General Description

The MAX9975 dual, low-power, high-speed, pin electronics driver/comparator with 35mA load IC includes, for each channel, a three-level pin driver, a dual comparator, variable clamps, and an active load. An additional differential comparator allows comparisons between the two channels. The driver features a wide voltage range and high-speed operation, includes highimpedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The dual comparator provides low dispersion (timing variation) over a wide variety of input conditions, and differential outputs. The clamps provide damping of high-speed device-under-test (DUT) waveforms when the device is configured as a high-impedance receiver. The programmable load supplies up to 35mA of source and sink current. The load facilitates contact/continuity testing, at-speed parametric testing of IOH and IOL, and pullup of high-output-impedance devices.

The MAX9975 provides high-speed, differential control inputs and open-collector outputs with internal 50 Ω termination resistors that make it CML compatible. These features significantly reduce the discrete component count on the circuit board.

A 3-wire, low-voltage, CMOS-compatible serial interface programs the low-leakage and tri-state/terminate operational configurations of the MAX9975.

The MAX9975ARCCQ operating range is -1.5V to +6.5V. The MAX9975AZCCQ operating range is -1.0V to +7.0V. The MAX9975 features power dissipation of only 1.6W per channel. The device is available in a 100-pin, 14mm x 14mm x 0.1mm body, and 0.5mm pitch TQFP. An exposed 8mm x 8mm die pad on the top of the package facilitates efficient heat removal. The device is specified to operate with an internal die temperature of +60°C to +100°C, and features a die temperature monitor output.

Applications

Medium-Performance Commodity Memory ATE

_Features

- Low 1.6W/Channel (typ) Power Dissipation
- Greatly Reduced Power Penalty when Load Commutated
- High Speed: 1200Mbps at 3VP-P and 1800Mbps at 1VP-P
- Programmable 35mA Active-Load Current
- Low Timing Dispersion
- Wide -1.5V to +6.5V (MAX9975AR) or -1.0V to +7.0V (MAX9975AZ) Operating Range
- Active Termination (3rd-Level Drive)
- Integrated Clamps
- Integrated Differential Comparator
- Interfaces Easily with Most Logic Families
- Internal 50Ω Termination Resistors
- Low Gain and Offset Errors
- Comparator Hysteresis Control from 0V to 15mV

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9975ARCCQ	0°C to +70°C	100 TQFP-EPR**
MAX9975ARCCQ+	0°C to +70°C	100 TQFP-EPR**
MAX9975AZCCQ*	0°C to +70°C	100 TQFP-EPR**
MAX9975AZCCQ+*	0°C to +70°C	100 TQFP-EPR**

*Future product—contact factory for availability.

**EPR = Exposed pad reversed (TOP).

+Denotes lead-free package.

Pin Configuration and Selector Guide appear at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

MAX9975AR

MAX9975AR	
V _{CC} to GND	0.3V to +11V
VEE to GND	
DUT_ to GND	
DHV, DLV, DTV, CHV, CLV, COM	
to GND	2.5V to +7.5V
CPHV_ to GND	1.0V to +8.5V
CPLV_to GND	
DUT Short Circuit to -1.5V to +6.5V	
MAX9975AZ	
V _{CC} to GND	0.3V to +11.5V
V _{EE} to GND	
DUT_ to GND	
DHV, DLV, DTV, CHV, CLV, COM	
to GND	2.0V to +8.0V
CPHV_ to GND	
CPLV_to GND	
DUT Short Circuit to -1.0V to +7.0V	
V _{CC} - V _{EE}	
GS to GND	
LDH , LDL to GND	
DATA_, NDATA_, RCV_, NRCV_ to GND	

DEN_, NLDEN_ to GND2.5V to +5V
DATA_ to NDATA_, RCV_ to NRCV_, LDEN_ to NLDEN±1.5V
DATA_, TLDEN_ to GND2.5V to +5V
DATA_, NDATA_ to TDATA±2V
DEN_, NLDEN_ to TLDEN±2V
CCO to GND0.3V to +5V
CLK, DIN, CS, RST to GND1V to +5V
0HV_ to DLV±10V
0HV_ to DTV±10V
DLV_ to DTV±10V
CHV_ or CLV_ to DUT±10V
CH_, NCH_, CL_, NCL_ to GND1V to +5V
IYS_ Current1mA to +1mA
II Other Pins to GND $(V_{EE} - 0.3V)$ to $(V_{CC} + 0.3V)$
EMP Current0.5mA to +20mA
ower Dissipation ($T_A = +70^{\circ}C$)
100-Pin TQFP-EPR (derate 167mW/°C
above +70°C)13.3W*
torage Temperature Range65°C to +150°C
unction Temperature+150°C
ead Temperature, Lead-Free (soldering, 10s)+260°C
ead Temperature, Leaded (soldering, 10s)+300°C

*Dissipation wattage values are based on still air with no heat sink. Actual maximum power dissipation is a function of heat-extraction techniques and may be substantially higher.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +60^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLIES		•				
		MAX9975AR	9.5	9.75	10.5	V
Positive Supply	Vcc	MAX9975AZ	10.0	10.25	11.0	V
Negative Supply		MAX9975AR	-5.25	-4.75	-4.50	V
Negative Supply	VEE	MAX9975AZ	-4.75	-4.25	-4.00	V
		$V_{LDH_} = V_{LDL_} = 0V, R_L \ge 10M\Omega$		170	190	
Positive Supply Current (Note 2)	ICC	$V_{LDH_} = V_{LDL_} = 3.5V, R_L = 0,$ $V_{COM_} = 1.5V, load enabled,$ driver = high impedance		250	280	mA
		$V_{LDH_} = V_{LDL_} = 0V, R_L \ge 10M\Omega$		-290	-320	
Negative Supply Current (Note 2)	IEE	$V_{LDH_} = V_{LDL_} = 3.5V, R_{L} = 0,$ $V_{COM_} = -1V$, load enabled, driver = high impedance		-370	-410	mA
		$V_{LDH_} = V_{LDL_} = 0V$		3.2	3.6	
Power Dissipation (Notes 2, 3)	PD	$V_{LDH_} = V_{LDL_} = 3.5V, R_L = 0,$ $V_{COM_} = 1.5V, load enabled,$ driver = high impedance		3.7	4.1	W

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $V_{CC} = +9.75V$, $V_{EE} = -4.75V$, $V_{CPHV_} = +7.2V$, $V_{CPLV_} = -2.2V$. MAX9975AZ: $V_{CC} = +10.25V$, $V_{EE} = -4.25V$, $V_{CPHV_} = +7.7V$, $V_{CPLV_} = -1.7V$. $V_{CCO_} = +1.8V$, $V_{LDH_} = V_{LDL_} = 0V$, $V_{GS} = 0V$, $R_{HYS_} = open$, $T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
DUT_ CHARACTERISTICS							
Operating Voltage Range	\/	MAX9975AR		-1.5		+6.5	V
(Note 4)	Vdut	MAX9975AZ		-1.0		+7.0	
Leakage Current in High-		MAX9975AR LLEAK = 0, V _{DUT} = -1.5V, 0V, +3V, +6.5V		±3			
Impedance Mode	Idut	MAX9975AZ	LLEAK = 0, V _{DUT} = -1V, 0V, +3V, +7V			±3	μA
Leakage Current in Low-Leakage		MAX9975AR	LLEAK = 1, V _{DUT} = -1.5V, 0V, +3V, +6.5V			±15	
Mode		MAX9975AZ	LLEAK = 1, V _{DUT} = -1V, 0V, +3V, +7V			±15	nA
Combined Consolitones		Driver in term	mode (DUT_ = DTV_)		3	5	~F
Combined Capacitance	CDUT	Driver in high-	river in high-impedance mode		5	6	pF
Low-Leakage Enable Time		(Notes 5, 6)			20		μs
Low-Leakage Disable Time		(Notes 6, 7)			0.1		μs
CONTROL AND LEVELS INPUTS							
LEVEL PROGRAMMING INPUTS	(DHV_, DLV	_, DTV_, CHV_	, CLV_, CPHV_, CPLV_, COM	_, LDH_, L	DL_)		
Input Bias Current	IBIAS					±25	μA
Settling Time		To 0.1% of ful	I-scale change		1		μs
DIFFERENTIAL CONTROL INPUT	'S (DATA_, I	NDATA_, RCV_	, NRCV_, LDEN_, NLDEN_)				
Input High Voltage	VIH			0		3.5	V
Input Low Voltage	VIL			-0.2		+3.2	V
		Between diffe	rential inputs	±0.15		±1.00	
Differential Input Voltage	VDIFF	Between a dif termination vo	ferential input and its Itage			±1.9	V
Input Bias Current						±25	μA
Input Termination Voltage	Vtdata_ Vtlden_			0		+3.5	V
Input Termination Resistor		Between sign termination vo	al and corresponding Itage input	47.5		52.5	Ω
SINGLE-ENDED CONTROL INPU	TS (CS , SCI	K, DIN, RST)					
Internal Threshold Reference	VTHRINT			1.05	1.25	1.45	V
Internal Reference Output Resistance	Ro				20		kΩ
External Threshold Reference	VTHR			0.43		1.73	V
	VIH			V _{THR} + 0.2		3.5	V
Input High Voltage	- 11 1						
Input High Voltage Input Low Voltage	VIL			-0.1		V _{THR} - 0.2	V

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
SERIAL INTERFACE TIMING (Fig	ure 6)	•					
SCLK Frequency	f SCLK					50	MHz
SCLK Pulse-Width High	tсн			8			ns
SCLK Pulse-Width Low	tCL			8			ns
CS Low to SCLK High Setup	tcsso			3.5			ns
CS High to SCLK High Setup	tCSS1			3.5			ns
SCLK High to CS High Hold	tCSH1			3.5			ns
DIN to SCLK High Setup	tDS			3.5			ns
DIN to SCLK High Hold	tDH			3.5			ns
CS Pulse-Width High	tCSWH			20			ns
TEMPERATURE MONITOR (TEM	P)	·					
Nominal Voltage		TJ = +70°C, R	L≥ 10MΩ		3.33		V
Temperature Coefficient					+10		mV/°C
Output Resistance					20		kΩ
DRIVERS (Note 8)		·					
DC OUTPUT CHARACTERISTICS	6 (R _L ≥ 10MΩ	2)					
DHV_, DLV_, DTV_, Output Offset Voltage	V _{OS}		V _{DHV} , V _{DTV} , V _{DLV} v tested at +1.5V			±15	mV
	age Due to	MAX9975AR	$V_{GS} = +100 mV,$ $V_{DHV} = 6.5V + 100 mV$		±2		
Output Offset Voltage Due to		MAX9975AR	V _{GS} = -100mV, V _{DLV} _ = -1.5V - 100mV		±2		mV
Ground Sense	VGSOS	MAX9975AZ	V _{GS} = +100mV, V _{DHV} _ = 7V + 100mV		±2		IIIV
		MAX9975AZ	V _{GS} = -100mV, V _{DLV} _ = -1V - 100mV		±2		
DHV_, DLV_, DTV_ Output-Offset Temperature Coefficient					+200		µV/°C
DHV_, DLV_, DTV_ Gain	Av	Measured with 0V and 4.5V	$V_{DHV_{-}}, V_{DLV_{-}}, and V_{DTV_{-}} at$	0.997	1.00	1.003	V/V
DHV_, DLV_, DTV_ Gain Temperature Coefficient					-50		ppm/°C
		$V_{DUT_{-}} = 1.5V,$	3V (Note 9)			±5	
Linearity Error		Full range (No				±15	mV
		MAX9975AR	V _{DLV} = 0V, V _{DHV} = 200mV, 6.5V			±2	
DHV_ to DLV_ Crosstalk		MAX9975AZ	V _{DLV} = 0V, V _{DHV} = 200mV, 7V			±2	mV

4

M/IXI/M

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
		MAX9975AR	V _{DHV} = 5V, V _{DLV} = -1.5V, +4.8V			±2	mV
DLV_ to DHV_ Crosstalk		MAX9975AZ	V _{DHV} = 5V, V _{DLV} = -1V, +4.8V			±2	mv
DTV_ to DLV_ and DHV_		MAX9975AR	$V_{DHV_} = 3V, V_{DLV_} = 0V, V_{DTV_} = -1.5V, +6.5V$			±2	mV
Crosstalk		MAX9975AZ	$V_{DHV_} = 3V, V_{DLV_} = 0V,$ $V_{DTV_} = -1V, +7V$			±2	IIIV
DHV_ to DTV_ Crosstalk		V _{DTV} = 1.5V, V _{DHV} = 1.6V				±2	mV
DLV_ to DTV_ Crosstalk		V _{DTV} = 1.5V, V _{DLV} = 0V, 1				±2	mV
DHV_, DTV_, DLV_ DC Power- Supply Rejection Ratio	PSRR	(Note 11)				±18	mV/V
Maximum DC Drive Current	IDUT_			±40		±80	mA
DC Output Resistance	R _{DUT} _	$I_{DUT} = \pm 30m$	A (Note 12)	47	48	49	Ω
DC Output Resistance Variation	ΔR _{DUT} _	$I_{DUT} = \pm 1m$	A, ±8mA		0.5	1	Ω
De Oulput nesistance variation		$I_{DUT} = \pm 1m$	A, ±8mA, ±15mA, ±40mA		0.75	1.5	52
DYNAMIC OUTPUT CHARACTER	RISTICS (ZL =	= 50 Ω)					-
AC Drive Current				±80			mA
		$V_{DLV} = 0V, V$			15	22	
Drive-Mode Overshoot		$V_{DLV} = 0V, V$			110	130	mV
		$V_{DLV} = 0V, V$	′DHV_ = 3V		210	370	
		$V_{DLV} = 0V, V$	DHV_ = 0.1V		4	11	
Drive-Mode Undershoot		$V_{DLV} = 0V, V$	′DHV_ = 1V		20	65	mV
		$V_{DLV} = 0V, V$	′DHV_ = 3V		30	185	
Torm Mode Oversheet (Note 12)		V _{DUT} _ = 1.0V ₁ 10% to 90%	P-P, t _R = t _F = 250ps,		60	150	mV
Term-Mode Overshoot (Note 13)		V _{DUT} = 3.0V 10% to 90%	p _{-P} , t _R = t _F = 500ps,		0		ITIV
T M I O I		V _{DHV} = V _{DT}	∠_ = 1V, V _{DLV} _ = 0V		180	250	
Term-Mode Spike			_ = 0V, V _{DHV} _ = 1V		180	250	mV
Liele lasses de se e Marda Or "	1	$V_{DLV_{-}} = -1.0V$			100		
High-Impedance-Mode Spike		$V_{DLV} = 0V, V$	′DHV_ = 1V		100		mV
Settling Time to within 25mV		3V step (Note	14)		4		ns
Settling Time to within 5mV		3V step (Note	14)		40		ns

MAX9975

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS	
TIMING CHARACTERISTICS (ZL :	= 50Ω) (Note	15)					1	
Prop Delay, Data to Output	t PDD			1.2	1.5	1.9	ns	
Prop-Delay Match, t _{LH} vs. t _{HL}		3V _{P-P}			±40	±100	ps	
Prop-Delay Match, Drivers within Package		(Note 16)			40		ps	
Prop-Delay Temperature Coefficient					+1.6		ps/°C	
			lz, 0.6ns to 24.4ns pulse to 12.5ns pulse width		±25	±50		
Prop-Delay Change vs. Pulse			0.6ns to 24.4ns pulse width, ins pulse width		±25	±50		
Width			0.9ns to 24.1ns pulse width, ins pulse width		±35	±60	ps	
			0Ω, 40MHz, 1.4ns to 23.6ns elative to 12.5ns pulse width		±100			
Prop-Delay Change vs. Common-		MAX9975AR	$V_{DHV} - V_{DLV} = 1V,$ $V_{DHV} = 0$ to $6V$		50	75	20	
Mode Voltage		MAX9975AZ	$V_{DHV} - V_{DLV} = 1V,$ $V_{DHV} = 0.5V$ to 6.5V		50	75	ps	
Prop Delay, Drive to High Impedance	tpddz	$V_{DHV_} = 1.0V,$ $V_{DTV_} = 0V$	$V_{DLV_{-}} = -1.0V,$	1.6	2.1	2.6	ns	
Prop Delay, High Impedance to Drive	^t PDZD	$V_{DHV_} = 1.0V,$ $V_{DTV_} = 0V$	$V_{DLV_{-}} = -1.0V,$	2.6	3.2	3.9	ns	
Prop-Delay Match, tPDDZ vs. tPDZD				-1.5	-1.1	-0.7	ns	
Prop-Delay Match, tPDDZ vs. tLH				0.2	0.6	1.0	ns	
Prop Delay, Drive to Term	t PDDT	$V_{DHV} = 3V, V$	$DLV_{} = 0V, V_{DTV_{}} = 1.5V$	1.3	1.8	2.3	ns	
Prop Delay, Term to Drive	t PDTD	$V_{DHV} = 3V, V$	$DLV_{} = 0V, V_{DTV_{}} = 1.5V$	1.6	2.1	2.7	ns	
Prop-Delay Match, tPDDT vs. tPDTD				-0.7	-0.3	+0.1	ns	
Prop-Delay Match, tPDDT vs. tLH				-0.1	+0.3	+0.7	ns	
DYNAMIC PERFORMANCE (ZL =	50 Ω)							
		0.2V _{P-P} , 10% t	o 90%	300	350	400		
		1V _{P-P} , 10% to	90%	330	390	450	ps	
Rise and Fall Time	t _R , t _F	2VP-P		430	500	570		
		3V _{P-P} , 10% to	90%	500	650	750		
		5V _{P-P} , Z _L = 50	0Ω, 10% to 90%	800	1000	1200		
Rise and Fall Time Match	t _R vs. t _F	3V _{P-P} , 10% to	90%		±50		ps	
	•							

6

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS	
		0.2V _{P-P}			550			
		1V _{P-P}			550	630		
Minimum Pulse Width (Note 17)		2V _{P-P}			650	750	ps	
		3V _{P-P}			850	1000		
		$5V_{P-P}, Z_L = 50$	ΩΟΩ		1300			
		0.2V _{P-P}			1800			
		1V _{P-P}			1800			
Data Rate (Note 18)		2V _{P-P}			1500		Mbps	
		3V _{P-P}			1200			
		$5V_{P-P}, Z_L = 50$	ΩΟΩ		800			
Dynamic Crosstalk		(Note 19)			12		mV _{P-P}	
Rise and Fall Time, Drive to Term	tdtr, tdtf		′ _{DLV_} = 0V, V _{DTV_} = 1.5V, Figure 1a (Note 20)	0.6	1.0	1.3	ns	
Rise and Fall Time, Term to Drive	t _{TDR} , t _{TDF}		V _{DHV} = 3V, V _{DLV} = 0V, V _{DTV} = 1.5V, 10% to 90%, Figure 1b (Note 20)		1.0	1.3	ns	
COMPARATORS (Note 8)								
COMPARATOR DC CHARACTER	ISTICS							
		MAX9975AR		-1.5		+6.5	N	
Input Voltage Range (Note 4)	VIN	MAX9975AZ				+7.0	V	
Differential Input Voltage	VDIFF			±8			V	
Input Offset Voltage	Vos	V _{DUT} = 1.5V				±20	mV	
Input Offset-Voltage Temperature Coefficient					±10		µV/°C	
Common-Mode Rejection Ratio	01455	MAX9975AR	V _{DUT} = -1.5V, +6.5V		±0.25	±2		
(Note 21)	CMRR	MAX9975AZ	V _{DUT} = -1V, +7V		±0.25	±2	mV/V	
			V _{DUT} = 1.5V, 3V			±3		
Linearity Error		MAX9975AR	V _{DUT} = -1.5V, +6.5V			±10		
(Note 9)		MAX9975AZ	V _{DUT} = 1.5V, 3V			±3	mV	
		MAX9975AZ	$V_{DUT_{-}} = -1V, +7V$			±10		
Power-Supply Rejection Ratio (Note 11)	PSRR	V _{DUT} = 1.5V			±0.035	±2	mV/V	
COMPARATOR HYSTERESIS	1	1					•	
		R _{HYS} = open			0			
		$R_{HYS} = 5k\Omega$			2		mV	
Input Hysteresis		$R_{HYS} = 3.8 k\Omega$			5			
		$R_{HYS} = 2.9 k\Omega$			10]	
		$R_{HYS} = 2.3 k\Omega$			15]	

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +60^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
COMPARATOR AC CHARACTER	RISTICS (Note	e 22)					
		Term mode, t _R	e = t _F = 150ps	1.5	2.5		011
Bandwidth		High-impedan	ce mode	0.5	0.7		GHz
Minimum Pulse Width (Note 23)	tpw(MIN)				500	650	ps
Prop Delay	tPDL			0.9	1.3	1.7	ns
Prop-Delay Temperature Coefficient					+1.7		ps/°C
Prop-Delay Match, High/Low vs. Low/High					±10	±50	ps
Prop-Delay Match High vs. Low Comparator					±50		ps
Prop-Delay Match, Comparators within Package		(Note 16)			±80		ps
Prop-Delay Dispersion vs.		MAX9975AR	$V_{CHV} = V_{CLV} = -1.4V$ to +6.4V		40	60	
Common-Mode Input (Note 24)		MAX9975AZ	$V_{CHV_} = V_{CLV_} = -0.9V$ to +6.9V		40	60	– ps
Prop-Delay Dispersion vs.		$V_{CHV_} = V_{CLV_} = 0.1V \text{ to } 0.9V,$ $V_{DUT_} = 1V_{P-P}, t_R = t_F = 250\text{ps}, 10\% \text{ to}$ 90% relative to timing at 50% point			±40	±70	
Overdrive		$V_{DUT} = 0.2V_{F}$	_ = 40mV to 160mV, P, t _R = t _F = 150ps, 10% to timing at 50% point		±40	±60	ps
Prop-Delay Dispersion vs. Pulse Width		0.6ns to 24.4n 12.5ns pulse v	s pulse width, relative to vidth		±30	±50	ps
Prop-Delay Dispersion vs. Slew Rate		0.5V/ns to 6V/r slew rate	ns slew rate, relative to 4V/ns		±30	±60	ps
			P-P, t _R = t _F = 250ps, % to 90% relative to timing at		±40	±70	
Waveform Tracking 10% to 90%		-	P-P, t _R = t _F = 250ps, ce mode, 10% to 90% relative % point		±250	±350	ps
			p, t _R = t _F = 500ps, ce mode, 10% to 90% relative % point		±150	±200	
DLIT. Claur Data Tra-string		Term mode			6		\//
DUT_Slew-Rate Tracking	Ì	High-impedan	ce mode		5		V/ns

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COMPARATOR LOGIC OUTPUTS	G (CH_, NCH	_, CL_, NCL_)					
V _{CCO} _Voltage Range	Vvcco_			1.5		3.5	V
V _{CCO} _ Current	Ivcco_				64		mA
Output Low Voltage Compliance		Set by IOL, RT	$_{\rm ERM}$, and $V_{\rm CCO}$		-0.5		V
Output High Voltage	V _{OH}	I _{CH} = I _{NCH}	$= I_{CL} = I_{NCL} = 0$	Vcco_ - 0.1	Vcco_ - 0.01	V _{CCO} _ + 0.02	V
Output Low Voltage	V _{OL}	ICH_ = INCH_	$CH_ = I_{NCH_} = I_{CL_} = I_{NCL_} = 0$				V
Output Voltage Swing		ICH_ = INCH_	$= I_{CL} = I_{NCL} = 0$	760	800	840	mV
Internal Output Termination Resistor	R _{TERM}	Single-ended to CH_, NCH_	measurement from V _{CCO} _ , CL_, NCL_	48		52	Ω
Differential Rise and Fall Times	t _R , t _F	20% to 80%			210	250	ps
CLAMPS							
Lligh Clarge Input Valtage Dange		MAX9975AR		0		7.5	V
High-Clamp Input Voltage Range	VCPH_	MAX9975AZ		0.5		8.0	V
Low-Clamp Input Voltage Range	Veri	MAX9975AR		-2.5		+5.0	V
Low-Clamp input voltage hange	VCPL_	MAX9975AZ		-2.0		+5.5	v
			At DUT_ with $I_{DUT_} = 1mA$, V _{CPHV_} = 0V			±100	
		MAX9975AR	At DUT_ with $I_{DUT_} = -1mA$, V _{CPLV_} = 0V			±100	
Clamp Offset Voltage	V _{OS}		At DUT_ with $I_{DUT_} = 1mA$, V _{CPHV} = 0.5V			±100	mV
		MAX9975AZ	At DUT_ with I_{DUT} = -1mA, V _{CPLV} = 0V			±100	
Offset-Voltage Temperature Coefficient					±250		µV/°C
			IDUT_ = 1mA, VCPHV_ = 0V		±10		
Clamp Power-Supply Rejection		MAX9975AR	$I_{DUT_} = -1mA, V_{CPLV_} = 0V$		±10		
Ratio (Note 11)	PSRR	MAX9975AZ	I_{DUT} = 1mA, V_{CPHV} = 0.5V		±10		mV/V
		IVIAA997 SAZ	$I_{DUT_} = -1mA, V_{CPLV_} = 0V$		±10		
Voltage Gain	Av			0.96		1.005	V/V
Voltage-Gain Temperature Coefficient					-30		ppm/°C

MAX9975

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +60^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
		MAX9975AR	$I_{DUT_} = 1mA,$ $V_{CPLV_} = -1.5V,$ $V_{CPHV_} = 0 \text{ to } 6.5V$ $I_{DUT_} = -1mA,$ $V_{CPHV_} = 6.5V,$		±10 ±10		
Clamp Linearity		MAX9975AZ	V _{CPLV} = -1.5V to +5.0V I _{DUT} = 1mA, V _{CPLV} = -1.0V, V _{CPHV} = 0.5V to 7.0V		±10		mV
			I _{DUT} = -1mA, V _{CPHV} = 7.0V, V _{CPLV} = -1.0V to +5.5V		±10		
		MAX9975AR	$V_{CPHV_} = 0V,$ $V_{CPLV_} = -1.5V,$ $V_{DUT_} = 6.5V$	40	80		
Short-Circuit Output Current	ISCDUT_	MAX3373AH	$V_{CPHV_} = 6.5V,$ $V_{CPLV_} = 5.0V,$ $V_{DUT_} = -1.5V$	-80	-40		mA
Short-Circuit Output Current		MAX9975AZ	$V_{CPHV_} = 0.5V,$ $V_{CPLV_} = -1.0V,$ $V_{DUT_} = 7.0V$	40	80	±10 m ±10 -40 m. 80 -40 m.	IIIA
		MAA9973AZ	V _{CPHV} = 7.0V, V _{CPLV} = 5.5V, V _{DUT} = -1.0V	-80	-40		
Clamp DC Impedance	Rout	$V_{CPHV} = 3V,$ $I_{DUT} = \pm 5mA$		48			Ω
		MAX9975AR	V _{CPHV} = 2.5V, V _{CPLV} = -1.5V I _{DUT} = 10mA, 20mA, 30mA		1.5		
		MAX997SAN	V _{CPHV} = 6.5V V _{CPLV} = 2.5V, I _{DUT} = -10mA, -20mA, -30mA		1.5		
Clamp DC Impedance Variation			V _{CPHV} = 2.5V, V _{CPLV} = -1.0V I _{DUT} = 10mA, 20mA, 30mA		1.5		22
		MAX9975AZ	V _{CPHV} = 7.0V V _{CPLV} = 2.5V, I _{DUT} = -10mA, -20mA, -30mA		1.5		

10

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +60^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	;	MIN	ТҮР	MAX	UNITS
ACTIVE LOAD (V _{COM} = 1.5V, R _L	_ > 1MΩ, driv	er in high-impe	dance mode,	unless otherwis	se noted)			1
		MAX9975AR			-1.0		+6.0	
COM_ Voltage Range	VCOM_	MAX9975AZ			-0.5		+6.5	V
Differential Voltage Range		VDUT VCOM	_		-7.5		+7.5	V
COM_ Offset Voltage	Vos	ISOURCE = ISIN	ıк = 20mA				±100	mV
Offset-Voltage Temperature Coefficient						+100		µV/°C
COM_ Voltage Gain	Av	V _{COM} = 0, 4.	5V, Isource =	I _{SINK} = 20mA	0.98		1.00	V/V
Voltage-Gain Temperature Coefficient						-10		ppm/°C
COM_ Linearity Error (Note 10)		MAX9975AR	V _{COM} = -1V I _{SOURCE} = I _S			±3	±15	mV
		MAX9975AZ	5AZ V _{COM} = -0.5V, +6.5V I _{SOURCE} = I _{SINK} = 20mA			±3	±15	IIIV
COM_ Output Voltage Power- Supply Rejection Ratio	PSRR	$V_{COM} = 2.5V$ ISOURCE = ISIN		ote 11)			±10	mV/V
		V_{DUT} = 3V, 6.5V with V_{COM} = -1V and V_{DUT} = -1.5V, +2V with		Isource = I _{SINK} = 35mA	30			- - kΩ
Output Resistance, Sink or	Ro			I _{SOURCE} = I _{SINK} = 1mA	500			
Source	110	$\begin{array}{l} \text{MAX9975AZ} \\ \text{V}_{\text{DUT}_} = 3.5\text{V}, \\ \text{with } \text{V}_{\text{COM}_} = \end{array}$		ISOURCE = ISINK = 35mA	30			1132
		$V_{DUT_} = -1.0V$ $V_{COM_} = +6.5$		I _{SOURCE} = I _{SINK} = 1mA	500			
Output Resistance, Linear Region	Ro	$I_{DUT_} = \pm 33.2$ $I_{SOURCE} = I_{SIN}$ verified by dea	νκ = 35mA, V _C	OM_ = 2.5V		11	18	Ω
Deadband		$V_{COM} = 2.5V$, 95% Isource	to 95% I _{SINK}		700	1000	mV
SOURCE CURRENT (V _{DUT} = 4.5	5V)							
Maximum Source Current		$V_{LDL} = 3.8V$			36		40	mA
Source Programming Gain	A _{TC}	$V_{LDL_{-}} = 0.2V,$	$3V, V_{LDH} = 0$.1V	9.75	10	10.25	mA/V
Source Current Offset (Combined Offset of LDL_ and GS)	los	V _{LDL} = 200m	V		-1000		0	μA
Source-Current Temperature Coefficient		I _{SOURCE} = 35mA			-15		µA/°C	
Source-Current Power-Supply	PSRR	I _{SOURCE} = 25r					±60	μA/V
Rejection Ratio	l T	$I_{\text{SOURCE}} = 35r$					±84	
Source Current Linearity (Note 25)		$V_{LDL_} = 100m$ $V_{LDL_} = 3V$	v, 1v, 2.25V				±60 ±130	μA

MAX9975

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +60^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL		CONDITIONS		MIN	ТҮР	MAX	UNITS	
SINK CURRENT (V _{DUT} = -1.5V	MAX9975AR;	V _{DUT} _ = -1.0V	, MAX9975AZ)						
Maximum Sink Current		$V_{LDH_} = 3.8V$		-40		-36	mA		
Sink Programming Gain	ATC	V _{LDH} = 0.2V, 3V, V _{LDL} = 0.1V			-10.25	-10	-9.75	mA/V	
Sink Current Offset (Combined Offset of LDH_ and GS)	I _{OS}	$V_{LDH_} = 200m$	۱V		0		1000	μA	
Sink-Current Temperature Coefficient		I _{SINK} = 35mA				+8		µA/°C	
Sink-Current Power-Supply	5055	I _{SINK} = 25mA					±60		
Rejection Ratio	PSRR	Isink = 35mA					±84	μA/V	
		$V_{LDH} = 100m$	ιV, 1V, 2.25V				±60		
Sink Current Linearity (Note 25)		$V_{LDH_} = 3V$					±130	μΑ/V	
GROUND SENSE									
GS Voltage Range	VGS	Verified by GS	common-moc	le error test	-250		+250	mV	
			V _{DUT} = -1.5 V _{GS} = ±250r V _{LDH} - V _{GS}	nV,			±20		
GS Common-Mode Error		MAX9975AR	V _{DUT} = +4.5 V _{GS} = ±250r V _{LDL} - V _{GS}	nV,			±20		
			$V_{DUT_} = -1V,$ $V_{GS} = \pm 250r$ $V_{LDH_} - V_{GS}$	nV,			±20	μA	
		MAX9975AZ	$V_{DUT_{-}} = +4.5V,$ $V_{GS} = \pm 250mV,$ $V_{LDL_{-}} - V_{GS} = 0.2V$				±20		
GS Input Bias Current		$V_{GS} = 0V$					±25	μA	
AC CHARACTERISTICS (ZL = 5	0Ω to GND)	•						•	
		$I_{SOURCE} = 10 \text{mA}, V_{COM} = -1 \text{V}$		2.7	3.5	4.3			
Enable Time (Note 26)	ten	ISINK = 10mA,			2.7	3.5	4.3	ns	
Dischle Time (Nate 20)	t	ISOURCE = 10r	mA, $V_{COM} = 1V$		1.5	2	2.5		
Disable Time (Note 26)	tDIS	ISINK = 10mA,	$V_{COM} = -1V$		1.5	2	2.5	ns	
			100	To 10%		15			
Current Settling Time on		SOURCE = ISIN	OURCE = ISINK = 1mA			50]	
Commutation (Note 27)			$m = 20m^{1}$	To 10%		3	5	ns	
		ISOURCE = ISIN	NK = 2011A	To 1.5%		15			
Spike During Enable/Disable Transition		ISOURCE = ISIN	NK = 35mA, V _C	:OM_ = 0V		200	300	mV	

12

ELECTRICAL CHARACTERISTICS (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +60^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

- Note 1: All minimum and maximum DC measurements and driver 3V rise- and fall-time test limits are 100% production tested. All other test limits are guaranteed by design. Tests are performed at nominal supply voltages, unless otherwise noted.
- **Note 2:** Total for dual device at worst-case setting.
- Note 3: Does not include above ground internal dissipation of the comparator outputs. Additional power dissipation is typically (64mA x V_{VCCO}).
- Note 4: Externally forced voltages may exceed this range provided that the Absolute Maximum Ratings are not exceeded.
- Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.
- Note 6: Based on simulation results only.
- Note 7: Transition time from LLEAK being deasserted to output returning to normal operating mode.
- Note 8: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 9: Relative to straight line between 0 and 4.5V.
- Note 10: Specifications measured at the endpoints of the full range. Full range for the MAX9975AR is $-1.3V \le V_{DHV} \le +6.5V$, $-1.5V \le V_{DLV} \le +6.3V$, $-1.5V \le V_{DTV} \le +6.3V$, $-1.5V \le V_{DTV} \le +6.5V$. Full range for the MAX9975AZ is $-0.8V \le V_{DHV} \le +7V$, $-1V \le V_{DLV} \le +6.8V$, $-1V \le V_{DTV} \le +7V$.
- Note 11: Change in offset voltage with power supplies independently set to their minimum and maximum values.
- Note 12: Nominal target value is 48Ω . Contact factory for alternate trim selections within the 45Ω to 51Ω range.
- Note 13: $V_{DTV_{-}}$ = midpoint of voltage swing, $R_S = 50\Omega$. Measurement is made using the comparator.
- Note 14: Measured from the crossing point of DATA_ inputs to the settling of the driver output.
- Note 15: Prop delays are measured from the crossing point of the differential input signals to the 50% point of the expected output swing. Rise time of the differential inputs DATA_ and RCV_ are 250ps (10% to 90%).
- **Note 16:** Rising edge to rising edge or falling edge to falling edge.
- Note 17: Specified amplitude is programmed. At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.
- Note 18: Specified amplitude is programmed. Maximum data rate is specified in transitions per second. A square wave that reaches at least 90% of its programmed amplitude may be generated at one-half of this frequency.
- Note 19: Crosstalk from either driver to the other. Aggressor channel is driving $3V_{P-P}$ into a 50 Ω load. Victim channel is in term mode with V_{DTV} = +1.5V.
- **Note 20:** Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when V_{DLV} < V_{DTV} < V_{DHV}. If V_{DTV} < V_{DLV} or V_{DTV} > V_{DHV}, switching speed is degraded by a factor of approximately 3.
- Note 21: Change in offset voltage over the input range.
- **Note 22:** Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to +1V, V_{CHV} = V_{CLV} = +0.5V, t_R = t_F = 250ps, Z_S = 50 Ω , driver in term mode with V_{DTV} = +0.5V. Comparator outputs are terminated with 50 Ω to 0.9V and V_{CCO} = 1.8V. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to crossing point of differential outputs.
- **Note 23:** At this pulse width, the output reaches at least 90% of its DC voltage swing. The pulse width is measured at the crossing points of the differential outputs.
- **Note 24:** V_{DUT} = 200mV_{P-P}. Overdrive = 100mV.
- Note 25: Relative to segmented interpolations between 200mV, 2V, 2.5V, and 3.5V.
- **Note 26:** Measured from crossing of LDEN_ inputs to the 50% point of the output current change.
- **Note 27:** $V_{COM} = 1V$, $R_S = 50\Omega$, driving voltage = 1.55V to 0.45V transition and 0.45V to 1.55V transition (at 1mA) or +2.5V to -0.5V transition and -0.5V to +2.5V transition (at 20mA). Settling time is measured from V_{DUT} = 1V to I_{SINK}/I_{SOURCE} settling within specified tolerance.

Figure 1. Drive-to-Term and Term-to-Drive Rise and Fall Times

MAX9975

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

Typical Operating Characteristics

Typical Operating Characteristics (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

MAX9975

Typical Operating Characteristics (continued)

CROSSTALK TO DUT_ FROM

(MAX9975AR: VCC = +9.75V, VEE = -4.75V, VCPHV_ = +7.2V, VCPLV_ = -2.2V. MAX9975AZ: VCC = +10.25V, VEE = -4.25V, VCPHV_ = +7.7V, $V_{CPLV} = -1.7V$. $V_{CCO} = +1.8V$, $V_{LDH} = V_{LDL} = 0V$, $V_{GS} = 0V$, $R_{HYS} = open$, R_{DUT} trimmed to 50Ω , $T_J = +85^{\circ}C$, unless otherwise noted.)

CROSSTALK TO DUT_ FROM

CROSSTALK TO DUT_ FROM DLV_WITH DUT_ = DHV_

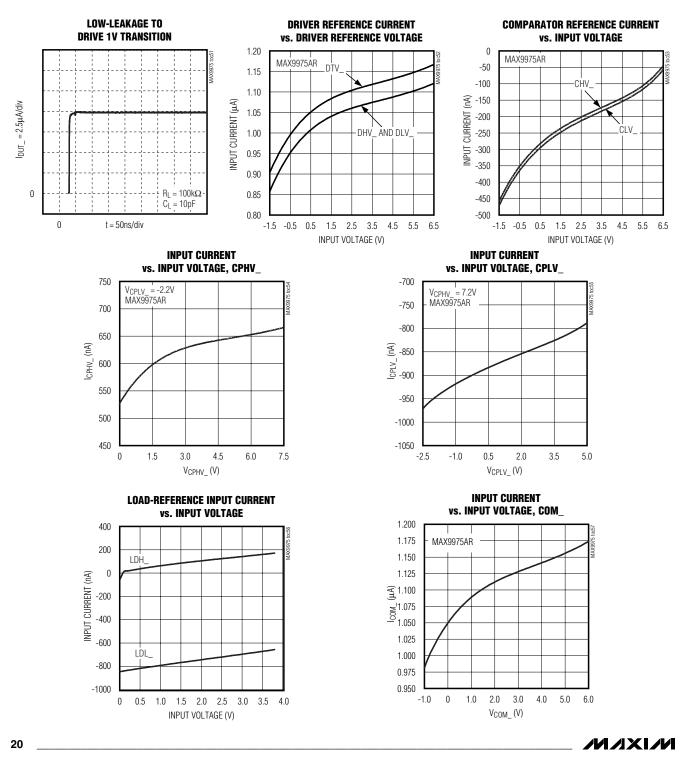
Typical Operating Characteristics (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

Typical Operating Characteristics (continued)


 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50\Omega, T_J = +85°C, unless otherwise noted.)$

MAX9975

Typical Operating Characteristics (continued)

(MAX9975AR: V_{CC} = +9.75V, V_{EE} = -4.75V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V. MAX9975AZ: V_{CC} = +10.25V, V_{EE} = -4.25V, V_{CPHV} = +7.7V, V_{CPLV} = -1.7V. V_{CCO} = +1.8V, V_{LDH} = V_{LDL} = 0V, V_{GS} = 0V, R_{HYS} = open, R_{DUT} trimmed to 50Ω, T_J = +85°C, unless otherwise noted.)

- B: SAME AS A EXCEPT DRIVER DISABLED HIGH IMPEDANCE AND LOAD ENABLED
- C: SAME AS B EXCEPT ISOURCE = ISINK = 35mA,

 $V_{COM} = -1V, R_L = 0$

D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED

SUPPLY CURRENT IEE vs. TEMPERATURE

M/XI/M

Pin Description

PIN	NAME	FUNCTION
1	TEMP	Temperature Monitor Output
2, 9, 12, 14, 17, 24, 35, 45, 46, 60, 80, 81, 91	V _{EE}	Negative Power-Supply Input
3, 5, 10, 16, 21, 23, 25, 34, 43, 44, 82, 83, 92	GND	Ground Connection
4, 11, 15, 22, 33, 41, 42, 66, 84, 85, 93	V _{CC}	Positive Power-Supply Input
6, 8, 18, 20, 54, 72	N.C.	No Connection. Do not connect.
7	DUT1	Channel 1 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.
13	GS	Ground Sense. GS is the ground reference for LDH_ and LDL
19	DUT2	Channel 2 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.
26	CLV2	Channel 2 Low-Comparator Reference Input
27	CHV2	Channel 2 High-Comparator Reference Input
28	DLV2	Channel 2 Driver-Low Reference Input
29	DTV2	Channel 2 Driver-Termination Reference Input
30	DHV2	Channel 2 Driver-High Reference Input
31	CPLV2	Channel 2 Low-Clamp Reference Input
32	CPHV2	Channel 2 High-Clamp Reference Input
36	NCH2	Channel Olligh Componenter Output Differential output of channel O high componenter
37	CH2	Channel 2 High-Comparator Output. Differential output of channel 2 high comparator.
38	VCCO2	Channel 2 Collector Voltage Input. Voltage input for channel 2 comparator output termination resistors. Provides pullup voltage and current for the output termination resistors.
39	NCL2	
40	CL2	Channel 2 Low-Comparator Output. Differential output of channel 2 low comparator.
47	COM2	Channel 2 Active-Load Commutation-Voltage Reference Input

Pin Description (continued)

PIN	NAME	FUNCTION
48	LDL2	Channel 2 Active-Load Source-Current Reference Input
49	LDH2	Channel 2 Active-Load Sink-Current Reference Input
50	HYS2	Channel 2 Hysteresis Input for Single-Ended Compare Mode. See HYS1 when in differential compare mode. Nominal $V_{HYS2} = -1V$.
51	TDATA2	Channel 2 Data-Termination Voltage Input. Termination voltage input for the DATA2 and NDATA2 differential inputs.
52	NDATA2	Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select driver 2's
53	DATA2	input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select DHV2. Drive NDATA2 above DATA2 to select DLV2.
55	NRCV2	Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place channel 2 in
56	RCV2	receive mode. Drive RCV2 above NRCV2 to place channel 2 into receive mode. Drive NRCV2 above RCV2 to place channel 2 into drive mode.
57	TLDEN2	Channel 2 Load-Enable Termination Voltage Input. Termination voltage input for the LDEN2 and NLDEN2 differential inputs.
58	NLDEN2	Channel 2 Multiplexer Control Inputs. Differential controls LDEN2 and NLDEN2 enable/disable the
59	LDEN2	active load. Drive LDEN2 above NLDEN2 to enable the channel 2 active load. Drive NLDEN2 above LDEN2 to disable the channel 2 active load.
61	RST	Reset Input. Asynchronous reset input for the serial register. RST is active low.
62	CS	Chip-Select Input. Serial port activation input. \overline{CS} is active low.
63	THR	Single-Ended Logic Threshold. Leave THR unconnected to set the threshold to +1.25V or force THR to a desired threshold voltage.
64	SCLK	Serial Clock Input. Clock for serial port.
65	DIN	Data Input. Serial port data input.
67	LDEN1	Channel 1 Multiplexer Control Inputs. Differential controls LDEN1 and NLDEN1 enable/disable the
68	NLDEN1	active load. Drive LDEN1 above NLDEN1 to enable the channel 1 active load. Drive NLDEN1 above LDEN1 to disable the channel 1 active load.
69	TLDEN1	Channel 1 Load-Enable Termination Voltage Input. Termination voltage input for the LDEN1 and NLDEN1 differential inputs.

MAX9975

Pin Description (continued)

PIN	NAME	FUNCTION				
70	RCV1	Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place channel 1 in				
71	NRCV1	 receive mode. Drive RCV1 above NRCV1 to place channel 1 into receive mode. Drive NRCV1 above RCV1 to place channel 1 into drive mode. 				
73	DATA1	Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1 select driver 1's				
74	NDATA1	input from DHV1 or DLV1. Drive DATA1 above NDATA1 to select DHV1. Drive NDATA1 above DATA1 to select DLV1.				
75	TDATA1	Channel 1 Data-Termination Voltage Input. Termination voltage input for the DATA1 and NDATA1 differential inputs.				
76	HYS1	Channel 1 Hysteresis Input for Single-Ended Compare Mode. Channel 1 and channel 2 hysteresis input for differential compare mode. Nominal $V_{HYS1} = -1V$.				
77	LDH1	Channel 1 Active-Load Sink-Current Reference Input				
78	LDL1	Channel 1 Active-Load Source-Current Reference Input				
79	COM1	Channel 1 Active-Load Commutation-Voltage Reference Input				
86	CL1	Channel 1 Law Comparator Output Differential output of shannel 1 Jaw comparator				
87	NCL1	Channel 1 Low-Comparator Output. Differential output of channel 1 low comparator.				
88	V _{CCO1}	Channel 1 Collector Voltage Input. Voltage input for channel 1 comparator output termination resistors. Provides pullup voltage and current for the output termination resistors.				
89	CH1					
90	NCH1	Channel 1 High-Comparator Output. Differential output of channel 1 high comparator.				
94	CPHV1	Channel 1 High-Clamp Reference Input				
95	CPLV1	Channel 1 Low-Clamp Reference Input				
96	DHV1	Channel 1 Driver-High Reference Input				
97	DTV1	Channel 1 Driver-Termination Reference Input				
98	DLV1	Channel 1 Driver-Low Reference Input				
99	CHV1	Channel 1 High-Comparator Reference Input				
100	CLV1	Channel 1 Low-Comparator Reference Input				

Functional Diagram

MAX9975

Detailed Description

The MAX9975 dual, low-power, high-speed, pin-electronics DCL IC includes, for each channel, a three-level pin driver, a dual comparator, variable clamps, and an active load. An additional differential comparator allows comparisons between the two channels. The driver features a -1.5V to +6.5V (MAX9975AR) or a -1.0V to +7.0V (MAX9975AZ) operating range and high-speed operation, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The dual comparator provides low dispersion (timing variation) over a wide variety of input conditions, and differential outputs. The clamps provide damping of high-speed DUT waveforms when the device is configured as a high-impedance receiver. The programmable load supplies up to 35mA of source and sink current. The load facilitates contact/continuity testing, atspeed parametric test of IOH and IOL, and pullup of highoutput-impedance devices.

Internal resistors at the high-speed inputs provide compatibility with CML interfaces. In addition, flexible opencollector outputs with optional internal pullup resistors are available for the comparators. These features significantly reduce the discrete component count on the circuit board.

A 3-wire, low-voltage CMOS-compatible serial interface programs the low-leakage, load-disable, slew-rate, dif-

ferential/window comparator and tri-state/terminate operational configurations of the MAX9975.

MAX9975 and MAX9969 Compatibility

The MAX9975 is pin compatible and functionally similar to the MAX9969. The MAX9975 differs from the MAX9969 in the following ways.

- The MAX9975 has lower DHV_, DLV_, and DTV_ gain errors.
- The MAX9975 has no programmable slew-rate control; the slew rate control bits are ignored.
- The MAX9975 features programmable hysteresis.
- The MAX9975 features double the comparator output current.
- The MAX9975AZ features a -1V to +7V operating range.

Output Driver

The driver input is a high-speed multiplexer that selects one of three voltage inputs: DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_ and mode-control bit TMSEL (Table 1).

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). In highimpedance mode, the clamps are connected. Highspeed input RCV_ and mode-control bits TMSEL and

Figure 2. Simplified Driver Channel

M/IXI/M

Table 1. Driver Logic

	EXTERNAL CONNECTIONS		RNAL FROL STER	DRIVER OUTPUT
DATA	RCV	TMSEL	LLEAK	
1	0	Х	0	Drive to DHV_
0	0	Х	0	Drive to DLV_
x	1	1	0	Drive to DTV_ (term mode)
х	1	0	0	High-impedance mode (high-Z)
Х	Х	Х	1	Low-leakage mode

LLEAK control the switching. In high-impedance mode, the bias current at DUT_ is less than 3μ A over the 0 to 3V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 15nA, and signal tracking slows. See the *Low-Leakage Mode, LLEAK* section for more details.

The nominal driver output resistance can be trimmed to different values. Contact the factory for different resistance values within the 45Ω to 51Ω range.

Clamps

Configure the voltage clamps (high, CPHV_ and low, CPLV_) to limit the voltage at DUT_ and to suppress reflections when the channel is configured as a highimpedance receiver. The clamps behave as diodes connected to the outputs of high-current buffers. Internal circuitry compensates for the diode drop at 1mA clamp current. Set the clamp voltages using the external connections CPHV_ and CPLV_. The clamps are enabled only when the driver is in high-impedance mode (Figure 2). For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application specific and must be empirically determined. If clamping is not desired, set the clamp voltages at least 0.7V outside the expected DUT_ voltage range; overvoltage protection remains active without loading DUT .

Comparators The MAX9975 provides two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see the *Functional*

Diagram). Comparator outputs are a logical result of the input conditions, as indicated in Tables 2 and 3.

The comparator differential outputs are open-collector outputs to ease interfacing with a wide variety of logic families. Internal termination resistors switch a 16mA current source between the two outputs (Figure 3). The termination resistors connect the outputs to voltage input V_{CCO}. Connect V_{CCO} to the desired V_{OH} voltage. Each output provides a nominal 800mV_{P-P} swing and 50 Ω source termination. If an additional external 50 Ω destination termination is used to double-terminate the line, the nominal 800mV swing will be halved.

The upper comparators are configurable as differential receivers for LVDS and other differential DUT_ signals. When mode bit CDIFF is asserted, the upper comparator inputs are routed from the DUT_ outputs for both channels.

Hysteresis

The comparator function incorporates hysteresis control. Hysteresis rejects noise and prevents oscillations on low-slew input signals. External resistors control hysteresis levels. HYS1 controls channel 1 and HYS2 controls channel 2, when the MAX9975 is programmed in single-ended compare mode (CDIFF = 0). HYS1 also controls channel 2's high-comparator output when the MAX9975 is programmed in differential compare mode (CDIFF = 1). With HYS_ unconnected, the programmed hysteresis is 0mV. Connect an external resistor between HYS_ and GND to program nonzero hysteresis. See the *Typical Operating Characteristics* for typical resistance values.

Table 2. Comparator Logic, CDIFF = 0(Single-Ended Compare Mode)

SC1	SC0	DRIVER SLEW RATE (%)
0	0	100
0	1	75
1	0	50
1	1	25

Table 3. Comparator Logic, CDIFF = 1(Differential Compare Mode)

DUT1 > DUT2	$DUT_ > CLV_$	CL_	CH_
0	0	0	0
0	1	1	0
1	0	0	1
1	1	1	1

MAX9975

Figure 3. Open-Collector Comparator Outputs

Active Load

The active load consists of linearly programmable, Class AB source and sink current sources, a commutation buffer, and a diode bridge (see the *Functional Diagram*). Analog control inputs LDH_ and LDL_ program the sink and source currents, respectively, within the 0 to 35mA range. Analog reference input COM_ sets the commutation buffer output voltage. The source and sink naming convention is referenced to the DUT. Current out of the MAX9975 constitutes sink current and current into the MAX9975 constitutes source current. The Class AB loads of the MAX9975 offer substantial efficiency improvement over conventional active-load circuitry.

The programmed source (low) current loads the DUT when $V_{DUT_} > V_{COM_}$. The programmed sink (high) current loads the DUT when $V_{DUT_} < V_{COM_}$.

High-speed differential input LDEN_ and 2 bits of the control word (LDDIS and LLEAK) control the load (Table 4). When the load is enabled, the internal source and sink current sources connect to the diode bridge. When the load is disabled, the internal current sources

shunt to ground and the top and bottom of the bridge float (see the *Functional Diagram*). LLEAK places the load in low-leakage mode, and overrides LDEN_. See the *Low-Leakage Mode, LLEAK* section for more detailed information.

LDDIS

In some tester configurations, the load enable is driven with the complement of the driver high-impedance signal (RCV_), so disabling the driver enables the load and vice versa. The LDDIS signal allows the load to be disabled independent of the state of LDEN_ (Table 4).

GS Input

GS is the ground-sense input. A level-setting DAC, such as the MAX5631 or MAX5734, programs the MAX9975's active load, driver, comparator, and clamps. Although all the DAC levels are typically offset by V_{GS}, the operation of the MAX9975's ground-sense input nullifies this offset with respect to the active-load current. Connect GS to the same ground reference used by the DAC. ($V_{LDL_-} - V_{GS}$) sets the source current by +10mA/V. ($V_{LDH_-} - V_{GS}$) sets the sink current by -10mA/V.

To maintain an 8V range in the presence of GS variations, GS offsets DHV_, DLV_, DTV_, CPHV_, CPLV_, and COM_ ranges. Adequate supply headroom must be maintained in the presence of GS variations. Ensure:

$$\begin{split} &V_{CC} \geq 9.5V + Max(V_{GS}) \; (MAX9975AR) \\ &V_{CC} \geq 10.0V + Max(V_{GS}) \; (MAX9975AZ) \\ &V_{EE} \leq -4.5V + Min(V_{GS}) \; (MAX9975AR) \\ &V_{EE} \leq -4.0V + Min(V_{GS}) \; (MAX9975AZ) \end{split}$$

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port or with RST places the MAX9975 into a very low-leakage state (see the *Electrical Characteristics* table). With LLEAK asserted, the comparators function at a reduced speed, and

Table 4. Active-Load Programming

EXTERNAL CONNECTIONS	INTERNAL CONTROL REGISTER		MODE	
LDEN_	LDDIS	LLEAK		
0	0	0	Normal operating mode, load disabled	
1	0	0	Normal operating mode, load enabled	
Х	1	0	Load disabled	
X	Х	1	Low-leakage mode	

Figure 4. Serial Interface

the driver, clamps, and active load are disabled. This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK is programmed independently for each channel.

When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9975 modes (Figure 4 and Table 5). Control data flow into an 8-bit shift register (MSB first) and are latched when \overline{CS} is taken high, as shown in Figure 5. Latches contain 6 control bits for each channel of the dual-pin driver. Data from the shift register are loaded to either or both of the latches as determined by bits D6 and D7. When CDIFF = 1, its effect is independent of bits D6 and D7. The control bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel, as shown in Tables 1 and 2. \overline{RST} sets LLEAK = 1 for both channels, forcing them into low-leakage mode. All other bits are unaffected. At power-up, hold \overline{RST} low until V_{CC} and V_{FF} have stabilized.

Figure 5. Serial-Interface Timing

///XI///

BIT	NAME	DESCRIPTION				
D7	CH1	Channel 1 Write Enable. Set to 1 to update the control byte for channel 1. Set to 0 to make no changes to channel 1.				
D6	CH2	Channel 2 Write Enable. Set to 1 to update the control byte for channel 2. Set to 0 to make no changes to channel 2.				
D5	LLEAK	Low-Leakage Select. Set to 1 to put driver, load, and clamps in low-leakage mode. Comparators remain active in low-leakage mode, but at reduced speed. Set to 0 for normal operation.				
D4	TMSEL	Termination Select. Driver Termination Select Bit. Set to 1 to force the driver output to the DTV_ voltage when $RCV_{=} 1$ (term mode). Set to 0 to place the driver into high-impedance mode when $RCV_{=} 1$ (high-Z). See Table 1.				
D3	SC1	Driver Slew Rate Select. SC1 and SC0 set the				
D2	SC0	driver slew rate. See Table 2.				
D1	CDIFF	Differential Comparator Enable. Set to 1 to enable the differential comparators and disable the CH_ window comparators. Set to 0 to enable the CH_ window comparators and disable the differential comparators. See Tables 3a and 3b.				
DO		Load Disable. Set LDDIS to 1 to disable the				

Table 5. Shift Register Functions

Analog control input THR sets the threshold for the input logic, allowing operation with CMOS logic as low as 0.9V. Leaving THR unconnected results in a nominal threshold of 1.25V from an internal reference, providing compatibility with 2.5V to 3.3V logic.

Temperature Monitor

The MAX9975 supplies a temperature output signal, TEMP, that asserts a 3.33V nominal output voltage at a +70°C (343K) die temperature. The output voltage changes proportionally with temperature at 10mV/°C.

Heat Removal

Under normal circumstances, the MAX9975 requires heat removal through the exposed pad by use of an external heat sink. The exposed pad is electrically at VEE potential, and must be either connected to VEE or isolated.

Power dissipation is highly dependent upon the application. The *Electrical Characteristics* table indicates power dissipation under the condition that the source and sink currents are programmed to 0mA. Maximum dissipation occurs when the source and sink currents are both at 35mA, the V_{DUT} is at an extreme of the voltage range, and the diode bridge is fully commutated. Under these conditions, the additional power dissipated (per channel) is:

If DUT_ is sourcing current:

PD = (VDUT_ - VEE) × ISOURCE

If DUT_ is sinking current:

 $P_D = (V_{CC} - V_{DUT}) \times I_{SINK}$

DUT_ sources the programmed (low) current when $V_{DUT_} > V_{COM_}$. The path of the current is from DUT_ through the outside of the diode bridge and the source (low) current source to V_{EE}. The programmed sink current is greatly reduced by the class AB load architecture.

DUT_ sinks the programmed (high) current when V_{DUT} < V_{COM} . The path of the current is from V_{CC} through the sink (high) current source and the outside of the diode bridge to DUT_. The programmed source current is greatly reduced by the Class AB architecture.

 θ_{JC} of the exposed-pad package is very low, approximately 1°C/W to 2°C/W. Die temperature is thus highly dependent upon the heat removal techniques used in the application. Maximum total power dissipation occurs under conditions shown in Table 6.

Table 6. Maximum Power DissipationConditions

PARAMETER	MAX9975AR	MAX9975AZ
Vcc	+10.5V	+11V
VEE	-5.25V	-4.75V
ISOURCE = ISINK	35mA	35mA
LOAD	Both Channels Enabled	Both Channels Enabled
V _{DUT} _	-1.5V	-1V
V _{COM} _	+0.5V	+0.5V

Under these extreme conditions, the total power dissipation is 4.3W typical and 4.8W maximum. If the die temperature cannot be maintained at an acceptable level under these conditions, use software clamping to limit the load output currents to lower values and/or reduce the supply voltages.

_Power-Supply Considerations

Bypass all V_{CC} and V_{EE} power input pins with 0.01 μF capacitors, and use bulk bypassing of at least 10 μF on each supply.

Selector Guide

PART	ACCURACY GRADE	COMPARATOR OUTPUT	HIGH-SPEED DIGITAL INPUT TERMINATION (Ω)		HEAT EXTRACTION	
	GIADE	TERMINATION	RCV_	DATA_	LDEN_	
MAX9969ADCCQ	А	None	None	None	None	Тор
MAX9969AGCCQ	A	None	100	100	100	Тор

Pin Configuration

_Package Information

For the latest package outline information, go to www.maxim-ic.com/packages

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

32 _____

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2005 Maxim Integrated Products Printed USA

A **MAXIM** is a registered trademark of Maxim Integrated Products, Inc.