AMXIN
 High-Current VCOM Drive Op Amps for TFT LCDs

General Description

The MAX9650/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX9650/MAX9651 can drive up to 1300mA of peak current per channel and operate up to 20V.
The MAX9650/MAX9651 are designed to source and sink a high current quickly to hold the VCOM voltage stable in large TFT-LCD panels.
The MAX9650/MAX9651 feature 40V/ μ s slew rate and 35 MHz bandwidth to quickly settle outputs for 120 Hz frame rate and full HD television.
The MAX9650/MAX9651 feature output short-circuit protection and thermal shutdown. These devices are available in exposed pad packages for excellent heat dissipation.

Applications
TFT-LCD Panels
Instrument Control Voltage Sources
\qquad Features

- 1300mA Peak Output Current
- Rail-to-Rail Inputs and Outputs
- Operates Up to 20V
- 35V/ μ s Slew Rate
- 35MHz Bandwidth
- 5mA Quiescent Current per Channel
- Excellent Heat Dissipation (Exposed Pad)

Ordering Information

PART	AMPS PER PACKAGE	PIN- PACKAGE	TOP MARK
MAX9650AZK +	1	5 SOT23	ADSI
MAX9650AUA+	1	$8 \mu \mathrm{MAX}-\mathrm{EP}^{*}$	AABI
MAX9651AUA +	2	$8 \mu \mathrm{MAX}-\mathrm{EP}^{\star}$	AABH

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating range.
+Denotes a lead-free/RoHS-compliant package.
*EP = Exposed pad.
Typical Operating Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

High-Current VCOM Drive Op Amps for TFT LCDs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to GND) \qquad -0.3 V to +22 V
Any Other Pin to GND \qquad 0.3 V to ($\mathrm{V} \mathrm{VD}+0.3 \mathrm{~V}$)

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SOT23 (derate $3.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
.......297.4mW
8 -Pin μ MAX-EP (derate $12.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .1030 .9 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=19 \mathrm{~V}, \mathrm{~V}_{G N D}=0, \mathrm{~V}_{C M}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR		6		20	V
Quiescent Current	IDD	Per channel			3.7	8	mA
High Output Voltage	VOH	$\mathrm{I}_{\mathrm{H}}=+5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		$\begin{gathered} \text { VDD - } \\ 0.30 \end{gathered}$	$\begin{gathered} \text { VDD - } \\ 0.05 \end{gathered}$		V
Low Output Voltage	VOL	L = $=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0$			0.05	0.30	V
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-14	3.5	+14	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		-17		+17	
Load Regulation	LR	IOUT $=0$ to -80 mA			+0.2		$\mathrm{mV} / \mathrm{mA}$
		IOUT $=0$ to +80 mA			-0.2		
Input Bias Current	IfB	At $\mathrm{V}_{\text {IN }}=9.5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
Voltage Gain	Av	$\mathrm{AV}^{2}=1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$		0.99		1.01	V/V
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$ to 20V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$		70	95		dB
Common-Mode Input Voltage Range	CMVR	Inferred from CMRR test		0.5		$\begin{gathered} V_{D D}- \\ 0.5 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		60	80		dB
Continuous Output Current	Io	$\text { VOUT }=9.5 \mathrm{~V}$ (Note 2)	MAX9650AZK+	20			mA
			MAX965_AUA+	80			
Transient Peak Output Current	IPK	(Note 3)			± 1.3		A
Bandwidth	BW	-3dB			35		MHz
Slew Rate	SR	4 V step, $\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$			40		V/us
Settling Time	ts	Settling to 0.1% of Vout, IL = 0 to 1000 mA , $R S=2.2 \Omega, C S=0.1 \mu F$ (Figure 1)			2.0		$\mu \mathrm{s}$

High-Current VCOM Drive Op Amps for TFT LCDs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=19 \mathrm{~V}, \mathrm{~V}_{G N D}=0, \mathrm{~V}_{C M}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
MAX	UNITS			
Moximum Load Capacitance	CLOAD	(Note 4)	150	nF
Inverting Input Resistance	RIN+	(Note 5)	100	$\mathrm{M} \Omega$
Input Capacitance	CIN	(Note 5)		100
Thermal Shutdown			3	$\mathrm{M} \Omega$
Thermal Shutdown Hysteresis			+170	${ }^{\circ} \mathrm{C}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Continuous output current is tested with one output at a time.
Note 3: See the Thermal Shutdown with Temperature Hysteresis section
Note 4: A series resistor can extend load capacitance range. The settling time can be optimized by a small series resistance. See the Applications Information section for more information.

Typical Operating Characteristics

$\left(V_{D D}=19 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{C M}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$

High-Current VCOM Drive Op Amps for TFT LCDs

Typical Operating Characteristics (continued)
$\left(V_{D D}=19 \mathrm{~V}, G N D=0, V_{C M}=V_{O U T}=V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$

CLOSED-LOOP SMALL-SIGNAL FREQUENCY RESPONSE FOR VARIOUS CL

SMALL-SIGNAL GAIN
vs. FREQUENCY

OPEN-LOOP GAIN AND PHASE
vs. FREQUENCY

SMALL-SIGNAL GAIN vs. FREQUENCY WITH VARIOUS Cl

High-Current VCOM Drive Op Amps for TFT LCDs

Pin Description

PIN			NAME	FUNCTION
SOT23	$\boldsymbol{\mu M A X}$	MAX9651		
1	6		OUTA	VCOM Output A
2	4	4	GND	Ground
3	3	3	INA+	Positive Input A
4	2	2	INA-	Negative Input A
5	7	8	VDD	Positive-Supply Input. Bypass VDD to GND with a 0.1 μ F capacitor as close as possible to the device.
-	-	5	INB+	Positive Input B
-	-	6	INB-	Negative Input B
-	-	7	OUTB	VCOM Output B
-	$1,5,8$	-	N.C.	No Connection. Not internally connected.
-	-	-	EP	Exposed Pad. EP is internally connected to GND. Connect EP to GND.

Detailed Description

The MAX9650/MAX9651 operational rail-to-rail input/output amplifiers hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (1.3A) into a capacitive load such as the backplane of a TFT-LCD panel.

Thermal Shutdown

 with Temperature HysteresisThe MAX9650/MAX9651 are capable of high output currents and feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches $+170^{\circ} \mathrm{C}$, the device shuts down. When the die cools down by $15^{\circ} \mathrm{C}$, the device turns on again. In a TFT-LCD application, the duty cycle is very low. Even with high values of voltage and current, the power dissipation is low and the chip does not shut down.

Applications Information

Output Load

The MAX9650/MAX9651 are designed to drive capacitive loads. A small value of series resistance improves the performance of the device to ensure stability and fast settling with very large or very small capacitive loads. In many cases, this resistance is already present due to connection resistance in the wiring and no additional physical resistor is necessary.

${ }^{*} 10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ CAPACITORS AS CLOSE AS POSSIBLE TO THE PIN. ${ }^{* *}\left(\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{GE}}\right) \times \mathrm{C}_{\mathrm{LCD}} \times 6<2 \mu \mathrm{~s}$, WHERE R $\mathrm{GEN}=$ GENERATOR SOURCE IMPEDANCE.

Figure 1. Settling Time Test Circuit

Power Supplies and Bypass Capacitors
The MAX9650/MAX9651 operate from a 9V to 20V single supply or from $\pm 4.5 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ dual supplies. Proper supply bypassing ensures stability while driving high transient loads. The MAX9650/MAX9651 require a minimum $10 \mu \mathrm{~F}(\mathrm{C} 1)$ and $0.1 \mu \mathrm{~F}(\mathrm{C} 2)$ power-supply bypass capacitors placed as close as possible to the power-supply pin

High-Current VCOM Drive Op Amps for TFT LCDs

(VDD). See Figure 2. For dual-supply operation, use 10uF and $0.1 \mu \mathrm{~F}$ bypass capacitors on both supplies (VDD and GND) with each capacitor placed as close as possible to VDD and GND.

Layout and Grounding

The exposed pad on the $\mu \mathrm{MAX}$ package provides a low thermal resistance for heat dissipation. Solder the exposed pad to a ground plane for best thermal performance. Do not route traces under these packages. For dual-supply operation, the exposed pad (EP) can be electrically connected to the negative supply or it can be left unconnected.

Chip Information
PROCESS: BICMOS

${ }^{*} 10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ CAPACITORS AS CLOSE AS POSSIBLE TO THE PIN.
${ }^{* *} \mathrm{R}_{S}$ MAY BE NEEDED FOR SOME APPLICATIONS.

Figure 2. Typical TFT-LCD Backplane Drive Circuit

High-Current VCOM Drive Op Amps for TFT LCDs

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Current VCOM Drive Op Amps for TFT LCDs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Current VCOM Drive Op Amps for TFT LCDs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

