10-Bit Bus LVDS Serializers

General Description

The MAX9205/MAX9207 serializers transform 10-bitwide parallel LVCMOS/LVTTL data into a serial highspeed bus low-voltage differential signaling (LVDS) data stream. The serializers typically pair with deserializers like the MAX9206*/MAX9208*, which receive the serial output and transform it back to 10-bit-wide parallel data.
The MAX9205/MAX9207 transmit serial data at speeds up to 400Mbps and 660Mbps, respectively, over PC board traces or twisted-pair cables. Since the clock is recovered from the serial data stream, clock-to-data and data-to-data skew that would be present with a parallel bus are eliminated.
The serializers require no external components and few control signals. The input data strobe edge is selected by TCLK_R/F. $\overline{\text { PWRDN }}$ is used to save power when the devices are not in use. Upon power-up, a synchronization mode is activated, which is controlled by two SYNC inputs, SYNC1 and SYNC2.
The MAX9205 can lock to a 16 MHz to 40 MHz system clock, while the MAX9207 can lock to a 40 MHz to 66 MHz system clock. The serializer output is held in high impedance until the device is fully locked to the local system clock, or when the device is in powerdown mode.
Both the devices operate from a single +3.3 V supply, are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and are available in 28 -pin SSOP packages.

Applications

Cellular Phone Base
Stations
Add Drop Muxes
Digital Cross-Connects

DSLAMs
Network Switches and Routers
Backplane Interconnect

Features

- Standalone Serializer (vs. SERDES) Ideal for Unidirectional Links
- Framing Bits for Deserializer Resync Allow Hot Insertion Without System Interruption
- LVDS Serial Output Rated for Point-to-Point and Bus Applications
- Wide Reference Clock Input Range 16MHz to 40MHz (MAX9205) 40MHz to 66MHz (MAX9207)
- Low 140ps (pk-pk) Deterministic Jitter (MAX9207)
- Low 34mA Supply Current (MAX9205)
- 10-Bit Parallel LVCMOS/LVTTL Interface
- Up to 660Mbps Payload Data Rate (MAX9207)
- Programmable Active Edge on Input Latch
- Pin-Compatible Upgrades to DS92LV1021 and DS92LV1023

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	REF CLOCK RANGE (MHz)
MAX9205EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP	16 to 40
MAX9207EAl	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP	40 to 66

Pin Configuration and Functional Diagram appear at end of data sheet.

Typical Application Circuit

*Future product-contact factory for availability.

10-Bit Bus LVDS Serializers

ABSOLUTE MAXIMUM RATINGS
VCc to GND ...-0.3V to +4.0V IN_, SYNC1, SYNC2, EN, TCLK_R/F, TCLK,
$\overline{P W R D N}$ to GND.
\qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ OUT+, OUT- to GND
\qquad
-0.3 V to +4.0 V
Output Short-Circuit Duration
\qquad ..Continuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 28-Pin SSOP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 762 mW

Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature .. $150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
ESD Protection (Human Body Model, OUT+, OUT-) $\pm 8 \mathrm{kV}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%$ or $50 \Omega \pm 1 \%, \mathrm{CL}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LVCMOS/LVTLL LOGIC INPUTS (IN0 TO IN9, EN, SYNC1, SYNC2, TCLK, TCLK_R/F/, PWRDN)							
High-Level Input Voltage	V_{IH}			2.0		VCC	V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$			GND		0.8	V
Input Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$		-20		+20	$\mu \mathrm{A}$
BUS LVDS OUTPUTS (OUT+, OUT-)							
Differential Output Voltage	VOD	Figure 1	$\mathrm{R}_{\mathrm{L}}=27 \Omega$	200	286	400	mV
			RL $=50 \Omega$	250	460	600	mV
Change in Vod Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1			1	35	mV
Output Offset Voltage	Vos	Figure 1		0.9	1.15	1.3	V
Change in Vos Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 1			3	35	mV
Output Short-Circuit Current	los	$\begin{aligned} & \text { OUT }+ \text { or OUT- = 0, } \\ & \text { INO to IN9 = PWRDN }=E N=\text { high } \end{aligned}$			-13	-15	mA
Output High-Impedance Current	loz	$\begin{aligned} & \overline{\text { PWRDN }} \text { or EN }=0.8 \mathrm{~V}, \\ & \text { OUT+ or OUT- }=0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10		+10	$\mu \mathrm{A}$
Power-Off Output Current	Iox	$\mathrm{V}_{\text {CC }}=0, \mathrm{OUT}+$ or OUT- $=0$ or 3.6V		-10		+10	$\mu \mathrm{A}$

POWER SUPPLY

Supply Current	Icc	$R L=27 \Omega$ or 50Ω worst-case pattern (Figures 2, 4)	MAX9205	16MHz	23	35	mA
				40 MHz	34	45	
			MAX9207	40 MHz	32	50	
				66 MHz	45	60	
Power-Down Supply Current	Iccx	$\overline{\text { PWRDN }}=$ low				8	mA

10-Bit Bus LVDS Serializers

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%$ or $50 \Omega \pm 1 \%, \mathrm{CL}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 2, 4)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
TRANSMIT CLOCK (TCLK) TIMING REQUIREMENTS							
TCLK Center Frequency	ftccF		MAX9205	16		40	MHz
			MAX9207	40		66	MHz
TCLK Frequency Variation	TCFV			-200		200	ppm
TCLK Period	tTCP		MAX9205	25		62.5	ns
			MAX9207	15.15		25	
TCLK Duty Cycle	TCDC			40		60	\%
TCLK Input Transition Time	tCLKT	Figure 3			3	6	ns
TCLK Input Jitter	tJIT					150	ps (RMS)

Low-to-High Transition Time	tLHT	Figure 4	$\mathrm{R}_{\mathrm{L}}=27 \Omega$	150	300	400	ps
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	150	350	500	
High-to-Low Transition Time	thLT	Figure 4	$R \mathrm{~L}=27 \Omega$	150	300	400	ps
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	150	350	500	
IN_ Setup to TCLK	ts	Figure 5		1			ns
IN_ Hold from TCLK	th	Figure 5		3			ns
OUTPUT High State to HighImpedance Delay	thZ	Figures 6, 7			4.5	10	ns
OUTPUT Low State to HighImpedance Delay	tLZ	Figures 6, 7			4.5	10	ns
OUTPUT High Impedance to High-State Delay	tzH	Figures 6, 7			4.5	10	ns
OUTPUT High Impedance to Low-State Delay	tzL	Figures 6, 7			4.5	10	ns
SYNC Pulse Width	tSPW			$6 \times$ ttcP			ns
PLL Lock Time	tpL	Figure 7		$\begin{gathered} 2048 x \\ \text { tTCP } \end{gathered}$		$\begin{gathered} 2049 \times \\ \text { tTCP } \end{gathered}$	ns
Bus LVDS Bit Width	tBIT			tTCP / 12			ns
Serializer Delay	tSD	Figure 8		ttcp/ 6		$\begin{gathered} (\mathrm{tTCP} / 6) \\ +5 \end{gathered}$	ns

10-Bit Bus LVDS Serializers

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%$ or $50 \Omega \pm 1 \%, \mathrm{CL}=10 \mathrm{FF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 2, 4)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Deterministic Jitter (Figure 9)	tDJIT	MAX0205	16 MHz		200	$\begin{gathered} \mathrm{ps} \\ \text { (pk-pk) } \end{gathered}$
		MAXJ205	40 MHz		140	
		MAX9207	40 MHz		140	
			66MHz		140	
Random Jitter (Figure 10)	truIt	MAX9205	16 MHz		13	ps (RMS)
			40 MHz		9	
		MAX9207	40 MHz		9	
			66 MHz		6	

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except $\mathrm{V}_{\text {OD }}, \Delta \mathrm{V}_{\text {OD }}$, and $\mathrm{V}_{\text {OS }}$.
Note 2: C_{L} includes scope probe and test jig capacitance.
Note 3: Parameters 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over operating temperature range guaranteed by design and characterization. Note 4: AC parameters are guaranteed by design and characterization.

Typical Operating Characteristics
$\left(V_{C C}=+3.3 \mathrm{~V}, R_{L}=27 \Omega, C_{L}=10 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

WORST-CASE PATTERN SUPPLY CURRENT
vs. SUPPLY VOLTAGE

10-Bit Bus LVDS Serializers

PIN	NAME	FUNCTION
1, 2	SYNC 1, SYNC 2	LVCMOS/LVTTL Logic Inputs. The two SYNC pins are ORed. When at least one of the two pins are asserted high for at least six cycles of TCLK, the serializer initiates a transmission of 1024 SYNC patterns. If held high after 1024 SYNC patterns have been transmitted, SYNC patterns continue to be sent until the SYNC pin is asserted low. Toggling a SYNC pin after six TCLK cycles high and before 1024 SYNC patterns have been transmitted does not affect the output of the 1024 SYNC patterns.
3-12	IN0-IN9	LVCMOS/LVTTL Data Inputs. Data is loaded into a 10-bit latch by the selected TCLK edge.
13	TCLK_R/历	LVCMOS/LVTTL Logic Input. High selects a TCLK rising-edge data strobe. Low selects a TCLK falling-edge data strobe.
14	TCLK	LVCMOS/LVTTL Reference Clock Input. The MAX9205 accepts a 16 MHz to 40 MHz clock. The MAX9207 accepts a 40MHz to 66MHz clock. TCLK provides a frequency reference to the PLL and strobes parallel data into the input latch.
15, 16	DGND	Digital Circuit Ground. Connect to ground plane.
17, 26	AVCC	Analog Circuit Power Supply (Includes PLL). Bypass AVcc to ground with a $0.1 \mu \mathrm{~F}$ capacitor and a $0.001 \mu \mathrm{~F}$ capacitor. Place the $0.001 \mu \mathrm{~F}$ capacitor closest to $\mathrm{AV}_{\mathrm{CC}}$.
$\begin{aligned} & \hline 18,20, \\ & 23,25 \end{aligned}$	AGND	Analog Circuit Ground. Connect to ground plane.
19	EN	LVCMOS/LVTTL Logic Input. High enables serial data output. Low puts the bus LVDS output into high impedance.
21	OUT-	Inverting Bus LVDS Differential Output
22	OUT+	Noninverting Bus LVDS Differential Output
24	$\overline{\text { PWRDN }}$	LVCMOS/LVTTL Logic Input. Low puts the device into power-down mode and the output into high impedance.
27, 28	DVCC	Digital Circuit Power Supply. Bypass DVCC to ground with a 0.1μ F capacitor and a $0.001 \mu \mathrm{~F}$ capacitor. Place the $0.001 \mu \mathrm{~F}$ capacitor closest to DVCc.

Detailed Description

The MAX9205/MAX9207 are 10-bit serializers designed to transmit data over balanced media that may be a standard twisted-pair cable or PC board traces at 160 Mbps to 660Mbps. The interface may be doubleterminated point-to-point or a heavily loaded multipoint bus. The characteristic impedance of the media and connected devices can range from 100Ω for a point-topoint interface to 54Ω for a heavily loaded multipoint bus. A double-terminated point-to-point interface uses a 100 -termination resistor at each end of the interface, resulting in a load of 50Ω. A heavily loaded multipoint bus requires a termination as low as 54Ω at each end of the bus, resulting in a termination load of 27Ω. The serializer requires a deserializer such as the MAX9206/MAX9208 for a complete data transmission application.

A high-state start bit and a low-state stop bit, added internally, frame the 10-bit parallel input data and ensure a transition in the serial data stream. Therefore, 12 serial bits are transmitted for each 10-bit parallel input. The MAX9205 accepts a 16 MHz to 40 MHz reference clock, producing a serial data rate of 192Mbps (12 bits $\times 16 \mathrm{MHz}$) to 480 Mbps (12 bits $\times 40 \mathrm{MHz}$). The MAX9207 accepts a 40 MHz to 66 MHz reference clock, producing 480 Mbps to 792 Mbps . However, since only 10 bits are from input data, the actual throughput is 10 times the TCLK frequency.
To transmit data, the serializers sequence through three modes: initialization mode, synchronization mode, and data transmission mode.

10-Bit Bus LVDS Serializers

Initialization Mode

When VCC is applied, the outputs are held in high impedance and internal circuitry is disabled by on-chip power-on-reset circuitry. When Vcc reaches 2.35V, the PLL starts to lock to a local reference clock (16 MHz to 40 MHz for MAX9205 and 40 MHz to 66 MHz for MAX9207). The reference clock, TCLK, is provided by the system. A serializer locks within 2049 cycles of TCLK. Once locked, a serializer is ready to send data or SYNC patterns depending on the levels of SYNC 1 and SYNC 2.

Synchronization Mode

To rapidly synchronize with a deserializer, SYNC patterns can be sent. A SYNC pattern is six consecutive ones followed by six consecutive zeros repeating every TCLK period. When one or both SYNC inputs are asserted high for at least six cycles of TCLK, the serializer will initiate the transmission of 1024 SYNC patterns. The serializer will continue to send SYNC patterns if either of the SYNC input pins remains high. Toggling one SYNC input with the other SYNC input low before 1024 SYNC patterns are output does not interrupt the output of the 1024 SYNC patterns.

Data Transmission Mode

 After initialization, both SYNC input pins must be set low by users or through a control signal from the deserializer before data transmission begins. Provided that SYNC inputs are low, input data at INO-9 are clocked into the serializer by the TCLK input. Setting TCLK_R/F high selects the rising edge of TCLK for data strobe and low selects the falling edge. If either of the SYNC inputs goes high for six TCLK cycles at any time duringdata transmission, the data at INO-9 are ignored and SYNC patterns are sent for at least 1024 TCLK cycles.
A start bit high and a stop bit low frame the 10-bit data and function as the embedded clock edge in the serial data stream. The serial rate is the TCLK frequency times the data and appended bits. For example, if TCLK is 40 MHz , the serial rate is $40 \times 12(10+2$ bits $)=$ 480 Mbps . Since only 10 bits are from input data, the payload rate is $40 \times 10=400 \mathrm{Mbps}$.

Power-Down
Power-down mode is entered when the PWRDN pin is driven low. In power-down mode, the PLL of the serializer is stopped and the outputs (OUT+ and OUT-) are in high impedance, disabling drive current and also reducing supply current. When PWRDN is driven high, the serializer must reinitialize and resynchronize before data can be transferred.

High-Impedance State

The serializer output pins (OUT+ and OUT-) are held in high impedance when $V_{C C}$ is first applied and while the PLL is locking to the local reference clock. Setting EN or PWRDN low puts the device in high impedance. After initialization, EN functions asynchronously. For example, the serializer output can be put into high impedance while SYNC patterns are being sent without affecting the internal timing of the SYNC pattern generation. However, if the serializer goes into high impedance, a deserializer loses PLL lock and needs to resynchronize before data transfer can resume.

Table 1. Input /Output Function Table

INPUTS				OUTPUTS
EN	PWRDN	SYNC 1	SYNC 2	OUT+, OUT-
H	H	When either or both SYNC 1 and SYNC 2 are held high for at least six TCLK cycles	Synchronization Mode. SYNC patterns of six 1s and six 0s are transmitted every TCLK cycle for at least 1024 TCLK cycles. Data at INO-9 are ignored.	
H	H	L	L	Data Transmission Mode. INO-9 and 2 frame bits are transmitted every TCLK cycle.
X	L	X	X	Output in high-impedance.
L	X	X	X	

X = Don't care

10-Bit Bus LVDS Serializers

Applications Information

Power-Supply Bypassing

Bypass AVCC with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to AVCc. Bypass DVCc with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to DVCC.

Differential Traces and Termination
Output trace characteristics affect the performance of the MAX9205/MAX9207. Use controlled-impedance media and terminate at both ends of the transmission line in the media's characteristic impedance. Termination with a single resistor at the end of a point-to-point link typically provides acceptable performance. However, the MAX9205/MAX9207 output levels are specified for double-terminated point-to-point and multipoint applications. With a single 100Ω termination, the output swing is larger.

Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by a differential receiver.
Eliminate reflections and ensure that noise couples as common mode by running the differential traces close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.
The differential output signals should be routed close to each other to cancel their external magnetic field. Maintain a constant distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90° turns and minimize the number of vias to further prevent impedance discontinuities.

Figure 2. Worst-Case Icc Test Pattern

Figure 1. Output Voltage Definitions

Figure 3. Input Clock Transition Time Requirement

10-Bit Bus LVDS Serializers

Figure 4. Output Load and Transition Times

TIMING SHOWN FOR TCLK_R/ $\bar{F}=$ LOW
Figure 5. Data Input Setup and Hold Times

Figure 6. High-Impedance Test Circuit and Timing

10-Bit Bus LVDS Serializers

Figure 7. PLL Lock Time and $\overline{\text { PWRDN }}$ High-Impedance Delays

Figure 8. Serializer Delay

Figure 9. Definition of Deterministic Jitter (tDJIT)

Figure 10. Definition of Random Jitter (tRJIT)

10-Bit Bus LVDS Serializers

Topologies

The serializers can operate in a variety of topologies. Examples of double-terminated point-to-point, multidrop, point-to-point broadcast, and multipoint topologies are shown in Figures 11 through 14. Use 1\% surface-mount termination resistors.
A point-to-point connection terminated at each end in the characteristic impedance of the cable or PC board traces is shown in Figure 11. The total load seen by the serializer is 50Ω. The double termination typically
reduces reflections compared to a single 100Ω termination. A single 100Ω termination at the deserializer input is feasible and will make the differential signal swing larger.
A serializer located at one end of a backplane bus driving multiple deserializers in a multidrop configuration is shown in Figure 12. A 54Ω resistor at the far end terminates the bus. This topology allows "broadcast" of data with a minimum of interconnect.

Figure 11. Double-Terminated Point-to-Point

Figure 12. Multidrop

10-Bit Bus LVDS Serializers

A point-to-point version of the multidrop bus is shown in Figure 13. The low-jitter MAX9150 10-port repeater is used to reproduce and transmit the serializer output over 10 double-terminated point-to-point links. Compared to the multidrop bus, more interconnect is traded for more robust hot-plug capability.
The repeater eliminates nine serializers compared to 10 individual point-to-point serializer-to-deserializer connections. Since repeater jitter subtracts from the serial-izer-deserializer timing margin, a low-jitter repeater is essential in most high data rate applications.
Multiple serializers and deserializers bused over a differential serial connection on a backplane are shown in Figure 14. The second serializer can be a backup to
the primary serializer. The typical close spacing (1in or less) of cards on a backplane reduces the characteristic impedance by as much as half the initial, unloaded value. Termination resistors that match the loaded characteristic impedance are required at each end of the bus. The total loaded seen by the serializer is 27Ω in this case.

Board Layout
For bus LVDS applications, a four-layer PC board that provides separate power, ground, and input/output signals is recommended. Separate LVTTL/LVCMOS and bus LVDS signals from each other to prevent coupling into the bus LVDS lines.

Figure 13. Point-to-Point Broadcast Using MAX9150 Repeater

10-Bit Bus LVDS Serializers

Figure 14. Multipoint

Pin Configuration

Functional Diagram

Chip Information
TRANSISTOR COUNT: 3036 PROCESS: CMOS

10-Bit Bus LVDS Serializers

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

