Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

General Description

The MAX9178 quad low-voltage differential signaling (LVDS) line driver with high-ESD tolerance is ideal for applications requiring high data rates and low power with reduced noise. The MAX9178 is guaranteed to transmit data at speeds up to 400Mbps (200MHz) over controlled impedance of media of approximately 100Ω. The transmission media can be printed circuit (PC) board traces, backplanes, or cables.
The MAX9178 accepts four LVTTL/LVCMOS inputs and translates them to LVDS output signals. All inputs tolerate overshoot of VCC +1 V and undershoot of -1 V . The EN and EN inputs are ANDed together and control the high-impedance outputs. When the device is disabled, power drops to ultra-low 12.6 mW (typ). Outputs conform to the ANSI TIA/EIA-644 LVDS standard.
The MAX9178 operates from a single +3.3 V supply, and is available in a 16-pin TSSOP and 16-pin thin QFN package with exposed pad. The MAX9178 is specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications

Digital Copiers
Laser Printers
Cell Phone Base
Stations
Add/Drop Muxes
Digital Cross-Connects

DSLAMs
Network
Switches/Routers
Backplane
Interconnect
Clock Distribution

Functional Diagram appears at end of data sheet.

Pin Configurations

- Flow-Through Pinout

Simplifies PC Board Layout
Reduces Crosstalk

- Pin Compatible with DS90LV047A and MAX9123
- Guaranteed 400Mbps Data Rate
- Single-Ended Inputs Tolerate 1V Overshoot/Undershoot
- 250ps Maximum Pulse Skew
- IEC 61000-4-2 Level 4 ESD Tolerance on LVDS Outputs
- Conforms to ANSI TIA/EIA-644 LVDS Standard
- Single +3.3V Supply

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9178EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX9178ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP

${ }^{*} E P=$ Exposed pad.
Typical Application Circuit

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

ABSOLUTE MAXIMUM RATINGS

VCc to GND
\qquad-0.3V to +4.0 V
$\mathrm{IN}_{\mathrm{N}}, \mathrm{EN}, \overline{\mathrm{EN}}$ to GND.
\qquad -1.4 V to (VCC +1.4 V)
OUT_ to GND
.-0.3 V to +4.0 V
Short-Circuit Duration (OUT_)
...Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin TSSOP (derate $9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
$16-$ Pin QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots1349 \mathrm{~mW}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature .
$+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{~N}=$ high or low, $\mathrm{EN}=$ high, $\overline{\mathrm{EN}}=10 w, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ $+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LVDS OUTPUTS (OUT_+, OUT_-)						
Differential Output Voltage	VOD	Figure 1	250	368	450	mV
Change in Magnitude of V_{OD} Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1		0.3	25	mV
Offset Voltage	Vos	Figure 1	1.125	1.28	1.375	V
Change in Magnitude of VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 1		0.3	25	mV
Output High Voltage	V OH	Figure 1			1.6	V
Output Low Voltage	VOL	Figure 1	0.90			V
Unterminated Output High Voltage	VOHUT	Output open, Figure 6	1.9			V
Unterminated Output Low Voltage	Volut	Output open, Figure 6			0.1	V
Differential Output Short-Circuit Current Magnitude	IOSD	$\mathrm{V}_{\text {OD }}=0$ (Note 3)			9	mA
Output Short-Circuit Current	Ios	OUT_+ = 0 at $\mathrm{IN}_{-}=$high, or OUT_- = 0 at $I N_{-}=$low			-9	mA
Output High-Impedance Current	Ioz	$\mathrm{EN}=$ low and $\overline{\mathrm{EN}}=$ high, OUT_ = 0 or V_{CC}, no load	-0.5	± 0.002	+0.5	$\mu \mathrm{A}$
Power-Off Output Current	IOFF	$V_{C C}, I N_{-}, E N, \overline{E N}=0$ or open, OUT_ $=0$ or 3.6V, no load	-0.5	± 0.001	+0.5	$\mu \mathrm{A}$
INPUTS (IN_, EN, $\overline{\text { EN }}$)						
High-Level Input Voltage	V_{IH}		2.0		VCC +1	V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$		-1.0		+0.8	V

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{IN}=$ high or low, $\mathrm{EN}=$ high, $\overline{\mathrm{EN}}=10 w, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ $+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Current	IIN	$0 \leq 1 N_{-}, E N, \overline{E N} \leq V_{C C}$	-20	5	+20	$\mu \mathrm{A}$
		$\mathrm{V}_{C C} \leq 1 \mathrm{~N}_{-}, \mathrm{EN}, \mathrm{EN} \leq \mathrm{V}_{C C}+1$		0.67	1.5	mA
		$-1 \mathrm{~V} \leq \mathrm{IN}$-, EN, $\overline{\mathrm{EN}} \leq 0$	-1.5	-0.46		
SUPPLY CURRENT						
Supply Current	IcC	$I N_{-}=V_{C C}$ or $0, E N=V_{C C}, \overline{E N}=0$, no load		3.8	6.0	mA
	ICCL	$\mathrm{IN}_{-}=V_{C C} \text { or } 0, E N=V_{C C}, \overline{E N}=0,$ outputs loaded		18	25	
	ICCZ	$\mathrm{IN} \mathrm{C}_{-}=\mathrm{V}_{C C}$ or $0, \mathrm{EN}=0, \overline{\mathrm{EN}}=\mathrm{V}_{C C}$		3.8	6	

SWITCHING CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R_{L}=100 \Omega \pm 1 \%, C L=15 \mathrm{pF}, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 4-7)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Propagation Delay High to Low	tPHLD	Figures 2, 3	0.9	1.4	2.0	ns
Differential Propagation Delay Low to High	tPLHD	Figures 2, 3	0.9	1.5	2.0	ns
Differential Pulse Skew	tSKD1	Figures 2, 3 (Note 8)		0.1	0.25	ns
Differential Channel-to-Channel Skew	tSKD2	Figures 2, 3 (Note 9)		0.15	0.35	ns
Differential Part-to-Part Skew	tSKD3	Figures 2, 3 (Note 10)			0.9	ns
	tSKD4	Figures 2, 3 (Note 11)			1.1	
Rise Time	tR	Figures 2, 3	0.20	0.43	0.70	ns
Fall Time	t_{F}	Figures 2, 3	0.20	0.41	0.70	ns
Disable Time High to Z	tPHZ	Figures 4, 5		3.9	5	ns
Disable Time Low to Z	tpLZ	Figures 4, 5		3.9	5	ns
Enable Time Z to High	tPZH	Figures 4, 5		5.0	7	ns
Enable Time Z to Low	tPZL	Figures 4, 5		5.0	7	ns
Active to High Time	taH	$\mathrm{R} \mathrm{L}=80 \Omega$ to $132 \Omega \pm 1 \%$; Figures 6, 7		50	100	ns
High to Active Time	tha	$R_{L}=80 \Omega$ to $132 \Omega \pm 1 \%$; Figures 6, 7 (Note 12)		1.0	1.5	$\mu \mathrm{s}$
Maximum Operating Frequency	$f_{\text {max }}$	(Note 13)	200			MHz

Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100\% tested at $T_{A}=+85^{\circ} \mathrm{C}$.
Note 2: Currents into the device are positive, and current out of the device is negative. All voltages are referenced to ground except $\mathrm{V}_{O D}, \Delta \mathrm{~V}_{\text {OD }}$, $\mathrm{V}_{\text {OS, }}$ and $\Delta \mathrm{V}_{\mathrm{OS}}$.
Note 3: Guaranteed by design.
Note 4: AC parameters are guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 5: CL includes probe and jig capacitance.
Note 6: Pulse generator output for $A C$ tests: $t_{R}=t_{F}=1 \mathrm{~ns}\left(0.2 \times V_{C C}\right.$ to $\left.0.8 \times V_{C C}\right), 50 \%$ duty cycle, $R_{O}=50 \Omega, V_{O H}=V_{C C}+1 \mathrm{~V}$ settling to $\mathrm{VCC}, \mathrm{VOL}=-1 \mathrm{~V}$ settling to zero, frequency $=200 \mathrm{MHz}$.

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

SWITCHING CHARACTERISTICS (continued)

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R_{L}=100 \Omega \pm 1 \%, C L=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 4-7)

Note 7: Pulse generator output for tphz, tpLz, tpzh, tpzL, t_{AH}, and t_{HA} tests: $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=1 \mathrm{~ns}\left(0.2 \times \mathrm{V}_{\mathrm{CC}}\right.$ to $\left.0.8 \times \mathrm{V}_{\mathrm{CC}}\right), 50 \%$ duty cycle, $\mathrm{R}_{\mathrm{O}}=50 \Omega, \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{C C}+1 \mathrm{~V}$ settling to V_{C}, $\mathrm{V}_{\mathrm{OL}}=-1 \mathrm{~V}$ settling to zero, frequency $=100 \mathrm{kHz}$.
Note 8: $\operatorname{tSKD1}$ is the magnitude of the difference of differential propagation delay. tSKD1 = ItpHLD - tPLHDl.
Note 9: $\operatorname{tSKD2}$ is the magnitude difference of tPHLD or TPLHD of one channel to the tPHLD or tPLHD of another channel on the same device.
Note 10: $\operatorname{tSKD3}$ is the magnitude of the difference of any differential propagation delays between devices at the same VCC and within $5^{\circ} \mathrm{C}$ of each other.
Note 11: tSKD4 is the magnitude of the difference of any differential propagation delays between devices operating over the rated supply and temperature ranges.
Note 12: After thA time, all switching characteristics specifications are met.
Note 13: Meets all AC parameters at $\mathrm{f}_{\mathrm{MAX}}=200 \mathrm{MHz}$ with IV OD $\mathrm{I} \geq 250 \mathrm{mV}$.

Typical Operating Characteristics

$\left(V_{C C}=+3.3 \mathrm{~V}, R_{L}=100 \Omega, C_{L}=15 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUTPUT HIGH-IMPEDANCE STATE CURRENT
vs. SUPPLY VOLTAGE

OUTPUT SHORT-CIRCUIT CURRENT vs. SUPPLY VOLTAGE

DIFFERENTIAL OUTPUT VOLTAGE
vs. SUPPLY VOLTAGE

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Typical Operating Characteristics (continued)
$\left(V_{C C}=+3.3 \mathrm{~V}, R_{L}=100 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Typical Operating Characteristics (continued)
$\left(V_{C C}=+3.3 V, R_{L}=100 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN		NAME	
TSSOP	QFN		
1	15	EN	LVTTL/LVCMOS Enable Input. All outputs are disabled when EN is low. Internally pulled down.
2	16	IN1	LVTTL/LVCMOS Input 1. Input internally pulled down.
3	1	IN2	LVTTL/LVCMOS Input 2. Input internally pulled down.
4	2	VCC	Power-Supply. Bypass VCC to GND with 0.1 μ F and 0.001 μ F ceramic capacitors.
5	3	GND	Ground
6	4	IN3	LVTTL/LVCMOS Input 3. Input internally pulled down.
7	5	IN4	LVTTL/LVCMOS input 4. Input internally pulled down.
8	6	$\overline{\text { EN }}$	LVTTL/LVCMOS Inverting Enable Input. All outputs are disabled when EN is high. Internally pulled down. 9
10	7	OUT4-	Inverting LVDS Output 4
11	9	OUT4+	Noninverting LVDS Output 4
12	10	OUT3+	Noninverting LVDS Output 3
13	11	OUT3-	Inverting LVDS Output 3
14	12	OUT2-	Inverting LVDS Output 2
15	13	OUT2+	Noninverting LVDS Output 2
16	14	OUT1+	Noninverting LVDS Output 1
-	EP	Exposed Pad	Inverting LVDS Output 1

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Test Circuits/Timing Diagrams

Figure 1. Driver VOD and VOS Test Circuit

Figure 2. Transition Time and Propagation Delay Test Circuit

Figure 3. Transition Time and Propagation Delay Waveform Timing

Figure 4. High-Impedance Delay Test Circuit

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Figure 5. High-Impedance Delay Waveform Timing

TERMINATION ONLY. ZERO CABLE LENGTH

Figure 6. Active-to-High and High-to-Active Test Circuit

Figure 7. Active-to-High and High-to-Active Timing Diagram

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Detailed Description

The LVDS interface standard is a signaling method intended for point-to-point communication over a con-trolled-impedance medium as defined by the ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The LVDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption, while reducing EMI emissions and system susceptibility to noise.
The MAX9178 is a 400Mbps quad differential LVDS driver that is designed for high-speed, point-to-point, and low-power applications. This device accepts LVTTL/ LVCMOS input levels and translates them to LVDS output signals.
The MAX9178 generates a 2.5 mA to 4.5 mA output current using a current-steering configuration. This currentsteering approach induces less ground bounce and no shoot-through current, enhancing noise margin and system speed performance. The driver outputs are shortcircuit current limited, and enter a high-impedance state when the device is not powered or is disabled.
The current-steering architecture of the MAX9178 requires a resistive load to terminate the signal and complete the transmission loop. Because the device switches current and not voltage, the actual output voltage swing is determined by the value of the termination resistor at the input of an LVDS receiver. Logic states are determined by the direction of current flow through the termination resistor. With a typical 3.7 mA output current, the MAX9178 produces an output voltage of 370 mV when driving a 100Ω load.

Termination

The termination resistors should match the differential impedance of the transmission line. Output voltage levels depend upon the value of the termination resistor. The MAX9178 is optimized for point-to-point interface with 100Ω termination resistors at the receiver inputs. Termination resistance values may range between 90Ω and 132Ω, depending on the characteristic impedance of the transmission medium. Table 1 lists the I/O functions.

Termination Detection

The MAX9178 has a limited-capability termination detection circuit at each output that drives the output high when the output termination is removed (or is not present at power-up), and starts the output switching when a termination is connected. These circuits prevent EMI and crosstalk that occur (due to reflections) if an unterminated line is driven.

Table 1. Input/Output Function Table

ENABLES		OUTPUT LOAD	$\begin{array}{\|c\|} \hline \text { INPUTS } \\ \hline \text { IN }_{-} \\ \hline \end{array}$	OUTPUTS	
EN	$\overline{\text { EN }}$			OUT_+	OUT_-
H	L or open	Connected	L	L	H
			H	H	L
All other combinations of enable inputs		X	X	Z	Z

$Z=$ High impedance.
$x=$ Don't care.
Table 2. Cable Lengths and Frequencies

CONDITIONS	CABLE LENGTH (m)	TYPICAL SWITCHING FREQUENCY (MHz)
100Ω cable termination, 5 pF load (each output to ground), 10% to 90% duty cycle	1	10.75
	2	8.5
	4	7.8

Bench testing with CAT-5E unshielded twisted-pair cable showed the termination detection working for the cable lengths and frequencies listed in Table 2. Other combinations of cable length and frequency are possible.
The termination detection worked with 30 m of CAT-5 at 3 MHz and with alternating 3 MHz and 9 MHz . The termination detection is prevented from working at various cable lengths, switching frequencies, and data patterns by reflections that discharge the detection circuit.

Applications Information

Power-Supply Bypassing

Bypass Vcc with high-frequency, surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to Vcc.

Differential Traces

Output trace characteristics affect the performance of the MAX9178. Use controlled-impedance traces to match trace impedance to the transmission medium. Eliminate reflections and ensure that noise couples as common mode by running the differential trace pairs close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

Transmission media should have a nominal differential impedance of 100Ω. To minimize impedance discontinuities, use cables and connectors that have matched differential impedance.
Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.

Overshoot and Undershoot Voltage Protection

The MAX9178 is designed to protect the inputs (IN_, EN, and $\overline{\mathrm{EN}}$) against latchup due to transient overshoot and undershoot voltage. If the input voltage goes above V_{CC} or below GND by up to 1 V , an internal circuit limits input current to 1.5 mA .

Figure 8. IEC 61000-4-2 Contact Discharge ESD Test Model

IEC 61000-4-2 Level 4 ESD Protection
The IEC 61000-4-2 standard specifies ESD tolerance for electronic systems. The IEC 61000-4-2 model (Figure 8) specifies a 150 pF capacitor that is discharged into the device through a 330Ω resistor. The MAX9178 outputs are rated for IEC 61000-4-2 level 4 ($\pm 8 \mathrm{kV}$ Contact Discharge and $\pm 15 \mathrm{kV}$ Air Discharge). The Human Body Model (HBM, Figure 9) specifies a 100pF capacitor that is discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.
The IEC 61000-4-2 circuit discharges higher peak current and more energy than the HBM circuit due to the lower series resistance and larger capacitor.

Board Layout
A four-layer PC board that provides separate power, ground, LVDS signals, and input signals is recommended. Separate the LVTTL/LVCMOS and LVDS signals to prevent coupling.

Figure 9. Human Body ESD Test Model

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Functional Diagram

Chip Information
TRANSISTOR COUNT: 1089
PROCESS: CMOS

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

CDMMDN DIMENSIDNS												
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4		
REF.	MIN.	NDM.	MAX.									
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF											
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC.		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N	12			16			20			24		
ND	3			4			5			6		
NE	3			4			5			6		
Jedec	WGGB			WGGC			WGGD-1			WGGD-2		

EXPDSED PAD						VARIATIDNS		
PKG. CDDE	D2			E2				
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.		
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25		
T1644-2	1.95	2.10	2.25	1.95	2.10	2.25		
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25		
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63		

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMEER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETALS OF TERMINAL \#1 IDENTFFIER ARE OPTIONAL, BUT MUST BE LOCATED WTHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. nd and ne refer to the number of terminals on each dand e side respectively.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARTY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINLLS.
9. DRAWING CONFORMS TO JEDEC MO22O.

Quad LVDS Line Driver with High-ESD Tolerance and Flow-Through Pinout

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

