

September 1983 Revised September 2001

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

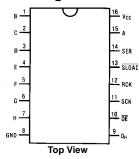
General Description

The MM74HC589 high speed shift register utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.

The MM74HC589 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8-bit shift register. Data can also be entered serially the shift register through the SER pin. Both the storage register and shift register have positive-edge triggered clocks, RCK and SCK, respectively. SLOAD pin controls parallel LOAD or serial shift operations for the shift register. The shift register has a 3-STATE output to enable the wire-ORing of multiple devices on a serial bus.

The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features


- 8-bit parallel storage register inputs
- Wide operating voltage range: 2V-6V
- Shift register has direct overriding load
- Guaranteed shift frequency. . . DC to 30 MHz
- Low quiescent current: 80 µA maximum (74HC Series)
- 3-STATE output for 'Wire-OR'

Ordering Code:

Order Number	Package Number	Package Description
MM74HC589M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC589SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC589N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

RCK	SCK	SLOAD	ΟE	Function
Х	Х	X	Ι	Q _H in Hi-Z State
Х	Х	Χ	ш	Q _H is enabled
1	Х	Х	Х	Data loaded into input latches
1	Х	L	Х	Data loaded into shift register
				from pins
H or L	Х	L	Х	Data loaded from latches to
				shift register
Х	1	Н	Х	Shift register is shifted. Data
				on SER pin is shifted in.
1	1	Н	Χ	Data is shifted in shift register,
				and data is loaded into latches

© 2001 Fairchild Semiconductor Corporation

DS005368

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V_{OUT}) -0.5 to V_{CC} +0.5VClamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA

Storage Temperature Range (T_{STG}) Power Dissipation (P_D)

(Note 2)

600 mW (Note 3) S.O. Package only 500 mW Lead Temperature (T_L)

-65°C to +150°C

(Soldering 10 seconds)

260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$		Units
Symbol		Conditions	*CC	Тур		Guaranteed L	imits	Omio
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						
loz	Maximum 3-STATE	Output in High	6.0V		±0.5	±5.0	±10.0	μΑ
	Leakage Current	Impedance State						
		$V_{IN} = V_{IL}$ or V_{IH}						
		$V_{OUT} = V_{CC}$ or GND						
		$\overline{OE} = V_{IH}$						

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

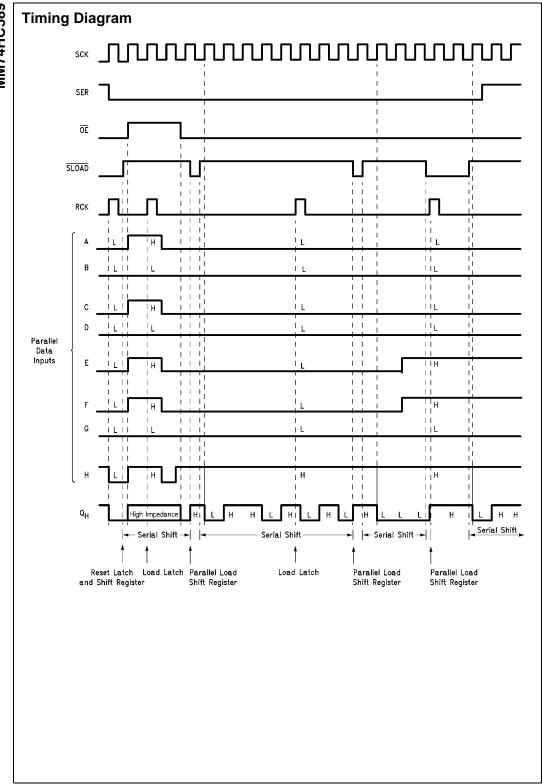
AC Electrical Characteristics

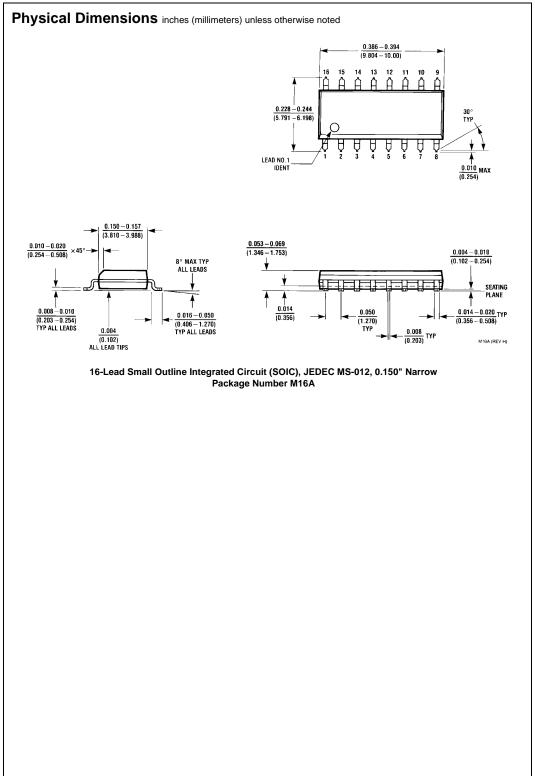
 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

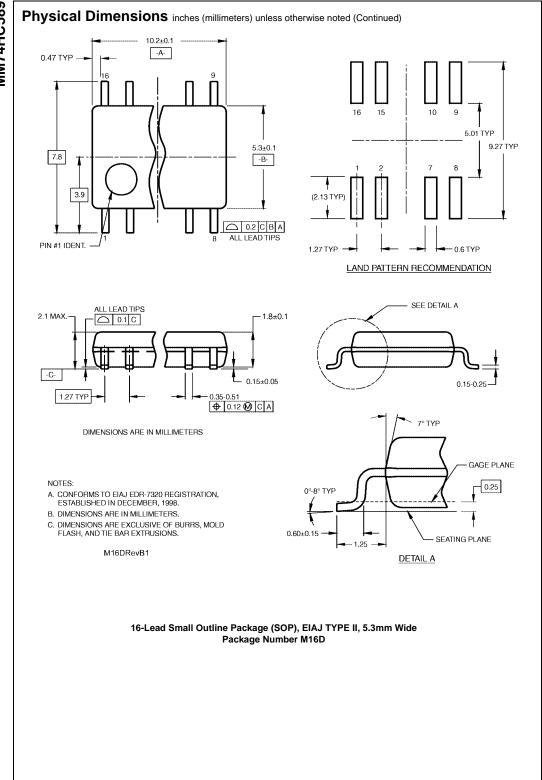
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency for SCK		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SCK to QH'			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SLOAD to QH'			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from LCK to QH'	SLOAD = logic "0"	25	45	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_L = 1 k\Omega$	18	28	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 \text{ k}\Omega, C_L = 5 \text{ pF}$	19	25	ns
t _S	Minimum Setup Time from RCK to SCK		10	20	ns
t _S	Minimum Setup Time from SER to SCK		10	20	ns
t _S	Minimum Setup Time from Inputs A thru H to RCK		10	20	ns
t _H	Minimum Hold Time		0	5	ns
t _W	Minimum Pulse Width SCK, RCK, SLOAD		8	16	ns

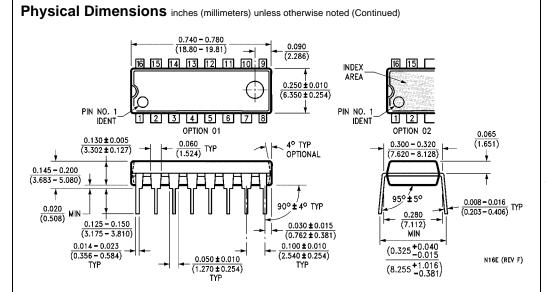
AC Electrical Characteristics

 $V_{CC} = 2.0-6V$, $C_L = 50$ pF, $t_f = t_f = 6$ ns (unless otherwise specified)


Symbol	Parameter	Conditions	V _{CC}	T _A =	25°C	$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$		Units
Cynnbon	- aramotor			Тур		Guaranteed L	imits	Units
f _{MAX}	Maximum Operating		2.0V		6	4.8	4	MHz
	Frequency for SCK		4.5V		30	24	20	MHz
			6.0V		35	28	24	MHz
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	62	175	220	265	ns
	Delay from SCK or		4.5V	20	35	44	53	ns
	SLOAD to Q _H		6.0V	18	30	37	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	120	225	280	340	ns
	Delay from SCK or	$C_{L} = 150 \text{ pF}$	4.5V	31	45	56	68	ns
	SLOAD to Q _H		6.0V	28	38	48	58	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	315	ns
	Delay from RCK to Q _H		4.5V	25	42	53	63	ns
			6.0V	21	36	45	54	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	313	ns
THE TEN	Delay RCK to Q _H	$C_1 = 150 \text{ pF}$	4.5V	25	52	66	77	ns
	"		6.0V	21	44	56	66	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_1 = 1 k\Omega$	2.0V	70	150	189	224	ns
1211 121	'		4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 k\Omega$	2.0V	70	150	189	224	ns
TIIZ, TLZ		-	4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
t _S	Minimum Setup Time		2.0V		100	125	150	ns
-5	from RCK to SCK		4.5V		20	25	30	ns
			6.0V		17	22	25	ns
t _S	Minimum Setup Time		2.0V		100	125	150	ns
•5	from SER to SCK		4.5V		20	25	30	ns
	HOIN OLIK TO COIK		6.0V		17	22	25	ns
t _S	Minimum Setup Time		2.0V		100	125	150	ns
'5	from Inputs A thru H		4.5V		20	25	30	ns
	to RCK		6.0V		17	22	25	ns
t _H	Minimum Hold Time		2.0V	-5	5	5	5	ns
ч	William and Flora Time		4.5V	0	5	5	5	ns
			6.0V	1	5	5	5	ns
t	Minimum Pulse Width		2.0V	30	80	100	120	ns
t _W	SCK, RCK, SLOAD,		4.5V				24	
				9	16	20		ns
	SLOAD		6.0V	8	14	17	20	ns


AC Electrical Characteristics (Continued)


Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55$ to $125^{\circ}C$	Units	
rarameter	Conditions		Тур		Guaranteed L	imits	Onnes	
Maximum Input Rise and		2.0V		1500	1500	1500	ns	
Fall Time, Clock		4.5V		500	500	500	ns	
		6.0V		400	400	400	ns	
Maximum Output		2.0V	25	60	75	90	ns	
Rise and Fall Time		4.5V	6	12	15	18	ns	
		6.0V	5	10	12	15	ns	
Power Dissipation			87				pF	
Capacitance (Note 5)								
Maximum Input Capacitance			5	10	10	10	pF	
Maximum Output Capacitance			15	20	20	20	pF	
	Fall Time, Clock Maximum Output Rise and Fall Time Power Dissipation Capacitance (Note 5) Maximum Input Capacitance	Maximum Input Rise and Fall Time, Clock Maximum Output Rise and Fall Time Power Dissipation Capacitance (Note 5) Maximum Input Capacitance	Maximum Input Rise and 2.0V Fall Time, Clock 4.5V 6.0V 6.0V Maximum Output 2.0V Rise and Fall Time 4.5V 6.0V 6.0V Power Dissipation Capacitance (Note 5) Maximum Input Capacitance	Naximum Input Rise and 2.0V 4.5V 6.0V	Naximum Input Rise and 2.0V 1500 1500 1500 1500 1500 160	Naximum Input Rise and 2.0V 1500 150	Naximum Input Rise and Fall Time Conditions Capacitance (Note 5) Conditions Capacitance Capacita	


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ sf + I_{CC}$.

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com