

General Description

The MAX9830 mono 2W Class D amplifier provides Class AB audio performance with Class D efficiency.

Active emissions limiting edge rate and overshoot control circuitry greatly reduces EMI. A patented filterless spread-spectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These features reduce application component count.

The MAX9830's industry-leading 1.6mA at 5V, 1.2mA at 3.6V, quiescent current extends battery life in portable applications.

The MAX9830 is available in an 8-pin TDFN (2mm x 2mm x 0.8mm) and is specified over the extended -40°C to +85°C temperature range.

Applications

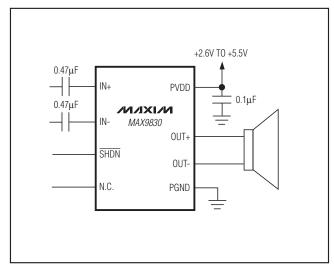
Notebook and Netbook Computers Cellular Phones MP3 Players Portable Audio Players

VoIP Phones

Features

- ♦ Industry-Leading Quiescent Current: 1.6mA at 5V, 1.2mA at 3.6V
- **♦** Spread Spectrum and Active Emissions Limiting
- ♦ Passes EMI Limit Unfiltered with Up to 24in (61cm) of Speaker Cable
- ♦ High 94dB PSRR at 217Hz
- ♦ Click-and-Pop Suppression
- **♦ Thermal and Overcurrent Protection**
- ♦ Low 0.5µA Current Shutdown Mode
- ◆ Space-Saving, 2mm x 2mm x 0.8mm, 8-Pin TDFN **Package**

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE		
MAX9830AETA+	-40°C to +85°C	8 TDFN-EP*		

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configuration

TOP VIEW PVDD OUT+ OUT- PGND 6 MAX9830 *EP 4 IN-SHDN N.C. **TDFN** 2mm x 2mm x 0.8mm *EP = EXPOSED PAD. CONNECT THE EP TO PGND TO ENHANCE THERMAL DISSIPATION.

Typical Operating Circuit

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

Voltage	
PVDD, IN+, IN-, SHDN, to PGND	0.3V to +6V
OUT+, OUT- to PGND0.3V to	
Current	
Continuous Current Into/Out of PVDD, PGND,	
OUT+, OUT	±600mA
Continuous Input Current (all other pins)	±20mA
Duration of Short Circuit Between	
OLIT AND PVDD PGND	Continuous

Continuous Power Dissipation for a Multi	layer Board
$(T_A = +70^{\circ}C)$	
8-Pin TDFN-EP (derate 11.9mW/°C)	953.5mW
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Rate of Voltage Rise at PVDD	1V/µs

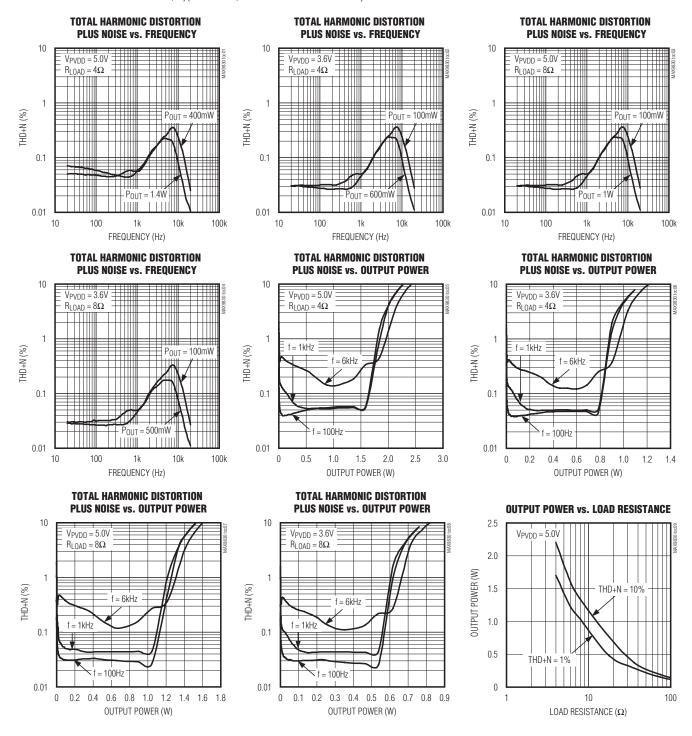
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{PVDD} = V_{\overline{SHDN}} = 5V, V_{PGND} = 0V, R_L = \infty$, unless otherwise specified. R_L connected between OUT+ and OUT-, AC measurement bandwidth 20Hz to 22kHz, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 1, 2)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS		
SPEAKER AMPLIFIER								
Voltage Range	PVDD	Inferred from PSRR	2.6		5.5	V		
Outine and Outine to Outine		$V_{PVDD} = 5.0V$			1.6	2.5	0	
Quiescent Supply Current	I _{DD}	$V_{PVDD} = 3.6V$			1.2		mA	
Shutdown Supply Current	ISHDN	$V_{\overline{SHDN}} = 0V, T_A = +$	25°C		0.5	10	μΑ	
Turn-On Time	ton				1.9	4	ms	
Bias Voltage	V _{BIAS}				1.31		V	
Maximum AC Input Valtage	Visi	Single ended			1		V _{RMS}	
Maximum AC Input Voltage	V _{IN}	Differential			2			
Input Resistance in Shutdown	Divion	Between inputs			85.6		kΩ	
input nesistance in Shutdown	RINSD	From inputs to PGND			43			
Input Resistance	RIN			12	20		kΩ	
Voltage Gain	Ay				12		dB	
Common-Mode Rejection Ratio	CMRR	f _{IN} = 1kHz, input referred			48		dB	
	PSRR	$V_{PVDD} = 2.6V \text{ to } 5.5V, T_A = +25^{\circ}C$		54	64.3		dB	
Power-Supply Rejection Ratio		PVDD _{RIPPLE} = 200mV _{P-P} (Note 3)	f _{RIPPLE} = 217Hz	94				
			f _{RIPPLE} = 20kHz		82			
Output Power	Dour	$THD+N = 10\%,$ $f_{IN} = 1kHz$	$R_L = 8\Omega$		1.5		W	
Output Fower	Pout		$R_L = 4\Omega$		2.25		VV	
Total Harmonic Distortion Plus Noise	THD+N	f _{IN} = 1kHz	$R_L = 8\Omega$, $P_{OUT} = 0.5W$		0.04		%	
Noise			$R_L = 4\Omega$, $P_{OUT} = 1W$		0.04		1	
Output Offset Voltage	Vos	T _A = +25°C			±3	±30	mV	
Click-and-Pop Level		Peak voltage, A-weighted, 32	Into shutdown		-56		- dBV	
	KCP	samples/sec (Notes 3, 4)	Out of shutdown		-56		ubv	

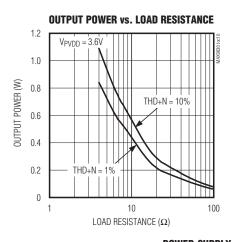
ELECTRICAL CHARACTERISTICS (continued)

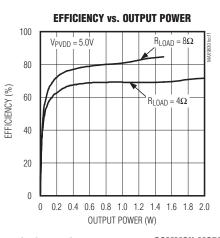

 $(V_{PVDD} = V_{\overline{SHDN}} = 5V, V_{PGND} = 0V, R_L = \infty, unless otherwise specified. R_L connected between OUT+ and OUT-, AC measurement bandwidth 20Hz to 22kHz, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 1, 2)$

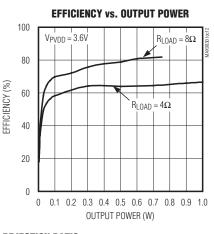
PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Oscillator Frequency	fosc		600	kHz	
Spread-Spectrum Bandwidth			±10		kHz
Noise	VN	A-weighted (Note 3)	39		μV _{RMS}
Signal-to-Noise Ratio	SNR	P_{OUT} = P_{OUT} at 1% THD+N, A-weighted R_L = 8Ω	98		dB
Output Current Limit	I _{LIM}	$T_A = +25$ °C	3		А
Thermal Shutdown Level			+180		°C
Thermal Shutdown Hysterysis			30		°C
Efficiency	η	$R_L = 8\Omega$, $P_{OUT} = 1.5W$	85		%
DIGITAL INPUT (SHDN)					
Input Voltage High	VIH		1.4		V
Input Voltage Low	V _{IL}			0.4	V
Input Leakage Current		T _A = +25°C		±10	μΑ

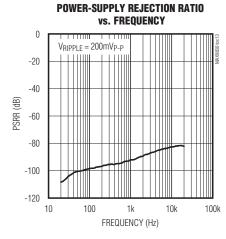
- Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.
- Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R_L = 4\Omega$, $L = 33\mu H$. For $R_L = 8\Omega$, $L = 68\mu H$.
- **Note 3:** Amplifier inputs AC-coupled to PGND with $C_{IN} = 0.47 \mu F$.
- Note 4: Specified at room temperature with an 8Ω resistive load in series with a 68μH inductive load connected across BTL outputs. Mode transitions are controlled by SHDN.

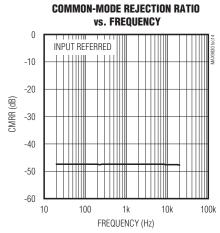
Typical Operating Characteristics

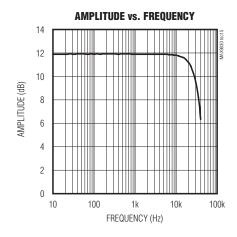

 $(V_{PVDD} = V_{\overline{S}\overline{HDN}} = 5.0V, V_{PGND} = 0V, R_L = \infty$, unless otherwise specified. R_L connected between OUT+ and OUT-, AC measurement bandwidth 20Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)

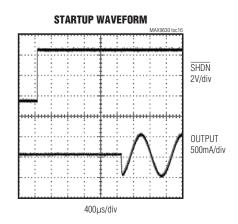


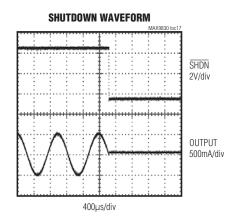

4 ______*N*|*X*|*N*|

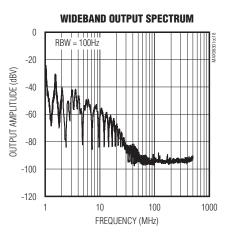

Typical Operating Characteristics (continued)

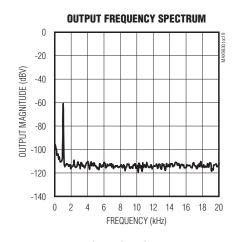

 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, R_L = \infty$, unless otherwise specified. R_L connected between OUT+ and OUT-, AC measurement bandwidth 20Hz to 22kHz, $T_A = +25^{\circ}C$, unless otherwise noted.)

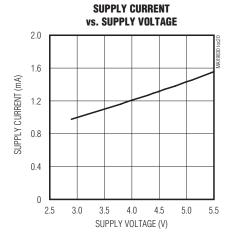


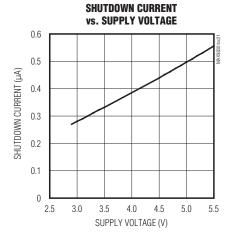


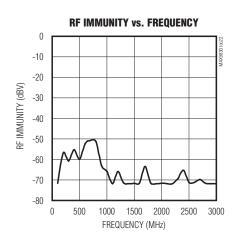







Typical Operating Characteristics (continued)


 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, R_L = \infty$, unless otherwise specified. R_L connected between OUT+ and OUT-, AC measurement bandwidth 20Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)



______*NIXI/*M

Pin Description

PIN	NAME	FUNCTION
1	IN+	Noninverting Audio Input
2	IN-	Inverting Audio Input
3	SHDN	Active-Low Shutdown Input. Drive SHDN low to place the device in shutdown mode.
4	N.C.	No Connection. Leave unconnected.
5	PGND	Ground
6	OUT-	Negative Speaker Output
7	OUT+	Positive Speaker Output
8	PVDD	Power Supply. Bypass PVDD to PGND with a 0.1µF capacitor.
_	EP	Exposed Pad. Connect exposed pad to a solid ground plane.

Detailed Description

The MAX9830 features industry-leading quiescent current, low-power shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.

The MAX9830 offers Class AB audio performance with Class D efficiency in a minimal board-space solution. The Class D amplifier features spread-spectrum modulation combined with edge rate and overshoot control circuitry that offers significant improvements to switch-mode amplifier radiated emissions.

The MAX9830 includes thermal overload and short-circuit protection.

Class D Speaker Amplifier

The MAX9830 filterless Class D amplifier offers much higher efficiency than Class AB amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromagnetic-interference (EMI) regulation standards. Maxim's patented active emissions limiting edge-rate control circuitry and spread-spectrum modulation reduces EMI emissions, while maintaining up to 85% efficiency.

Maxim's patented spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The MAX9830's spreadspectrum modulator randomly varies the switching

Figure 1. EMI with 24in of Speaker Cable

frequency by $\pm 10 \text{kHz}$ around the center frequency (600kHz). Above 10MHz, the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (1.8A typ), the MAX9830 disables the outputs for approximately 400 μ s. At the end of 400 μ s, the outputs are re-enabled. If the fault condition still exists, the MAX9830 continues to disable and re-enable the outputs until the fault condition is removed.

Shutdown

The MAX9830 features a low-power shutdown mode, drawing 0.5µA of supply current. Drive SHDN low to put the MAX9830 into shutdown.

Click-and-Pop Suppression

The MAX9830 speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

_Applications Information

Filterless Class D Operation

Traditional Class D amplifiers require an output filter. The filter adds cost, size, and decreases efficiency and THD+N performance. The MAX9830's filterless modulation scheme does not require an output filter.

Because the switching frequency of the MAX9830 is well beyond the bandwidth of most speakers, voice coil movement at the switching frequency is very small. Use a speaker with a series inductance > 10 μ H. Typical 8 Ω speakers exhibit series inductances in the 20 μ H to 100 μ H range.

Component Selection

Optional Ferrite Bead Filter

Although not normally needed, in applications where speaker leads exceed 24in at VPVDD = 3V, use a filter constructed from an inexpensive ferrite bead and a small-value capacitor to ground (Figure 2) to provide additional EMI suppression. Use a ferrite bead with low DC resistance, high frequency (\geq 1MHz) impedance of 100 Ω to 600 Ω , and rated for at least 1A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select the capacitor value based on EMI performance.

Speaker Amplifier Power Supply Input (PVDD)

PVDD powers the speaker amplifier. PVDD ranges from 2.6V to 5.5V. Bypass PVDD with a $0.1\mu F$ capacitor to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used. Ensure a rate of voltage rise at PVDD is limited to $1V/\mu s$.

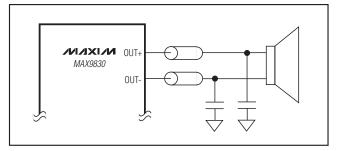


Figure 2. Optional Ferrite Bead Filter

Input Filtering

The input-coupling capacitor (C_{IN}), in conjunction with the amplifier's internal input resistance (R_{IN}), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level. Select $0.47\mu F$ capacitors for optimum click-and-pop performance and $17Hz f_{-3dB}$.

If a different f-3dB is required, C_{IN}, assuming zero-source-impedance, is:

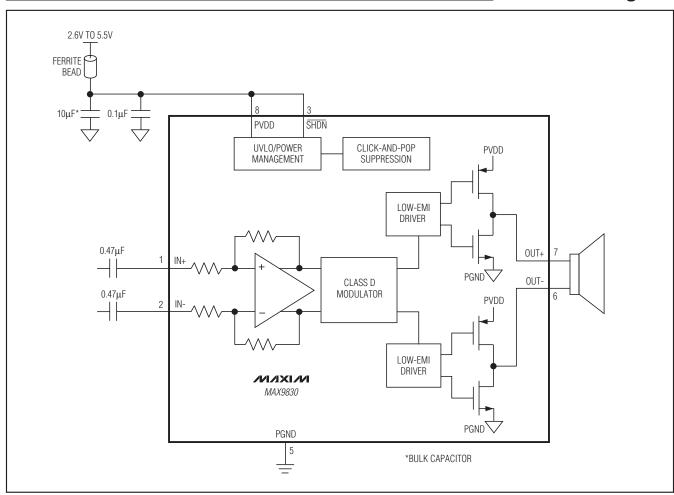
$$C_{IN} = \frac{8}{f_{-3dB}} [\mu F]$$

Use capacitors with adequately low voltage-coefficient for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.

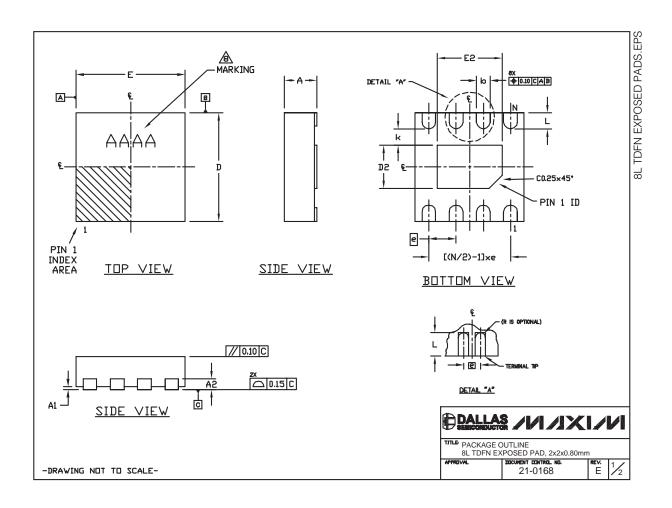
Use wide, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4Ω load through a $100m\Omega$ trace, 49mW is consumed in the trace. If power is delivered through a $10m\Omega$ trace, only 5mW is consumed in the trace. Wide output, supply and ground traces also improve the power dissipation of the device.


The MAX9830 is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top and bottom PCB planes.

The MAX9830 TDFN package features an exposed thermal pad on its underside. This pad lowers the package's thermal resistance by providing a heat conduction path from the die to the PCB. Connect the exposed thermal pad to the ground plane by using a large pad and multiple vias.

Chip Information

PROCESS: CMOS


_Functional Diagram

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 TDFN-EP	T822+2	<u>21-0168</u>

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

COMMON DIMENSIONS					
SYMBOL	MIN.	MAX.			
Α	0.70	0.80			
D	1.90 2.10				
Е	1.90	2.10			
A1	0.00	0.05			
L	0.20 0.40				
k	0.25 MIN.				
A2	0.20 REF.				

PACKAGE VARIATIONS							
PKG. CODE	N	D2	E2	е	b	r	[(N/2)-1] x e
T822-1	8	0.70±0.10	1.30±0.10	0.50 TYP.	0.25±0.05	0.125	1.50 REF
T822-2	8	0.80±0.10	1.20±0.10	0.50 TYP.	0.25±0.05	0.125	1.50 REF

NOTES

- 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
- 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08mm.
- 3. WARPAGE SHALL NOT EXCEED 0.08mm.
- 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
- 5. COMPLY TO JEDEC MO229 EXCEPT D2 AND E2 DIMENSIONS.
- 6. "N" IS THE TOTAL NUMBER OF LEADS.
- 7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- ⚠ MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 9. ALL DIMENSIONS APPLY TO BOTH LEADED AND PHEREE PARTS.

TITLE PACKAGE OUTLINE
8L TOFN EXPOSED PAD, 2x2x0.80mm

APPROVAL

1000-10011100.1001. REV. 2/2

-DRAWING NOT TO SCALE-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

_ 11

© 2009 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.