2.5V 7GHz / 10Gbps Differential Input to 1.8V / 2.5V 1:4 CML Clock / Data Fanout Buffer w/ Selectable Input Equalizer # Multi-Level Inputs w/ Internal Termination ### Description The NB7HQ14M is a high performance differential 1:4 CML fanout buffer with a selectable Equalizer receiver. When placed in series with a Clock /Data path operating up to 7 GHz or 10 Gb/s, respectively, the NB7HQ14M inputs will compensate the degraded signal transmitted across a FR4 PCB backplane or cable interconnect and output four identical CML copies of the input signal. Therefore, the serial data rate is increased by reducing Inter–Symbol Interference (ISI) caused by losses in copper interconnect or long cables. The EQualizer ENable pin (EQEN) allows the IN/IN inputs to either flow through or bypass the Equalizer section. Control of the Equalizer function is realized by setting EQEN; When EQEN is set Low, the IN/IN inputs bypass the Equalizer. When EQEN is set High, the IN/IN inputs flow through the Equalizer. The default state at start–up is LOW. As such, NB7HQ14M is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock/Data distribution applications. The differential inputs incorporate internal 50 Ω termination resistors that are accessed through the VT pin. This feature allows the NB7HQ14M to accept various logic level standards, such as LVPECL, CML or LVDS. The outputs have the flexibility of being powered by either a 2.5 V or 1.8 V supply. The 1:4 fanout design was optimized for low output skew applications. The NB7HQ14M is a member of the GigaComm[™] family of high performance clock products. ### Features - Input Data Rate > 10 Gb/s - Input Clock Frequency > 7 GHz - 150 ps Typical Propagation Delay - 35 ps Typical Rise and Fall Times - < 15 ps Maximum Output Skew - < 0.8 ps Maximum RMS Clock Jitter - < 10 ps pp of Data Dependent Jitter - Differential CML Outputs, 400 mV Peak-to-Peak, Typical - Selectable Input Equalization - Operating Range: $V_{CC} = 2.375 \text{ V}$ to 2.625 V, $V_{CCO} = 1.71 \text{ V}$ to 2.625 V - Internal Input Termination Resistors, 50 Ω - -40°C to +85°C Ambient Operating Temperature - These are Pb-Free Devices # ON Semiconductor® http://onsemi.com ## MARKING DIAGRAM* QFN-16 MN SUFFIX CASE 485G A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ### SIMPLIFIED BLOCK DIAGRAM ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. Figure 1. Detailed Block Diagram of NB7HQ14M **Table 1. EQUALIZER ENABLE FUNCTION** | EQEN | Function | | |------|--|--| | 0 | IN / $\overline{\text{IN}}$ Inputs By-pass the Equalizer section | | | 1 | Inputs flow through the Equalizer | | Figure 2. QFN-16 Pinout (Top View) ### **Table 2. PIN DESCRIPTION** | Pin | Name | I/O | Description | |-----|----------------|----------------------------|---| | 1 | IN | LVPECL, CML,
LVDS Input | Non-inverted Differential Input. Note 1. | | 2 | VT | | Internal 100 Ω Center-tapped Termination Pin for IN / $\overline{\text{IN}}$ | | 3 | VREFAC | | Output Voltage Reference for Capacitor-Coupled Inputs, only | | 4 | ĪN | LVPECL, CML,
LVDS Input | Inverted Differential Input. Note 1. | | 5 | EQEN | LVCMOS Input | Equalizer Enable Input; pin will default LOW when left open (has internal pull-down resistor) | | 6 | Q3 | CML Output | Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 7 | Q3 | CML Output | Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{CC} . | | 8 | VCCO | - | 1.8 V or 2.5 V Positive Supply Voltage for the Qn / Qn CML Outputs | | 9 | Q2 | CML Output | Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 10 | Q2 | CML Output | Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 11 | Q1 | CML Output | Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 12 | Q1 | CML Output | Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 13 | VCC | - | 2.5 V Positive Supply Voltage for the core | | 14 | Q 0 | CML Output | Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 15 | Q0 | CML Output | Non-inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} . | | 16 | GND | - | Negative Supply Voltage | | - | EP | - | The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to GND on the PC board. | ^{1.} In the differential configuration when the input termination pin (VT) is connected to a common termination voltage or left open, and if no signal is applied on IN / IN input, then, the device will be susceptible to self–oscillation. ^{2.} All VCC, VCCO and GND pins must be externally connected to a power supply for proper operation. **Table 3. ATTRIBUTES** | Characteristic | Value | | | | |--|------------------------|----------------------|--|--| | ESD Protection Human Body Model Machine Model | | > 2 kV
> 200V | | | | R _{PD} – EQEN Input Pulldown Resistor | 75 kΩ | | | | | Moisture Sensitivity (Note 3) | 16-QFN | Level 1 | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | Transistor Count | 290 | | | | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | ^{3.} For additional information, see Application Note AND8003/D. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |----------------------|--|--------------------|------------------|-------------------------------|--------------| | V _{CC} | Positive Power Supply - Core | GND = 0 V | | 3.0 | V | | V _{CCO} | Positive Power Supply – Outputs | GND = 0 V | | 3.0 | V | | V _{IO} | Positive Input/Output Voltage | GND = 0 V | | -0.5 to V _{CC} + 0.5 | V | | V _{INPP} | Differential Input Voltage IN - IN | | | 1.89 | V | | I _{IN} | Input Current Through R_T (50 Ω Resistor) | | | ± 40 | mA | | I _{OUT} | Output Current Through R $_{\rm T}$ (50 Ω Resistor) | | | ± 40 | mA | | I _{VFREFAC} | VREFAC Sink/Source Current | | | ±1.5 | mA | | T _A | Operating Temperature Range | 16 QFN | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) (Note 4) | 0 lfpm
500 lfpm | 16 QFN
16 QFN | 42
35 | °C/W
°C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) (Note 4) | | 16 QFN | 4 | °C/W | | T _{sol} | Wave Solder Pb-Free | | | 265 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ^{4.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad. Table 5. DC CHARACTERISTICS, MULTI-LEVEL INPUTS $V_{CC} = 2.375 \text{ V}$ to 2.625 V; $V_{CCO} = 1.71 \text{ V}$ to 2.625 V; GND = 0 V; $T_A = -40^{\circ}C$ to 85°C (Note 5) | Symbol | Characteristic | | Min | Тур | Max | Unit | |-------------------------------------|---|--|--|--|--|------| | POWER S | UPPLY / CURRENT | | | | | | | V _{CC}
V _{CCO} | Power Supply Voltage | $V_{CC} = 2.5 \text{ V}$
$V_{CCO} = 2.5 \text{ V}$
$V_{CCO} = 1.8 \text{ V}$ | 2.375
2.375
1.71 | 2.5
2.5
1.8 | 2.625
2.625
1.89 | V | | I _{CC} | Power Supply Current for VCC (Inputs and Outputs C
Power Supply Current for VCCO (Inputs and Outputs | | | 95
65 | 135
85 | mA | | CML OUT | PUTS (Note 6) | | | | | | | V _{OH} | Output HIGH Voltage | V _{CCO} = 2.5 V
V _{CCO} = 1.8 V | V _{CCO} – 30
2470
1770 | V _{CCO} – 10
2490
1790 | V _{CCO}
2500
1800 | mV | | V _{OL} | Output LOW Voltage | V _{CCO} = 2.5 V
V _{CCO} = 1.8 V | V _{CCO} – 550
1950
1250 | V _{CCO} – 400
2100
1400 | V _{CCO} – 300
2200
1500 | mV | | DIFFEREN | ITIAL INPUT DRIVEN SINGLE-ENDED (see Figure 5 | & 7) (Note 7) | | | | | | V _{IH} | Single-ended Input HIGH Voltage | | Vth + 100 | | V _{CC} | mV | | V _{IL} | Single-ended Input LOW Voltage | | GND | | Vth -100 | mV | | V _{th} | Input Threshold Reference Voltage Range (Note 8) | | 1100 | | V _{CC} – 100 | mV | | V _{ISE} | Single-ended Input Voltage Amplitude (V _{IH} - V _{IL}) | | 200 | | 2800 | mV | | VREFAC | | | | | | | | V _{REFAC} | Output Reference Voltage @100 μA for capacitor- co | oupled inputs, only | V _{CC} – 1325 | V _{CC} – 1125 | V _{CC} – 925 | mV | | DIFFEREN | NTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figure | e 6 & 8) (Note 9) | | | | | | V_{IHD} | Differential Input HIGH Voltage | | 1200 | | V _{CC} | mV | | V_{ILD} | Differential Input LOW Voltage | | 0 | | V _{IHD} – 100 | mV | | V_{ID} | Differential Input Voltage (V _{IHD} - V _{ILD}) | | 100 | | 1200 | mV | | V _{CMR} | Input Common Mode Range (Differential Configuratio (Figure 9) | n) (Note 10) | 1050 | | V _{CC} – 50 | mV | | I _{IH} | Input HIGH Current IN / IN, (VT Open) | | -150 | | 150 | uA | | I _{IL} | Input LOW Current IN / IN, (VT Open) | | -150 | | 150 | uA | | CONTROL | INPUTS (EQEN) | | | | | | | V _{IH} | Input HIGH Voltage for Control Pins | | V _{CC} x 0.65 | | V _{CC} | V | | V _{IL} | Input LOW Voltage for Control Pins | | GND | | V _{CC} x 0.35 | V | | I _{IH} | Input HIGH Current | | -150 | | 150 | μΑ | | I_{IL} | Input LOW Current | | -150 | | 150 | μΑ | | TERMINA | TION RESISTORS | | | | | | | R _{TIN} | Internal Input Termination Resistor | | 45 | 50 | 55 | Ω | | R _{TOUT} | Internal Output Termination Resistor | | 45 | 50 | 55 | Ω | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 5. Input parameters vary 1:1 with V $_{CC}$. Output parameters vary 1:1 with V $_{CCO}$. 6. CML outputs loaded with 50 Ω to V $_{CCO}$ for proper operation. - 7. Vth, V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously. - Vth, V_{IL}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously. Vth is applied to the complementary input when operating in single-ended mode. V_{IHD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously. - 10. V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the crosspoint side of the differential input signal. Table 6. AC CHARACTERISTICS V_{CC} = 2.375 V to 2.625 V; V_{CCO} = 1.71 V to 2.625 V; GND = 0 V; T_A = -40°C to 85°C (Note 11) | Symbol | Characteristic | | Min | Тур | Max | Unit | |--|--|--|-----|--|-----------------|----------------| | f _{MAX} | Maximum Input Clock Frequency; | $V_{OUT} \ge 200 \text{ mV}$ | 7 | 10 | | GHz | | f _{DATAMAX} | Maximum Operating Data Rate (PRBS23) | | 10 | 12 | | Gbps | | V _{OUTPP} | Output Voltage Amplitude, EQEN = 0 or 1 (Note 15) (See Figure 10) | f _{in} ≤7GHz | 200 | 400 | | mV | | t _{PLH} ,
t _{PHL} | Propagation Delay | IN to Q | 120 | 170 | 225 | ps | | t _{SKEW} | Duty Cycle Skew (Note 12)
Output – Output Within Device Skew
Device to Device Skew | | | 3 | 15
15
50 | ps | | t _{DC} | Output Clock Duty Cycle (Reference Duty Cycle = 5 | 0%) f _{in} ≤ 7GHz | 40 | 50 | 60 | % | | Φ_{N} | Phase Noise, fin = 1 GHz | 10 kHz
100 kHz
1 MHz
10 MHz
20 MHz
40 MHz | | -135
-137
-149
-150
-150
-151 | | dBc | | t _{ſΦN} | Integrated Phase Jitter f _{in} = 1 GHz, 12 kHz - 20 MH: Offset (RMS) | Z | | 50 | | fs | | UITTER | | $f_{in} \le 7 \text{ GHz}$ $f_{in} \le 10 \text{ Gb/s}$ $EN = 0 (\le 3^{\circ} \text{ FR4})$ $EN = 1 (12^{\circ} \text{ FR4})$ | | 0.2 | 0.8
10
10 | ps rms | | V _{INPP} | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 15) | QLIV = 1 (12 FM4) | 100 | | 1200 | ps pk-pk
mV | | t _r
t _f | Output Rise/Fall Times @ 1.0 GHz (20% - 80%) | Qx, Qx | 15 | 30 | 45 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{15.} Input and output voltage swings are single-ended measurements operating in a differential mode. Figure 3. CLOCK Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typical) ^{11.} Measured by forcing V_{INPP} 400mV from a 50% duty cycle clock source. All loading with an external R_L = 50 Ω to V_{CCO} . Input edge rates 40 ps (20% – 80%). ^{12.} Skew is measured between outputs under identical transitions and conditions @ 0.5 GHz. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+ @ 0.5 GHz. ^{13.} Additive RMS jitter with 50% duty cycle clock signal. ^{14.} Additive peak-to-peak data dependent jitter with input NRZ data at PRBS23. Figure 4. Input Structure Figure 5. Differential Input Driven Single-Ended Figure 6. Differential Inputs Driven Differentially Figure 7. V_{th} Diagram Figure 8. Differential Inputs Driven Differentially Figure 9. V_{CMR} Diagram Figure 10. AC Reference Measurement Figure 12. LVDS Interface Figure 13. Standard 50 Ω Load CML Interface Figure 14. Capacitor–Coupled Differential Interface (V_T Connected to V_{REFAC}) * $V_{\mbox{\scriptsize REFAC}}$ bypassed to ground with a 0.01 $\mu\mbox{\scriptsize F}$ capacitor Figure 15. Capacitor–Coupled Single–Ended Interface (V_T Connected to V_{REFAC}) Figure 16. Typical CML Output Structure and Termination Figure 17. Typical NB7HQ14M Equalizer Application and Interconnect with PRBS23 pattern at 6.5 Gbps, EQEN = 1 ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|---------------------|-----------------------| | NB7HQ14MMNG | QFN-16
(Pb-Free) | 123 Units / Rail | | NB7HQ14MMNHTBG | QFN-16
(Pb-Free) | 100 / Tape & Reel | | NB7HQ14MMNTXG | QFN-16
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### PACKAGE DIMENSIONS ### NOTES - DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED - PAD AS WELL AS THE TERMINALS. L_{max} CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 0.80 | 1.00 | | | A1 | 0.00 | 0.05 | | | АЗ | 0.20 | REF | | | b | 0.18 | 0.30 | | | D | 3.00 BSC | | | | D2 | 1.65 | 1.85 | | | Е | 3.00 BSC | | | | E2 | 1.65 | 1.85 | | | е | 0.50 BSC | | | | K | 0.18 TYP | | | | L | 0.30 | 0.50 | | | L1 | 0.00 | 0.15 | | ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative