulse$

© 1999 Fairchild Semiconductor Corporation

DS005904.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Voltage at Any Pin} & -0.3\mbox{V to V}_{\mbox{CC}} + 0.3\mbox{V} \\ \mbox{Operating Temperature Range} & -40\mbox{°C to } +85\mbox{°C} \\ \mbox{Storage Temperature Range} & -65\mbox{°C to } +150\mbox{°C} \\ \end{array}$

Power Dissipation

 $\begin{array}{cc} \text{Dual-In-Line} & 700 \text{ mW} \\ \text{Small Outline} & 500 \text{ mW} \\ \text{Operating V}_{\text{CC}} \text{ Range} & 4.5 \text{V to 15V} \\ \end{array}$

Absolute Maximum V_{CC} $R_{EXT} \ge 80 \ V_{CC} \ (\Omega)$ Lead Temperature (Soldering, 10 seconds)

260°C

18V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Max/min limits apply across temperature range, unless otherwise noted

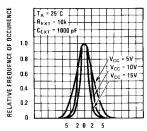
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS to C	MOS	-		I		ı
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V	3.5			V
		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$, $I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = +10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_O = +10 \mu A$			1	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current (Standby)	V _{CC} = 15V, R _{EXT} = ∞,		0.05	300	μΑ
		Q1, Q2 = Logic "0" (Note 2)				
I _{CC}	Supply Current	V _{CC} = 15V, Q1 = Logic "1",		15		mA
	(During Output Pulse)	Q2 = Logic "0" (Figure 4)				
		V _{CC} = 5V, Q1 = Logic "1",		2		mA
		Q2 = Logic "0" (Figure 4)				
	Leakage Current at R/C _{EXT} Pin	V _{CC} = 15V, V _{CEXT} = 5V		0.01	3.0	μΑ
	TL Interface					
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			8.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V, I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = 360 \mu A$			0.4	V
Output Dri	ve (See Family Characteristics Data	Sheet) (Short Circuit Current)				
I _{SOURCE}	Output Source Current	V _{CC} = 5V	-1.75			mA
	(P-Channel)	$T_A = 25^{\circ}C$, $V_{OUT} = 0V$				
I _{SOURCE}	Output Source Current	V _{CC} = 10V	-8			mA
	(P-Channel)	$T_A = 25^{\circ}C$, $V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	V _{CC} = 5V	1.75			mA
	(N-Channel)	$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	V _{CC} = 10V	8			mA
	(N-Channel)	$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$				

Note 2: In Standby (Q = Logic "0") the power dissipated equals the leakage current plus V_{CC}/R_{EXT} .

AC Electrical Characteristics (Note 3)

 $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd A, B}	Propagation Delay from Trigger	V _{CC} = 5V		250	500	ns
	Input (A, B) to Output Q, Q	V _{CC} = 10V		120	250	ns
t _{pd CL}	Propagation Delay from Clear	V _{CC} = 5V		250	500	ns
	Input (CL) to Output Q, Q	V _{CC} = 10V		120	250	ns
t _S	Time Prior to Trigger Input (A, B)	V _{CC} = 5V	150	50		ns
	that Clear must be Set	V _{CC} = 10V	60	20		ns
W(A, B)	Trigger Input (A, B) Pulse Width	V _{CC} = 5V	150	50		ns
(., -,		V _{CC} = 10V	70	30		ns
W(CL)	Clear Input (CL) Pulse Width	V _{CC} = 5V	150	50		ns
, ,		V _{CC} = 10V	70	30		ns
W(OUT)	Q or Q Output Pulse Width	V _{CC} = 5V, R _{EXT} = 10k,		900		ns
	·	C _{EXT} = 0 pF				
		V _{CC} = 10V, R _{EXT} = 10k,		350		ns
		C _{EXT} = 0 pF				
		V _{CC} = 15V, R _{EXT} = 10k,		320		ns
		C _{EXT} = 0 pF				
		$V_{CC} = 5V, R_{EXT} = 10k,$	9.0	10.6	12.2	μs
		C _{EXT} = 1000 pF (Figure 1)				
		$V_{CC} = 10V, R_{EXT} = 10k,$	9.0	10	11	μs
		C _{EXT} = 1000 pF (Figure 1)				
		$V_{CC} = 15V, R_{EXT} = 10k,$	8.9	9.8	10.8	μs
		C _{EXT} = 1000 pF (Figure 1)				
		$V_{CC} = 5V$, $R_{EXT} = 10k$,	900	1020	1200	μs
		$C_{EXT} = 0.1 \mu F$ (Figure 3)				
		$V_{CC} = 10V, R_{EXT} = 10k,$	900	1000	1100	μs
		$C_{EXT} = 0.1 \mu F$ (Figure 3)				
		$V_{CC} = 15V, R_{EXT} = 10k,$	900	990	1100	μs
		$C_{EXT} = 0.1 \mu F$ (Figure 3)				
R _{ON}	ON Resistance of Transistor	V _{CC} = 5V (Note 4)		50	150	Ω
	between R/C _{EXT} to C _{EXT}	V _{CC} = 10V (Note 4)		25	65	Ω
		V _{CC} = 15V (Note 4)		16.7	45	Ω
	Output Duty Cycle	R = 10k, C = 1000 pF			90	%
		$R = 10k, C = 0.1 \mu F$			90	%
		(Note 5)				
C _{IN}	Input Capacitance	R/C _{EXT} Input (Note 6)		15	25	pF
		Any Other Input (Note 6)		5		pF


Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: See AN-138 for detailed explanation $R_{\mbox{\scriptsize ON}}.$

Note 5: Maximum output duty cycle = $R_{EXT}/R_{EXT} + 1000$.

Note 6: Capacitance is guaranteed by periodic testing.

Typical Performance Characteristics

OUTPUT PULSE WIDTH (Tw., %)

0% Point pulse width:

At $V_{CC}=5V,~T_W=10.6~\mu s$

At $V_{CC} = 10 \text{V}, T_W = 10~\mu\text{s}$

At $V_{CC} = 15V$, $T_W = 9.8 \mu s$

Percentage of units within +4%:

At $V_{CC} = 5V,90\%$ of units

At V_{CC} = 10V,95% of units

At $V_{CC} = 15V,98\%$ of units

FIGURE 1. Typical Distribution of Units for Output Pulse Width

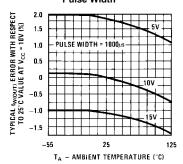
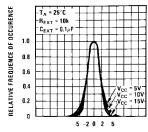



FIGURE 2. Typical Variation in Output Pulse Width vs
Temperature

OUTPUT PULSE WIDTH (Tw, %)

0% Point pulse width:

At $V_{CC} = 5V$, $T_W = 1020~\mu s$

At $V_{CC} = 10 \text{V,T}_W = 1000~\mu\text{s}$

At $V_{CC} = 15V, T_W = 982 \mu s$

Percentage of units within +4%:

At $V_{CC} = 5V,95\%$ of units

At $V_{CC} = 10V,97\%$ of units

At $V_{CC} = 15V,98\%$ of units

FIGURE 3. Typical Distribution of Units for Output Pulse Width

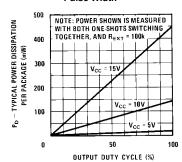
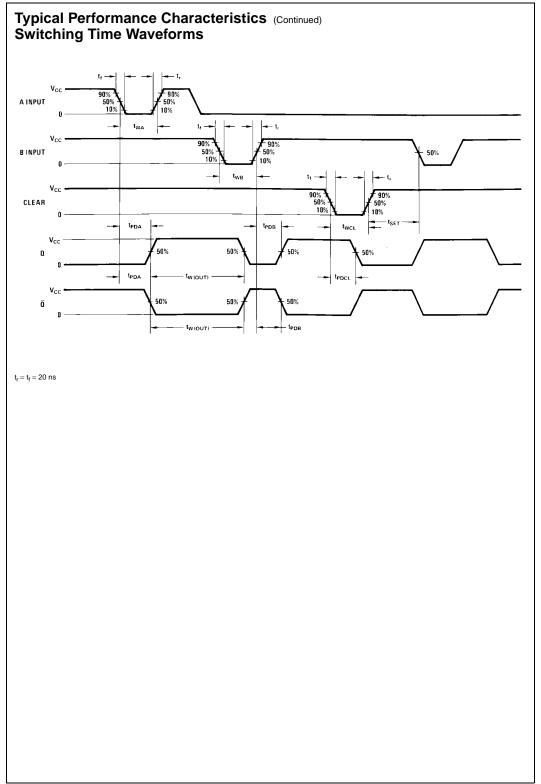
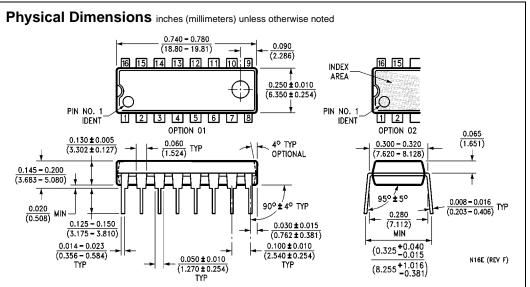




FIGURE 4. Typical Power Dissipation per Package

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.