OUTPUT

FAIRCHILD

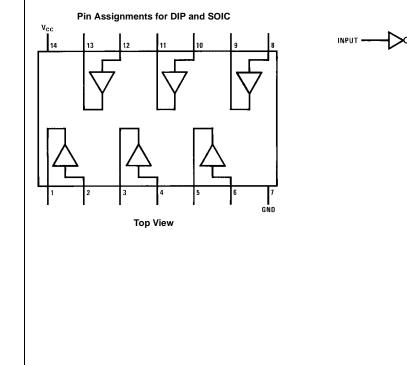
SEMICONDUCTOR

MM74C906 Hex Open Drain N-Channel Buffers

General Description

The MM74C906 buffer employs monolithic CMOS technology in achieving open drain outputs. The MM74C906 consists of six inverters driving six N-channel devices. The open drain feature of these buffers makes level shifting or wire AND and wire OR functions by just the addition of pull-up or pull-down resistors. All inputs are protected from static discharge by diode clamps to $V_{\rm CC}$ and to ground.

Features


- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1V
- High noise immunity: 0.45 V_{CC} (typ.)
- High current sourcing and sinking open drain outputs

Ordering Code:

Order Number	Package Number	Package Description
MM74C906M (Note 1)	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C906N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Logic Diagram

© 2004 Fairchild Semiconductor Corporation DS005911

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Voltage at Any Input Pin	–0.3V to V _{CC} +0.3V
Voltage at Any Output Pin	
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

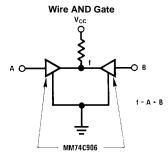
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

V _{IN(0)} Lo	DS gical "1" Input Voltage		Min	Тур	Max	Units
V _{IN(0)} Lo	gical "1" Input Voltage		1			
		$V_{CC} = 5V$	3.5			V
(-)		$V_{CC} = 10V$	8.0			V
.,	gical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2	V
I _{IN(1)} Lo	gical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1	μΑ
I _{IN(0)} Lo	gical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
	ipply Current	V _{CC} = 15V, Output Open		0.05	15	μΑ
Ou	utput Leakage					
		$V_{CC} = 4.75V, V_{IN} = V_{CC} - 1.5V$		0.005	5	μΑ
		$V_{CC} = 4.75V, V_{OUT} = 18V$				
CMOS/LPTTL I	NTERFACE		L			
V _{IN(1)} Lo	gical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5V			V
	gical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
OUTPUT DRIVI	E CURRENT					
		$V_{CC} = 4.75V, V_{IN} = 1V + 0.1 V_{CC}$				
		$V_{CC} = 4.75V, V_{OUT} = 0.5V$	2.1	8.0		mA
		$V_{CC} = 4.75V, V_{OUT} = 1.0V$	4.2	12.0		mA
		$V_{CC} = 10V, V_{IN} = 2V$				
		$V_{CC} = 10V, V_{OUT} = 0.5V$	4.2	20		mA
		$V_{CC} = 10V, V_{OUT} = 1V$	8.4	30		mA

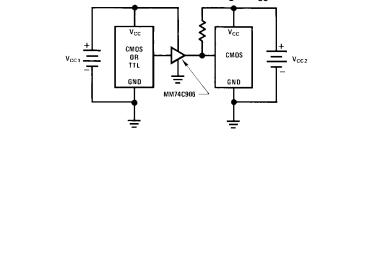
www.fairchildsemi.com

$T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise specified							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay Time						
	to a Logical "0"						
		$V_{CC} = 5.0V, R = 10k$			150	ns	
		$V_{CC} = 5.0V, R = 10k$ $V_{CC} = 10V, R = 10k$			75	ns	
t _{pd}	Propagation Delay Time						
	to a Logical "1"						
		V _{CC} = 5.0V (Note 4)			150 + 0.7 RC	ns	
		V _{CC} = 5.0V (Note 4) V _{CC} = 10V (Note 4)			75 + 0.7 RC	ns	
CIN	Input Capacitance	(Note 5)		5.0		pF	
COUT	Output Capacity	(Note 5)		20		pF	
CPD	Power Dissipation Capacity	(Note 6) Per Buffer		30		pF	

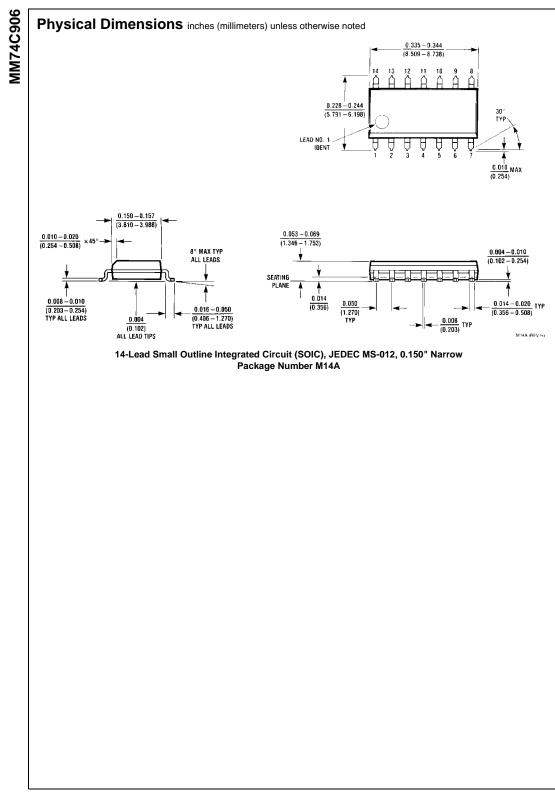

Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: "C" used in calculating propagation includes output load capacity (C_L) plus device output capacity (C_{OUT}).

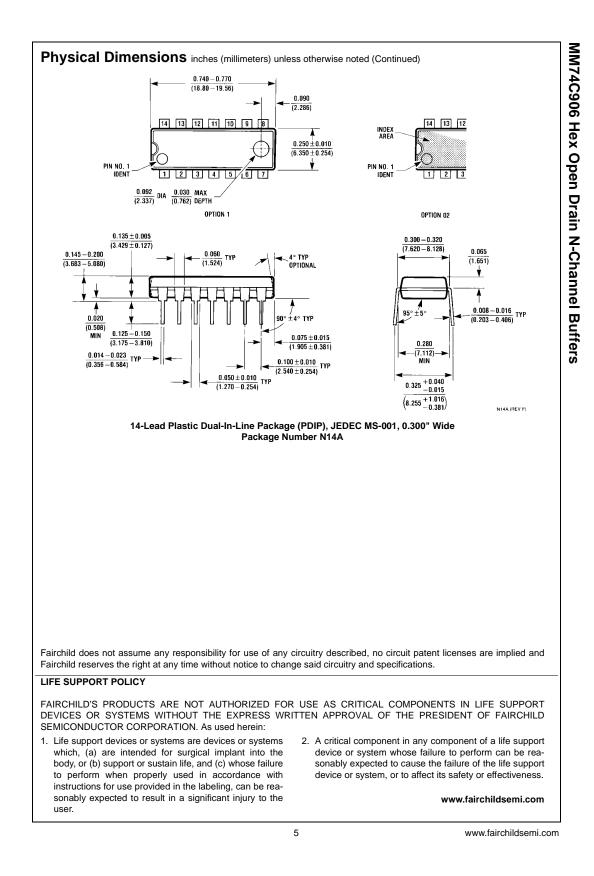
Note 5: Capacitance is guaranteed by periodic testing.


Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note, AN-90. (Assumes outputs are open).

Typical Applications


Note: Can be extended to more than 2 inputs.

CMOS or TTL to CMOS at a Higher $\rm V_{CC}$


3

www.fairchildsemi.com

www.fairchildsemi.com

4

