Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Abstract

General Description The MAX9975 dual, low-power, high-speed, pin electronics driver/comparator with 35 mA load IC includes, for each channel, a three-level pin driver, a dual comparator, variable clamps, and an active load. An additional differential comparator allows comparisons between the two channels. The driver features a wide voltage range and high-speed operation, includes highimpedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The dual comparator provides low dispersion (timing variation) over a wide variety of input conditions, and differential outputs. The clamps provide damping of high-speed device-under-test (DUT) waveforms when the device is configured as a high-impedance receiver. The programmable load supplies up to 35 mA of source and sink current. The load facilitates contact/continuity testing, at-speed parametric testing of IOH and IOL , and pullup of high-output-impedance devices. The MAX9975 provides high-speed, differential control inputs and open-collector outputs with internal 50Ω termination resistors that make it CML compatible. These features significantly reduce the discrete component count on the circuit board. A 3-wire, low-voltage, CMOS-compatible serial interface programs the low-leakage and tri-state/terminate operational configurations of the MAX9975. The MAX9975ARCCQ operating range is -1.5 V to +6.5 V . The MAX9975AZCCQ operating range is -1.0 V to +7.0 V . The MAX9975 features power dissipation of only 1.6 W per channel. The device is available in a $100-\mathrm{pin}, 14 \mathrm{~mm}$ $\times 14 \mathrm{~mm} \times 0.1 \mathrm{~mm}$ body, and 0.5 mm pitch TQFP. An exposed $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ die pad on the top of the package facilitates efficient heat removal. The device is specified to operate with an internal die temperature of $+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, and features a die temperature monitor output.

Features

- Low 1.6W/Channel (typ) Power Dissipation
- Greatly Reduced Power Penalty when Load Commutated
- High Speed: 1200Mbps at 3VP-P and 1800Mbps at 1Vp-p
- Programmable 35mA Active-Load Current
- Low Timing Dispersion
- Wide -1.5V to +6.5V (MAX9975AR) or -1.0V to +7.0 V (MAX9975AZ) Operating Range
- Active Termination (3rd-Level Drive)
- Integrated Clamps
- Integrated Differential Comparator
- Interfaces Easily with Most Logic Families
- Internal 50 Termination Resistors
- Low Gain and Offset Errors
- Comparator Hysteresis Control from OV to 15 mV

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9975ARCCQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	100 TQFP-EPR**
MAX9975ARCCQ+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	100 TQFP-EPR*
MAX9975AZCCQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	100 TQFP-EPR**
MAX9975AZCCQ+ ${ }^{*}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	100 TQFP-EPR**

*Future product-contact factory for availability.
**EPR = Exposed pad reversed (TOP).
+Denotes lead-free package.

Applications

Medium-Performance Commodity Memory ATE

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ABSOLUTE MAXIMUM RATINGS

MAX9975AR	
VCC to GND	-0.3V to +11V
$V_{E E}$ to GND	-5.75 V to +0.3 V
DUT_ to GND	-2.75V to +7.5V
DHV_, DLV_, DTV_, CHV_, CLV_, COM_	
to GND.	-2.5 V to +7.5 V
CPHV_ to GND	. 1.0 V to +8.5 V
CPLV_ to GND	-3.5 V to +6.0 V
DUT_ Short Circuit to -1.5 V to +6.5 V .	Continuous
MAX9975AZ	
$V_{C c}$ to GND .	--0.3V to +11.5V
$V_{\text {EE }}$ to GND.	-5.25V to +0.3V
DUT_ to GND	.-2.25V to +8.0V
DHV_, DLV_, DTV_, CHV_, CLV_, COM_	
to GND.	-2.0V to +8.0V
CPHV_ to GND ...-0.5V to +9.0V	
CPLV_ to GND..-3.0V to +6.5V	
DUT_ Short Circuit to -1.0V to +7.0V	Continuous
GS to GND ... 1 IV	
LDH_, LDL_ to GND ...-0.3V to +6V	
DATA_, NDATA_, RCV_, NRCV_ to GND	-2.5V to +5V

LDEN_, NLDEN_ to GND..2.5V to +5 V DATA_ to NDATA_, RCV_ to NRCV_, LDEN_ to NLDEN_...... $\pm 1.5 \mathrm{~V}$
TDATA_, TLDEN_ to GND ..-2.5V to +5 V DATA_, NDATA_ to TDATA_.. 2 V
LDEN_, NLDEN_ to TLDEN_..2V
VCCO_to GND ... 0.3 V to +5 V
SCLK, DIN, $\overline{C S}$, $\overline{R S T}$ to GND-1V to +5 V
DHV_ to DLV_ ... $\pm 10 \mathrm{~V}$
DHV_ to DTV_ .. $\pm 10 \mathrm{~V}$
DLV_ to DTV_... $\pm 10 \mathrm{~V}$
CHV_ or CLV_ to DUT_... $\pm 10 \mathrm{~V}$
$\mathrm{CH}_{-}, \mathrm{NCH}_{-}, \mathrm{CL}_{-}, \mathrm{NCL}_{-}$to GND.................................-1V to +5 V
HYS_ Current ...-1mA to +1mA
All Other Pins to GND(VEE - 0.3V) to (VCC +0.3 V)
TEMP Current..-0.5mA to +20 mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
100-Pin TQFP-EPR (derate $167 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $+70^{\circ} \mathrm{C}$)
13.3W*
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Lead Temperature, Lead-Free (soldering, 10s)............... $+260^{\circ} \mathrm{C}$
Lead Temperature, Leaded (soldering, 10s)................... $+300^{\circ} \mathrm{C}$
*Dissipation wattage values are based on still air with no heat sink. Actual maximum power dissipation is a function of heat-extraction techniques and may be substantially higher.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ:} \mathrm{~V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CPLV}}^{-}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDH}}^{-}, ~=\mathrm{V}_{\mathrm{LDL}}=\overline{\mathrm{O}}, \mathrm{V}$ GS $=0 \mathrm{~V}, \mathrm{RHYS}_{-}=\mathrm{open}, \mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply	VCC	MAX9975AR	9.5	9.75	10.5	V
		MAX9975AZ	10.0	10.25	11.0	
Negative Supply	$V_{\text {EE }}$	MAX9975AR	-5.25	-4.75	-4.50	V
		MAX9975AZ	-4.75	-4.25	-4.00	
Positive Supply Current (Note 2)	IcC	$\mathrm{V}_{\text {LDH- }}=\mathrm{V}_{\text {LDL- }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega$		170	190	mA
		$\mathrm{V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL }}=3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$, $V_{\text {COM_ }}=1.5 \mathrm{~V}$, load enabled, driver $=$ high impedance		250	280	
Negative Supply Current (Note 2)	IeE	$\mathrm{V}_{\text {LDH- }}=\mathrm{V}_{\text {LDL- }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega$		-290	-320	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{LDH}}^{-} \\ & =\mathrm{V}_{\mathrm{LDL}}=3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0, \\ & \mathrm{~V}_{\mathrm{COM}}=-1 \mathrm{~V}, \text { load enabled, } \\ & \text { driver }=\text { high impedance } \end{aligned}$		-370	-410	
		$\mathrm{V}_{\text {LDH- }}=\mathrm{V}_{\text {LDL- }}=0 \mathrm{~V}$		3.2	3.6	
Power Dissipation (Notes 2, 3)	PD	$\mathrm{V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL }}=3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$, $\mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}$, load enabled, driver = high impedance		3.7	4.1	W

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{E E}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$,
 cients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV_ }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{VGS}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{HY}} \mathrm{V}_{-}=\mathrm{open}, \mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
SERIAL INTERFACE TIMING (Figure 6)							
SCLK Frequency	fsclk					50	MHz
SCLK Pulse-Width High	tch			8			ns
SCLK Pulse-Width Low	tcL			8			ns
$\overline{\mathrm{CS}}$ Low to SCLK High Setup	tcsso			3.5			ns
$\overline{\mathrm{CS}}$ High to SCLK High Setup	tCSS1			3.5			ns
SCLK High to $\overline{\mathrm{CS}}$ High Hold	tCSH1			3.5			ns
DIN to SCLK High Setup	tDS			3.5			ns
DIN to SCLK High Hold	tDH			3.5			ns
$\overline{\overline{C S}}$ Pulse-Width High	tcswh			20			ns
TEMPERATURE MONITOR (TEMP)							
Nominal Voltage		$\mathrm{T}_{J}=+70^{\circ} \mathrm{C}, \mathrm{R}$	$\geq 10 \mathrm{M} \Omega$		3.33		V
Temperature Coefficient					+10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Resistance					20		$\mathrm{k} \Omega$
DRIVERS (Note 8)							
DC OUTPUT CHARACTERISTICS ($\mathrm{R}_{\mathrm{L}} \geq \mathbf{1 0 \mathrm { M } \Omega}$)							
DHV_, DLV_, DTV_, Output Offset Voltage	Vos	At DUT_ with independently	DHV_, VDTV_, VDLV_ tested at +1.5 V			± 15	mV
Output Offset Voltage Due to Ground Sense	VGSOS	MAX9975AR	$\begin{aligned} & V_{G S}=+100 \mathrm{mV} \\ & V_{D H V}=6.5 \mathrm{~V}+100 \mathrm{mV} \end{aligned}$		± 2		mV
			$\begin{aligned} & \mathrm{VGS}=-100 \mathrm{mV}, \\ & V_{D L V}=-1.5 \mathrm{~V}-100 \mathrm{mV} \end{aligned}$		± 2		
		MAX9975AZ	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=+100 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{DHV}}=7 \mathrm{~V}+100 \mathrm{mV} \end{aligned}$	± 2			
			$\begin{aligned} & V_{G S}=-100 \mathrm{mV}, \\ & V_{\text {DLV }}=-1 \mathrm{~V}-100 \mathrm{mV} \end{aligned}$	± 2			
DHV_, DLV_, DTV_ Output-Offset Temperature Coefficient				+200			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
DHV_, DLV_, DTV_ Gain	Av	Measured with $V_{D H V}, V_{D L V}$, and $V_{D T V}$ at OV and 4.5V		0.997	1.00	1.003	V/V
DHV_, DLV_, DTV_ Gain Temperature Coefficient					-50		ppm/ ${ }^{\circ} \mathrm{C}$
Linearity Error		V${ }_{\text {DUT_- }}=1.5 \mathrm{~V}, 3 \mathrm{~V}$ (Note 9)				± 5	mV
		Full range (Notes 9, 10)				± 15	
DHV_ to DLV_ Crosstalk		MAX9975AR	$\begin{aligned} & V_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DHV- }}=200 \mathrm{mV}, 6.5 \mathrm{~V} \end{aligned}$			± 2	mV
		MAX9975AZ	$\begin{aligned} & \mid V_{D L V_{-}}=0 \mathrm{~V}, \\ & V_{D H V_{-}}=200 \mathrm{mV}, 7 \mathrm{~V} \end{aligned}$			± 2	

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CPLV}}=-1.7 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH }}=\mathrm{V}_{\mathrm{LDL}}=\overline{0} \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{OV}, \mathrm{RHYS}_{-}=\mathrm{open}, \mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DLV_ to DHV_ Crosstalk		MAX9975AR	$\begin{aligned} & \mathrm{V}_{\mathrm{DHV}_{-}}=5 \mathrm{~V}, \\ & \mathrm{VDLV}_{-}=-1.5 \mathrm{~V},+4.8 \mathrm{~V} \end{aligned}$			± 2	mV
		MAX9975AZ	$\begin{aligned} & V_{D H V_{-}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV }}=-1 \mathrm{~V},+4.8 \mathrm{~V} \end{aligned}$			± 2	
DTV_ to DLV_ and DHV_ Crosstalk		MAX9975AR	$\begin{aligned} & \mathrm{V}_{\text {DHV }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-1.5 \mathrm{~V},+6.5 \mathrm{~V} \end{aligned}$			± 2	mV
		MAX9975AZ	$\begin{aligned} & V_{D H V_{-}}=3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-1 \mathrm{~V},+7 \mathrm{~V} \end{aligned}$			± 2	
DHV_ to DTV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{\text {DTV }_{-}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DH}}=1.6 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$				± 2	mV
DLV_ to DTV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{\mathrm{DTV}_{-}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV }_{-}}=0 \mathrm{~V}, 1.4 \mathrm{~V} \end{aligned}$				± 2	mV
DHV_, DTV_, DLV_DC PowerSupply Rejection Ratio	PSRR	(Note 11)				± 18	mV/V
Maximum DC Drive Current	IDUT_			± 40		± 80	mA
DC Output Resistance	RDUT_	IDUT_ $= \pm 30 \mathrm{~mA} \mathrm{(Note} \mathrm{12)}$		47	48	49	Ω
DC Output Resistance Variation	Δ RDUT_	IDUT _ $= \pm 1 \mathrm{~mA}, \pm 8 \mathrm{~mA}$ IDUT _ $= \pm 1 \mathrm{~mA}, \pm 8 \mathrm{~mA}, \pm 15 \mathrm{~mA}, \pm 40 \mathrm{~mA}$			0.5	1	Ω
					0.75	1.5	
DYNAMIC OUTPUT CHARACTERISTICS ($\left.\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$							
AC Drive Current				± 80			mA
Drive-Mode Overshoot		$V_{D L V}{ }_{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=0.1 \mathrm{~V}$			15	22	mV
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=1 \mathrm{~V}$			110	130	
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=3 \mathrm{~V}$			210	370	
Drive-Mode Undershoot		$V_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=0.1 \mathrm{~V}$			4	11	mV
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=1 \mathrm{~V}$			20	65	
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=3 \mathrm{~V}$			30	185	
Term-Mode Overshoot (Note 13)		$\begin{aligned} & \text { VDUT_ }_{\text {DU }}=1.0 V_{P-P}, t_{R}=t_{F}=250 \mathrm{ps}, \\ & 10 \% \text { to } 90 \% \end{aligned}$			60	150	mV
		$\begin{aligned} & \text { VDUT_ }_{\text {DU }}=3.0 V_{P-P, ~} \text { tR }=t_{F}=500 \mathrm{ps}, \\ & 10 \% \text { to } 90 \% \end{aligned}$			0		
Term-Mode Spike		$\mathrm{V}_{\text {DHV }}=\mathrm{V}_{\text {DTV }}=1 \mathrm{~V}, \mathrm{~V}_{\text {DLV- }}=0 \mathrm{~V}$			180	250	mV
		$V_{D L V}=V_{D T V}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=1 \mathrm{~V}$			180	250	
High-Impedance-Mode Spike		$\mathrm{V}_{\text {DLV }}=-1.0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=0 \mathrm{~V}$			100		mV
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=1 \mathrm{~V}$			100		
Settling Time to within 25 mV		3V step (Note 14)			4		ns
Settling Time to within 5mV		3V step (Note 14)			40		ns

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975} \mathrm{AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\mathrm{LDL}}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{HYS}}^{-}=\mathrm{open}, \mathrm{TJ}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{C P L V}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{C P L V}=-1.7 \mathrm{~V} . \mathrm{V}_{C C O}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH }}=\mathrm{V}_{\mathrm{LDL}}=\overline{\mathrm{O}} \mathrm{V}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{RH}_{-} \mathrm{S}_{-}=\mathrm{open}, \mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Pulse Width (Note 17)		0.2VP-P		550			ps
		1VP-P			550	630	
		2VP-P			650	750	
		3VP-P			850	1000	
		$5 V_{\text {P-P, }} \mathrm{ZL}=500 \Omega$			1300		
Data Rate (Note 18)		0.2VP-P			1800		Mbps
		1VP-P			1800		
		2VP-P			1500		
		3VP-P			1200		
		$5 V_{\text {P-P, }} \mathrm{ZL}_{\text {L }}=500 \Omega$			800		
Dynamic Crosstalk		(Note 19)		12			mVP-P
Rise and Fall Time, Drive to Term	tDTR, tDTF	$V_{D H V_{-}}=3 \mathrm{~V}, \mathrm{~V}_{D L V_{-}}=0 \mathrm{~V}, \mathrm{~V}_{D T V_{-}}=1.5 \mathrm{~V}$ 10% to 90%, Figure 1a (Note 20)		0.6	1.0	1.3	ns
Rise and Fall Time, Term to Drive	ttdr, ttdF	$V_{D H V}=3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=1.5 \mathrm{~V}$, 10% to 90%, Figure 1b (Note 20)		0.6	1.0	1.3	ns
COMPARATORS (Note 8)							
COMPARATOR DC CHARACTERISTICS							
Input Voltage Range (Note 4)	VIN	MAX9975AR		-1.5		+6.5	V
		MAX9975AZ		-1.0		+7.0	
Differential Input Voltage	VIIFF			± 8			V
Input Offset Voltage	VOS	V${ }_{\text {DUT_- }}=1.5 \mathrm{~V}$				± 20	mV
Input Offset-Voltage Temperature Coefficient					± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common-Mode Rejection Ratio (Note 21)	CMRR	MAX9975AR	$\mathrm{V}_{\text {DUT_- }}=-1.5 \mathrm{~V},+6.5 \mathrm{~V}$		± 0.25	± 2	mV/V
		MAX9975AZ	VDUT_ $=-1 \mathrm{~V},+7 \mathrm{~V}$		± 0.25	± 2	
Linearity Error (Note 9)		MAX9975AR	$\mathrm{V}_{\text {DUT_ }}=1.5 \mathrm{~V}, 3 \mathrm{~V}$			± 3	mV
			$\mathrm{V}_{\text {DUT_- }}=-1.5 \mathrm{~V},+6.5 \mathrm{~V}$			± 10	
		MAX9975AZ	$V_{\text {DUT_ }}=1.5 \mathrm{~V}, 3 \mathrm{~V}$			± 3	
			VDUT_ $=-1 \mathrm{~V},+7 \mathrm{~V}$		± 10		
Power-Supply Rejection Ratio (Note 11)	PSRR	$V_{\text {DUT_ }}=1.5 \mathrm{~V}$			± 0.035	± 2	mV/V
COMPARATOR HYSTERESIS							
Input Hysteresis		RHYS = open			0		mV
		RHYS $=5 \mathrm{k} \Omega$			2		
		RHYS $=3.8 \mathrm{k} \Omega$			5		
		RHYS $=2.9 \mathrm{k} \Omega$			10		
		RHYS $=2.3 \mathrm{k} \Omega$			15		

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV_ }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{HYS}}^{-}=\mathrm{open}, \mathrm{T}_{J}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+7.7 \mathrm{~V}$,
 cients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
COMPARATOR LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_)							
VCCO_ Voltage Range	VvCCO_			1.5		3.5	V
VCCO_ Current	IVCCO_				64		mA
Output Low Voltage Compliance		Set by lol, RTERM, and VCCO_		-0.5			V
Output High Voltage	VOH	$\mathrm{I}_{\mathrm{CH}_{-}}=\mathrm{I}_{\mathrm{NCH}}^{-}$= $\mathrm{I}_{\mathrm{CL}}=\mathrm{I}_{\mathrm{NCL}}=0$		$\begin{gathered} \mathrm{VCCO}_{-} \\ -0.1 \end{gathered}$	$\begin{aligned} & \mathrm{VCCO}_{-} \\ & -0.01 \end{aligned}$	$\begin{aligned} & \mathrm{VCCO}_{-} \\ & +0.02 \end{aligned}$	V
Output Low Voltage	VoL	$\mathrm{I}_{\mathrm{CH}_{-}}=\mathrm{I}_{\mathrm{NCH}}^{-}$= $\mathrm{I}_{\text {CL_ }}=\mathrm{I}_{\mathrm{NCL}}=0$		$\begin{gathered} \mathrm{VCCO}_{-} \\ -0.8 \end{gathered}$			V
Output Voltage Swing		$\mathrm{I}_{\mathrm{CH}}^{-}=\mathrm{I}_{\text {NCH- }}=\mathrm{I}_{\text {CL- }}=\mathrm{I}_{\text {NCL_ }}=0$		760	800	840	mV
Internal Output Termination Resistor	RTERM	Single-ended measurement from $\mathrm{V}_{\mathrm{CCO}}$ to $\mathrm{CH}_{-}, \mathrm{NCH}_{-}, \mathrm{CL}_{-}, \mathrm{NCL}_{-}$		48		52	Ω
Differential Rise and Fall Times	$\mathrm{tR}_{\mathrm{R}}, \mathrm{tF}^{\text {r }}$	20\% to 80\%			210	250	ps
CLAMPS							
High-Clamp Input Voltage Range	$\mathrm{V}_{\mathrm{CPH}}^{-}$	MAX9975AR		0		7.5	V
		MAX9975AZ		0.5		8.0	
Low-Clamp Input Voltage Range	$V_{\text {CPL }}$	MAX9975AR		-2.5		+5.0	V
		MAX9975AZ		-2.0		+5.5	
Clamp Offset Voltage	Vos	MAX9975AR	At DUT_ with IDUT_ = 1mA, $\mathrm{V}_{\text {CPHV_ }}=0 \mathrm{~V}$			± 100	mV
			At DUT_ with IDUT_ $=-1 \mathrm{~mA}$, $\mathrm{V}_{\text {CPLV_ }}=0 \mathrm{~V}$			± 100	
		MAX9975AZ	At DUT_ with IDUT_ $=1 \mathrm{~mA}$, $\mathrm{V}_{\text {CPHV_ }}=0.5 \mathrm{~V}$			± 100	
			At DUT_ with IDUT_ $=-1 \mathrm{~mA}$, $V_{C P L V}=0 \mathrm{~V}$	± 100			
Offset-Voltage Temperature Coefficient					± 250		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Clamp Power-Supply Rejection Ratio (Note 11)	PSRR	MAX9975AR	IDUT_ $=1 \mathrm{~mA}, \mathrm{~V}_{\text {CPHV_ }}=0 \mathrm{~V}$		± 10		mV / V
			IDUT_ $=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CPLV }}=0 \mathrm{~V}$		± 10		
		MAX9975AZ	$\mathrm{I}_{\text {DUT_- }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CPHV_ }}=0.5 \mathrm{~V}$		± 10		
			IDUT_ $=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CPLV }}=0 \mathrm{~V}$	± 10			
Voltage Gain	Av			0.96		1.005	V/V
Voltage-Gain Temperature Coefficient					-30		ppm $/{ }^{\circ} \mathrm{C}$

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV_ }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDH}}^{-}=\mathrm{V}_{\mathrm{LDL}}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=\mathrm{open}, \mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Clamp Linearity		MAX9975AR	$\begin{aligned} & \hline \text { IDUT- }=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {CPLV }}=-1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPHV}}=0 \text { to } 6.5 \mathrm{~V} \end{aligned}$		± 10		mV
			$\begin{aligned} & \hline \text { IDUT_ }=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {CPHV }}=6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV- }}=-1.5 \mathrm{~V} \text { to }+5.0 \mathrm{~V} \end{aligned}$		± 10		
		MAX9975AZ	$\begin{aligned} & \hline \text { IDUT- }=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {CPLV- }}=-1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPHV }}=0.5 \mathrm{~V} \text { to } 7.0 \mathrm{~V} \\ & \hline \end{aligned}$	± 10			
			$\begin{array}{\|l} \hline \text { IDUT_ }=-1 \mathrm{~mA}, \\ \mathrm{~V}_{\text {CPHV }}=7.0 \mathrm{~V}, \\ \mathrm{C}_{\text {CPLV- }}=-1.0 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$	± 10			
Short-Circuit Output Current	IscDut_	MAX9975AR	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CPHV}_{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}=-1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DUT- }}=6.5 \mathrm{~V} \\ & \hline \end{aligned}$	40	80		mA
			$\begin{aligned} & \hline \mathrm{V}_{\text {CPHV }}=6.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DUT }}=-1.5 \mathrm{~V} \end{aligned}$	-80	-40		
		MAX9975AZ	$\begin{aligned} & \hline \mathrm{V}_{\text {CPHV }}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}=-1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DUT- }}=7.0 \mathrm{~V} \\ & \hline \end{aligned}$	40	80		
			$\begin{aligned} & \hline \mathrm{V}_{\text {CPHV }}=7.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DUT }}=-1.0 \mathrm{~V} \\ & \hline \end{aligned}$	-80	-40		
Clamp DC Impedance	Rout	$\begin{aligned} & \mathrm{V}_{\text {CPHV_ }}=3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{CU}}{ }^{2}= \pm 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CPLV}}=0 \mathrm{OV}, \\ & \text { and } \pm 15 \mathrm{~mA} \end{aligned}$	48		53	Ω
Clamp DC Impedance Variation		MAX9975AR	$\begin{aligned} & \mathrm{V}_{\mathrm{CPHV}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CPLV}}=-1.5 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{CUT}}=10 \mathrm{~mA}, \\ & 20 \mathrm{~mA}, 30 \mathrm{~mA} \end{aligned}$		1.5		Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{CPHV}}=6.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {CPLV- }}=2.5 \mathrm{~V}, \\ & \mathrm{IDUT}_{-}=-10 \mathrm{~mA}, \\ & -20 \mathrm{~mA},-30 \mathrm{~mA} \end{aligned}$		1.5		
		MAX9975AZ	$\begin{aligned} & \mathrm{V}_{\mathrm{CPHV}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}=-1.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DUT}}=10 \mathrm{~mA}, \\ & 20 \mathrm{~mA}, 30 \mathrm{~mA} \end{aligned}$		1.5		
			$\begin{aligned} & \mathrm{V}_{\mathrm{CPHV}}=7.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CPLV}}=2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{CUT}}=-10 \mathrm{~mA}, \\ & -20 \mathrm{~mA},-30 \mathrm{~mA} \end{aligned}$		1.5		

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV_ }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDH}}^{-}=1 \mathrm{~V}_{\text {LDL }}=\overline{\mathrm{O}} \mathrm{V}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=\mathrm{open}, \mathrm{TJ}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
ACTIVE LOAD ($\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$, driver in high-impedance mode, unless otherwise noted)								
COM_ Voltage Range	VCOM-	MAX9975AR			-1.0		+6.0	V
		MAX9975AZ			-0.5		+6.5	
Differential Voltage Range		VDUT_ - VCOM_			-7.5		+7.5	V
COM_ Offset Voltage	Vos	ISOURCE $=$ ISINK $=20 \mathrm{~mA}$					± 100	mV
Offset-Voltage Temperature Coefficient					+100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
COM_ Voltage Gain	Av	$\mathrm{V}_{\text {COM }}=0,4.5 \mathrm{~V}$, ISOURCE $=\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$			0.98		1.00	V/V
Voltage-Gain Temperature Coefficient						-10		ppm/ ${ }^{\circ} \mathrm{C}$
COM_ Linearity Error (Note 10)		MAX9975AR	$\begin{aligned} & \hline V_{\text {COM }}=-1 \mathrm{~V},+6 \mathrm{~V} \\ & \text { ISOURCE }=\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$			± 3	± 15	mV
		MAX9975AZ	$\begin{aligned} & \mathrm{V}_{\text {COM }}=-0.5 \mathrm{~V},+6.5 \mathrm{~V} \\ & \text { ISOURCE }=\text { ISINK }=20 \mathrm{~mA} \end{aligned}$			± 3	± 15	
COM_ Output Voltage PowerSupply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\text {COM }}=2.5 \mathrm{~V}, \\ & \text { ISOURCE }=\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}(\text { Note 11 }) \end{aligned}$					± 10	mV/V
Output Resistance, Sink or Source	Ro	$\begin{aligned} & \text { MAX9975AR } \\ & \mathrm{V}_{\text {DUT- }}=3 \mathrm{~V}, 6.5 \mathrm{~V} \\ & \text { with } \mathrm{V}_{\text {com }}=-1 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\text {DUT- }}=-1.5 \mathrm{~V},+2 \mathrm{~V} \text { with } \\ & \mathrm{V}_{\text {COM }}=+6.0 \mathrm{~V} \end{aligned}$		ISOURCE = $\mathrm{I} \text { IINK }=35 \mathrm{~mA}$	30			$\mathrm{k} \Omega$
				$\begin{aligned} & \text { ISOURCE = } \\ & \text { ISINK }=1 \mathrm{~mA} \end{aligned}$	500			
		$\begin{aligned} & \text { MAX9975AZ } \\ & \mathrm{V}_{\text {DUT- }}=3.5 \mathrm{~V}, 7.0 \mathrm{~V} \\ & \text { with } \mathrm{V}_{\text {COM }}=-0.5 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\text {DUT- }}=-1.0 \mathrm{~V},+2.5 \mathrm{~V} \text { with } \\ & \text { VCOM_ }^{2}=+6.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ISOURCE = } \\ & \text { ISINK }=35 \mathrm{~mA} \end{aligned}$	30			
				$\begin{aligned} & \text { ISOURCE }= \\ & \text { ISINK }=1 \mathrm{~mA} \end{aligned}$	500			
Output Resistance, Linear Region	Ro	$\begin{aligned} & \text { IDUT_ }= \pm 33.25 \mathrm{~mA}, \\ & \text { ISOURCE }=I_{S I N K}=35 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=2.5 \mathrm{~V} \\ & \text { verified by deadband test } \end{aligned}$				11	18	Ω
Deadband		VCOM_ = 2.5V, 95% ISOURCE to 95% ISINK				700	1000	mV
SOURCE CURRENT (VDUT_ = 4.5V)								
Maximum Source Current	ATC	VLDL_ $=3.8 \mathrm{~V}$			36		40	mA
Source Programming Gain		$\mathrm{V}_{\text {LDL- }}=0.2 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\text {LDH }}=0.1 \mathrm{~V}$			9.75	10	10.25	mA / V
Source Current Offset (Combined Offset of LDL_ and GS)	Ios	VLDL_ $=200 \mathrm{mV}$			-1000		0	$\mu \mathrm{A}$
Source-Current Temperature Coefficient		ISOURCE $=35 \mathrm{~mA}$			-15			$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Source-Current Power-Supply Rejection Ratio	PSRR	ISOURCE $=25 \mathrm{~mA}$					± 60	$\mu \mathrm{A} / \mathrm{V}$
		ISOURCE $=35 \mathrm{~mA}$					± 84	
Source Current Linearity (Note 25)		VLDL_ $=100 \mathrm{mV}$, 1V, 2.25 V					± 60	$\mu \mathrm{A}$
		$V_{\text {LDL }}=3 \mathrm{~V}$					± 130	

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV }}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\mathrm{LDL}}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{HYS}}^{-}=\mathrm{open}, \mathrm{T}_{J}=+85^{\circ} \mathrm{C}$, unless otherwise noted. All temperature coefficients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SINK CURRENT (VDUT_ = -1.5V, MAX9975AR; $\mathrm{V}_{\text {DUT }}=\mathbf{= - 1 . 0 V}$, MAX9975AZ)								
Maximum Sink Current		$\mathrm{V}_{\text {LDH_ }}=3.8 \mathrm{~V}$			-40		-36	mA
Sink Programming Gain	ATC	$\mathrm{V}_{\text {LDH }}=0.2 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\text {LDL- }}=0.1 \mathrm{~V}$			-10.25	-10	-9.75	mA / V
Sink Current Offset (Combined Offset of LDH_ and GS)	Ios	$\mathrm{V}_{\text {LDH }}=200 \mathrm{mV}$			0		1000	$\mu \mathrm{A}$
Sink-Current Temperature Coefficient		I SINK $=35 \mathrm{~mA}$				+8		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Sink-Current Power-Supply Rejection Ratio	PSRR	I SINK $=25 \mathrm{~mA}$					± 60	
		ISINK $=35 \mathrm{~mA}$					± 84	
Sink Current Linearity (Note 25)		$\mathrm{V}_{\text {LDH_ }}=100 \mathrm{mV}, 1 \mathrm{~V}, 2.25 \mathrm{~V}$					± 60	
		$\mathrm{V}_{\text {LDH- }}=3 \mathrm{~V}$					± 130	
GROUND SENSE								
GS Voltage Range	VGS	Verified by GS common-mode error test			-250		+250	mV
GS Common-Mode Error		MAX9975AR	$\begin{aligned} & V_{D U T_{-}}=-1.5 \mathrm{~V}, \\ & V_{G S}= \pm 250 \mathrm{mV}, \\ & V_{\text {LDH_ }}-\mathrm{V}_{\mathrm{GS}}=0.2 \mathrm{~V} \end{aligned}$				± 20	$\mu \mathrm{A}$
			$\begin{aligned} & V_{\text {DUT_ }}=+4.5 \mathrm{~V}, \\ & V_{G S}= \pm 250 \mathrm{mV}, \\ & V_{\text {LDL- }}-V_{G S}=0.2 \mathrm{~V} \end{aligned}$				± 20	
		MAX9975AZ	$\begin{aligned} & V_{\text {DUT_ }}=-1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 250 \mathrm{mV}, \\ & \mathrm{~V}_{\text {LDH- }}-\mathrm{V}_{\mathrm{GS}}=0.2 \mathrm{~V} \\ & \hline \end{aligned}$				± 20	
			$V_{\text {DUT_ }}=+4.5 \mathrm{~V}$, $V_{G S}= \pm 250 \mathrm{mV}$, VLDL_ - $\mathrm{V}_{\mathrm{GS}}=0.2 \mathrm{~V}$				± 20	
GS Input Bias Current		$V_{G S}=0 V$					± 25	$\mu \mathrm{A}$
AC CHARACTERISTICS ($\mathrm{Z}_{\mathrm{L}}=50 \Omega$ to GND)								
Enable Time (Note 26)	ten	ISOURCE $=10 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=-1 \mathrm{~V}$			2.7	3.5	4.3	ns
		$\mathrm{ISINK}=10 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1 \mathrm{~V}$			2.7	3.5	4.3	
Disable Time (Note 26)	tDIS	ISOURCE $=10 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1 \mathrm{~V}$			1.5	2	2.5	ns
		$\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=-1 \mathrm{~V}$			1.5	2	2.5	
Current Settling Time on Commutation (Note 27)		ISOURCE $=$ ISINK $=1 \mathrm{~mA}$		To 10\%		15		ns
				To 1.5\%		50		
		ISOURCE $=\mathrm{I}_{\text {S }}$ INK $=20 \mathrm{~mA}$		To 10\%		3	5	
				To 1.5\%		15		
Spike During Enable/Disable Transition		ISOURCE $=\mathrm{I}_{\text {SINK }}=35 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$				200	300	mV

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

ELECTRICAL CHARACTERISTICS (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$,
 cients are measured at $\mathrm{T}_{J}=+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Note 1: All minimum and maximum DC measurements and driver 3 V rise- and fall-time test limits are 100% production tested. All other test limits are guaranteed by design. Tests are performed at nominal supply voltages, unless otherwise noted.
Note 2: Total for dual device at worst-case setting.
Note 3: Does not include above ground internal dissipation of the comparator outputs. Additional power dissipation is typically ($64 \mathrm{~mA} \times \mathrm{V}_{\mathrm{VCCO}}$).
Note 4: Externally forced voltages may exceed this range provided that the Absolute Maximum Ratings are not exceeded.
Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.
Note 6: Based on simulation results only.
Note 7: Transition time from LLEAK being deasserted to output returning to normal operating mode.
Note 8: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
Note 9: Relative to straight line between 0 and 4.5 V .
Note 10: Specifications measured at the endpoints of the full range. Full range for the MAX9975AR is $-1.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DHV}} \leq+6.5 \mathrm{~V},-1.5 \mathrm{~V} \leq$ $V_{D L V} \leq+6.3 \mathrm{~V},-1.5 \mathrm{~V} \leq \mathrm{V}_{\text {DTV }} \leq+6.5 \mathrm{~V}$. Full range for the MAX9975AZ is $-0.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DHV}} \leq+7 \mathrm{~V},-1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DLV}}-\leq+6.8 \mathrm{~V},-1 \mathrm{~V} \leq$ $V_{D T V} \leq+7 \mathrm{~V}$.
Note 11: Change in offset voltage with power supplies independently set to their minimum and maximum values.
Note 12: Nominal target value is 48Ω. Contact factory for alternate trim selections within the 45Ω to 51Ω range.
Note 13: $V_{D T V}=$ midpoint of voltage swing, $R_{S}=50 \Omega$. Measurement is made using the comparator.
Note 14: Measured from the crossing point of DATA_ inputs to the settling of the driver output.
Note 15: Prop delays are measured from the crossing point of the differential input signals to the 50% point of the expected output swing. Rise time of the differential inputs DATA_ and RCV_ are 250ps (10% to 90%).
Note 16: Rising edge to rising edge or falling edge to falling edge.
Note 17: Specified amplitude is programmed. At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.
Note 18: Specified amplitude is programmed. Maximum data rate is specified in transitions per second. A square wave that reaches at least 90% of its programmed amplitude may be generated at one-half of this frequency.
Note 19: Crosstalk from either driver to the other. Aggressor channel is driving $3 V_{P-p}$ into a 50Ω load. Victim channel is in term mode with $V_{D T V}=+1.5 \mathrm{~V}$.
Note 20: Indicative of switching speed from DHV_{-}or DLV_{-}to DTV_ and DTV_ to DHV_ or DLV_ when VDLV_ < V $V_{D T V}$ $<V_{D H V_{-}}$. If $V_{D T V_{-}}<V_{D L V}$ or $V_{D T V_{-}}>V_{D H V}$, switching speed is degraded by a factor of approximately 3.
Note 21: Change in offset voltage over the input range.
Note 22: Unless otherwise noted, all propagation delays are measured at $40 \mathrm{MHz}, \mathrm{V}_{\text {DUT_ }}=0$ to $+1 \mathrm{~V}, \mathrm{~V}_{\text {CHV_ }}=$ $V_{C L V_{-}}=+0.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=250 \overline{\mathrm{ps}}, \mathrm{Z}_{\mathrm{S}}=50 \Omega$, driver in term mode with $\mathrm{V}_{\text {DTV }}=+0.5 \mathrm{~V}$. Comparator outputs are terminated with 50Ω to 0.9 V and $\mathrm{V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$. Measured from VDUT_ crossing calibrated CHV」CLV_ threshold to crossing point of differential outputs.
Note 23: At this pulse width, the output reaches at least 90% of its DC voltage swing. The pulse width is measured at the crossing points of the differential outputs.
Note 24: VDUT_ $=200 \mathrm{mV}$ P-p. . Overdrive $=100 \mathrm{mV}$.
Note 25: Relative to segmented interpolations between 200 mV , $2 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.5 V .
Note 26: Measured from crossing of LDEN_ inputs to the 50% point of the output current change.
Note 27: $\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$, driving voltage $=1.55 \mathrm{~V}$ to 0.45 V transition and 0.45 V to 1.55 V transition (at 1 mA) or +2.5 V to -0.5 V transition and -0.5 V to +2.5 V transition (at 20 mA). Settling time is measured from $\mathrm{V}_{\text {DUT_ }}=$ 1 V to ISINK/ISOURCE settling within specified tolerance.

Figure 1. Drive-to-Term and Term-to-Drive Rise and Fall Times

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{C P L V}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $V_{C P L V}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}^{-}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL }}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{TJ}^{2}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

$\mathrm{t}=500 \mathrm{ps} / \mathrm{div}$

$\mathrm{t}=200 \mathrm{ps} / \mathrm{div}$

DRIVER DYNAMIC CURRENT-LIMIT RESPONSE

$\mathrm{t}=50 \mathrm{~ns} / \mathrm{div}$

DRIVER LARGE-SIGNAL RESPONSE INTO 500 Ω

$\mathrm{t}=2 \mathrm{~ns} / \mathrm{div}$

$\mathrm{t}=1 \mathrm{~ns} / \mathrm{div}$

DRIVER 3V TRAILING-EDGE TIMING ERROR vs. PULSE WIDTH

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $V_{C P L V}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDH}}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{H} \mathrm{~V}_{-}=$open, RDUT_trimmed to $50 \Omega, \mathrm{TJ}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

DRIVER TIME DELAY
vs. COMMON-MODE VOLTAGE

DRIVER LINEARITY ERROR vs. OUTPUT VOLTAGE

DRIVER $1 V$ TRAILING-EDGE TIMING ERROR vs. PULSE WIDTH

DRIVE TO
HIGH-IMPEDANCE TRANSITION

DRIVER LINEARITY ERROR vs. OUTPUT VOLTAGE

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}=+7.7 \mathrm{~V}$, $V_{C P L V}=-1.7 \mathrm{~V} . \mathrm{V}_{C C O}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL }}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{~T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V}$. $\mathrm{MAX9975AZ:} \mathrm{~V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$,

COMPARATOR TIMING VARIATION vs. INPUT SLEW RATE

COMPARATOR TIMING VARIATION vs. COMMON-MODE VOLTAGE

COMPARATOR TRAILING-EDGE TIMING VARIATION vs. PULSE WIDTH

COMPARATOR DIFFERENTIAL OUTPUT RESPONSE

COMPARATOR WITH HYSTERESIS
TRAILING-EDGE TIMING VARIATION vs. PULSE WIDTH

COMPARATOR RESPONSE TO HIGH SLEW-RATE OVERDRIVE

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $V_{C P L V}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}^{-}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{~T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV }}^{-}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}^{-}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{VGS}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{TJ}^{2}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

CLAMP CURRENT vs. DIFFERENCE VOLTAGE

DRIVE 1V TO
LOW-LEAKAGE TRANSITION

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)
(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V}$. MAX9975AZ: $\mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $V_{C P L V}^{-}=-1.7 \mathrm{~V} . \mathrm{V}_{C C O}=+1.8 \mathrm{~V}, \mathrm{~V}_{\text {LDH_ }}=\mathrm{V}_{\text {LDL }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{~T}_{J}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Typical Operating Characteristics (continued)

(MAX9975AR: $\mathrm{V}_{\mathrm{CC}}=+9.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}=-2.2 \mathrm{~V} . \mathrm{MAX9975AZ}: \mathrm{V}_{\mathrm{CC}}=+10.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=+7.7 \mathrm{~V}$, $\mathrm{V}_{\text {CPLV }}^{-}=-1.7 \mathrm{~V} . \mathrm{V}_{\mathrm{CCO}}^{-}=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDH}}^{-}=\mathrm{V}_{\text {LDL_ }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{RHYS}_{-}=$open, RDUT_ trimmed to $50 \Omega, \mathrm{~T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

$\mathrm{A}: \mathrm{V}_{\text {DUT_- }}=\mathrm{V}_{\text {DTV_ }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=3 \mathrm{~V}, \mathrm{~V}_{\text {DLV_ }}=0 \mathrm{~V}$,
$\mathrm{V}_{\text {CHV }}=\mathrm{V}_{\text {CLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CPHV_ }}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.2 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{LDH}}{ }^{-}=\mathrm{V}_{\mathrm{LDL}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=\bar{I}_{\text {SOURCE }}=0$
B: SAME AS A EX̄CEPT DRIVER DISABLED HIGH IMPEDANCE AND LOAD ENABLED
C: SAME AS B EXCEPT ISOURCE $=I_{\text {SINK }}=35 \mathrm{~mA}$
$V_{C O M}=1.5 \mathrm{~V}, R_{L}=0$
D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED

SUPPLY CURRENT IEE
vs. SUPPLY VOLTAGE VEE

$A: V_{\text {DUT_ }}=V_{\text {DTV }}=1.5 \mathrm{~V}, V_{\text {DHV_ }}=3 \mathrm{~V}, V_{\text {DLV_ }}=0 \mathrm{~V}$,
$V_{C H V}=V_{C L V}=0 \mathrm{~V}, V_{\text {CPHV }}=7.2 \mathrm{~V}, V_{\text {CPLV }}=-2.2 \mathrm{~V}$,
$\mathrm{V}_{\text {LDH }}^{-}=\mathrm{V}_{\text {LDL }}^{-}=0 \mathrm{~V}$, ISINK $=I_{\text {SOURCE }}=0$
B: SAME AS A EX̄CEPT DRIVER DISABLED HIGH IMPEDANCE AND LOAD ENABLED
C: SAME AS B EXCEPT ISOURCE $=I_{\text {SINK }}=35 \mathrm{~mA}$, $V_{C O M}=-1 V, R_{L}=0$
D: SAME-AS C EXCEPT LOW-LEAKAGE MODE ASSERTED

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Pin Description

PIN	NAME	FUNCTION
1	TEMP	Temperature Monitor Output
$\begin{aligned} & 2,9,12,14 \\ & 17,24,35 \\ & 45,46,60 \\ & 80,81,91 \end{aligned}$	VEE	Negative Power-Supply Input
$\begin{aligned} & 3,5,10,16, \\ & 21,23,25, \\ & 34,43,44, \\ & 82,83,92 \end{aligned}$	GND	Ground Connection
$\begin{gathered} 4,11,15,22, \\ 33,41,42, \\ 66,84,85,93 \end{gathered}$	VCC	Positive Power-Supply Input
$\begin{gathered} 6,8,18, \\ 20,54,72 \end{gathered}$	N.C.	No Connection. Do not connect.
7	DUT1	Channel 1 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.
13	GS	Ground Sense. GS is the ground reference for LDH_ and LDL_.
19	DUT2	Channel 2 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.
26	CLV2	Channel 2 Low-Comparator Reference Input
27	CHV2	Channel 2 High-Comparator Reference Input
28	DLV2	Channel 2 Driver-Low Reference Input
29	DTV2	Channel 2 Driver-Termination Reference Input
30	DHV2	Channel 2 Driver-High Reference Input
31	CPLV2	Channel 2 Low-Clamp Reference Input
32	CPHV2	Channel 2 High-Clamp Reference Input
36	NCH 2	Channel 2 High-Comparator Output. Differential output of channel 2 high comparator.
37	CH2	
38	VCCO2	Channel 2 Collector Voltage Input. Voltage input for channel 2 comparator output termination resistors. Provides pullup voltage and current for the output termination resistors.
39	NCL2	
40	CL2	2 Low-Comparator Output. Differential output of channel 2 low comparator.
47	COM2	Channel 2 Active-Load Commutation-Voltage Reference Input

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Pin Description (continued)

PIN	NAME	FUNCTION		
48	LDL2	Channel 2 Active-Load Source-Current Reference Input		
49	LDH2	Channel 2 Active-Load Sink-Current Reference Input		
50	HYS2	Channel 2 Hysteresis Input for Single-Ended Compare Mode. See HYS1 when in differential compare mode. Nominal VHYS2 $=-1 V$.		
51	TDATA2	Channel 2 Data-Termination Voltage Input. Termination voltage input for the DATA2 and NDATA2 differential inputs.		
52	NDATA2	Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select driver 2's input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select DHV2. Drive NDATA2 above DATA2 to select DLV2.		
53	DATA2			
55	NRCV2	Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place channel 2 in receive mode. Drive RCV2 above NRCV2 to place channel 2 into receive mode. Drive NRCV2 above RCV2 to place channel 2 into drive mode.		
56	RCV2	TLDEN2		Channel 2 Load-Enable Termination Voltage Input. Termination voltage input for the LDEN2 and
:---				
NLDEN2 differential inputs.				

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Pin Description (continued)

PIN	NAME	FUNCTION
70	RCV1	Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place channel 1 in receive mode. Drive RCV1 above NRCV1 to place channel 1 into receive mode. Drive NRCV1 above RCV1 to place channel 1 into drive mode.
71	NRCV1	

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Detailed Description

The MAX9975 dual, low-power, high-speed, pin-electronics DCL IC includes, for each channel, a three-level pin driver, a dual comparator, variable clamps, and an active load. An additional differential comparator allows comparisons between the two channels. The driver features a -1.5 V to +6.5 V (MAX9975AR) or a -1.0 V to +7.0 V (MAX9975AZ) operating range and high-speed operation, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The dual comparator provides low dispersion (timing variation) over a wide variety of input conditions, and differential outputs. The clamps provide damping of high-speed DUT waveforms when the device is configured as a high-impedance receiver. The programmable load supplies up to 35 mA of source and sink current. The load facilitates contact/continuity testing, atspeed parametric test of IOH and IOL , and pullup of high-output-impedance devices.
Internal resistors at the high-speed inputs provide compatibility with CML interfaces. In addition, flexible opencollector outputs with optional internal pullup resistors are available for the comparators. These features significantly reduce the discrete component count on the circuit board.

A 3-wire, low-voltage CMOS-compatible serial interface programs the low-leakage, load-disable, slew-rate, dif-
ferential/window comparator and tri-state/terminate operational configurations of the MAX9975.

MAX9975 and MAX9969 Compatibility

The MAX9975 is pin compatible and functionally similar to the MAX9969. The MAX9975 differs from the MAX9969 in the following ways.

- The MAX9975 has lower DHV_, DLV_, and DTV_ gain errors.
- The MAX9975 has no programmable slew-rate control; the slew rate control bits are ignored.
- The MAX9975 features programmable hysteresis.
- The MAX9975 features double the comparator output current.
- The MAX9975AZ features a -1 V to +7 V operating range.

Output Driver
The driver input is a high-speed multiplexer that selects one of three voltage inputs: DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_ and mode-control bit TMSEL (Table 1).
DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). In highimpedance mode, the clamps are connected. Highspeed input RCV_ and mode-control bits TMSEL and

Figure 2. Simplified Driver Channel

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Table 1. Driver Logic

EXTERNAL CONNECTIONS		INTERNAL CONTROL REGISTER		DRIVER OUTPUT
DATA	RCV	TMSEL	LLEAK	
1	0	X	0	Drive to DHV_
0	0	X	0	Drive to DLV_
X	1	1	0	Drive to DTV_ (term mode)
X	1	0	0	High-impedance mode (high-Z)
X	X	X	1	Low-leakage mode

LLEAK control the switching. In high-impedance mode, the bias current at DUT_ is less than $3 \mu \mathrm{~A}$ over the 0 to 3 V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 15nA, and signal tracking slows. See the Low-Leakage Mode, LLEAK section for more details.
The nominal driver output resistance can be trimmed to different values. Contact the factory for different resistance values within the 45Ω to 51Ω range.

Clamps

Configure the voltage clamps (high, CPHV_ and low, CPLV_) to limit the voltage at DUT_ and to suppress reflections when the channel is configured as a highimpedance receiver. The clamps behave as diodes connected to the outputs of high-current buffers. Internal circuitry compensates for the diode drop at 1 mA clamp current. Set the clamp voltages using the external connections CPHV_ and CPLV_. The clamps are enabled only when the driver is in high-impedance mode (Figure 2). For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application specific and must be empirically determined. If clamping is not desired, set the clamp voltages at least 0.7 V outside the expected DUT_ voltage range; overvoltage protection remains active without loading DUT_.

Comparators
The MAX9975 provides two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see the Functional

Diagram). Comparator outputs are a logical result of the input conditions, as indicated in Tables 2 and 3.
The comparator differential outputs are open-collector outputs to ease interfacing with a wide variety of logic families. Internal termination resistors switch a 16 mA current source between the two outputs (Figure 3). The termination resistors connect the outputs to voltage input VCCO_. Connect $\mathrm{VCCO}_{\mathrm{C}}$ to the desired $\mathrm{VOH}_{\mathrm{OH}}$ voltage. Each output provides a nominal 800 mV p-p swing and 50Ω source termination. If an additional external 50Ω destination termination is used to double-terminate the line, the nominal 800 mV swing will be halved.
The upper comparators are configurable as differential receivers for LVDS and other differential DUT_ signals. When mode bit CDIFF is asserted, the upper comparator inputs are routed from the DUT_ outputs for both channels.

Hysteresis

The comparator function incorporates hysteresis control. Hysteresis rejects noise and prevents oscillations on low-slew input signals. External resistors control hysteresis levels. HYS1 controls channel 1 and HYS2 controls channel 2, when the MAX9975 is programmed in singleended compare mode (CDIFF = 0). HYS1 also controls channel 2's high-comparator output when the MAX9975 is programmed in differential compare mode (CDIFF = 1). With HYS_ unconnected, the programmed hysteresis is 0 mV . Connect an external resistor between HYS_ and GND to program nonzero hysteresis. See the Typical Operating Characteristics for typical resistance values.

Table 2. Comparator Logic, CDIFF = 0 (Single-Ended Compare Mode)

SC1	SC0	DRIVER SLEW RATE (\%)
0	0	100
0	1	75
1	0	50
1	1	25

Table 3. Comparator Logic, CDIFF = 1 (Differential Compare Mode)

DUT1 > DUT2	DUT_- $^{\text {> CLV_- }}$	CL_ $_{-}$	CH_ $_{-}$
0	0	0	0
0	1	1	0
1	0	0	1
1	1	1	1

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Figure 3. Open-Collector Comparator Outputs

Active Load

The active load consists of linearly programmable, Class $A B$ source and sink current sources, a commutation buffer, and a diode bridge (see the Functional Diagram). Analog control inputs LDH_ and LDL_ program the sink and source currents, respectively, within the 0 to 35 mA range. Analog reference input COM_ sets the commutation buffer output voltage. The source and sink naming convention is referenced to the DUT. Current out of the MAX9975 constitutes sink current and current into the MAX9975 constitutes source current. The Class AB loads of the MAX9975 offer substantial efficiency improvement over conventional active-load circuitry.
The programmed source (low) current loads the DUT when VDUT_ > VCOM_. The programmed sink (high) current loads the DUT when VDUT_ < VCOM_.
High-speed differential input LDEN_ and 2 bits of the control word (LDDIS and LLEAK) control the load (Table 4). When the load is enabled, the internal source and sink current sources connect to the diode bridge. When the load is disabled, the internal current sources
shunt to ground and the top and bottom of the bridge float (see the Functional Diagram). LLEAK places the load in low-leakage mode, and overrides LDEN_. See the Low-Leakage Mode, LLEAK section for more detailed information.

LDDIS

In some tester configurations, the load enable is driven with the complement of the driver high-impedance signal (RCV_), so disabling the driver enables the load and vice versa. The LDDIS signal allows the load to be disabled independent of the state of LDEN_ (Table 4).

GS Input
GS is the ground-sense input. A level-setting DAC, such as the MAX5631 or MAX5734, programs the MAX9975's active load, driver, comparator, and clamps. Although all the DAC levels are typically offset by VGS, the operation of the MAX9975's ground-sense input nullifies this offset with respect to the active-load current. Connect GS to the same ground reference used by the DAC. (VLDL_ - VGS) sets the source current by $+10 \mathrm{~mA} / \mathrm{V}$. (VLDH_ - VGS) sets the sink current by -10mA/V.
To maintain an 8 V range in the presence of GS variations, GS offsets DHV_, DLV_, DTV_, CPHV_, CPLV_, and COM_ ranges. Àdequate supply headroom must be maintained in the presence of GS variations. Ensure:

$$
\begin{aligned}
& V_{C C} \geq 9.5 V+\operatorname{Max}\left(V_{G S}\right)(M A X 9975 A R) \\
& V_{C C} \geq 10.0 V+\operatorname{Max}\left(V_{G S}\right)(\operatorname{MAX9975AZ}) \\
& V_{E E} \leq-4.5 V+\operatorname{Min}\left(V_{G S}\right)(\operatorname{MAX9975AR}) \\
& V_{E E} \leq-4.0 V+\operatorname{Min}\left(V_{G S}\right)(\operatorname{MAX9975AZ)}
\end{aligned}
$$

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port or with RST places the MAX9975 into a very low-leakage state (see the Electrical Characteristics table). With LLEAK asserted, the comparators function at a reduced speed, and

Table 4. Active-Load Programming

EXTERNAL CONNECTIONS	INTERNAL CONTROL REGISTER		MODE
LDEN_	LDDIS	LLEAK	
0	0	0	Normal operating mode, load disabled
1	0	0	Normal operating mode, load enabled
X	1	0	Load disabled
X	X	1	Low-leakage mode

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Figure 4. Serial Interface
the driver, clamps, and active load are disabled. This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK is programmed independently for each channel.
When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the Electrical Characteristics table indicates device behavior under this condition.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9975 modes (Figure 4 and Table 5). Control data flow into an 8 -bit shift register (MSB first) and are latched when $\overline{\mathrm{CS}}$ is taken high, as shown in Figure 5. Latches contain 6 control bits for each channel of the dual-pin driver. Data from the shift register are loaded to either or both of the latches as determined by bits D6 and D7. When CDIFF $=1$, its effect is independent of bits D6 and D7. The control bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel, as shown in Tables 1 and 2. $\overline{\text { RST }}$ sets LLEAK = 1 for both channels, forcing them into lowleakage mode. All other bits are unaffected. At powerup, hold RST low until VCC and VEE have stabilized.

Figure 5. Serial-Interface Timing

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Table 5. Shift Register Functions

BIT	NAME	DESCRIPTION
D7	CH1	Channel 1 Write Enable. Set to 1 to update the control byte for channel 1. Set to 0 to make no changes to channel 1.
D6	CH2	Channel 2 Write Enable. Set to 1 to update the control byte for channel 2. Set to 0 to make no changes to channel 2.
D5	LLEAK	Low-Leakage Select. Set to 1 to put driver, load, and clamps in low-leakage mode. Comparators remain active in low-leakage mode, but at reduced speed. Set to 0 for normal operation.
D4	TMSEL	Termination Select. Driver Termination Select Bit. Set to 1 to force the driver output to the DTV_ voltage when RCV_ = 1 (term mode). Set to 0 to place the driver into high-impedance mode when RCV_ = 1 (high-Z). See Table 1.
D3	SC1	Driver Slew Rate Select. SC1 and SC0 set the driver slew rate. See Table 2.
D2	SC0	Differential Comparator Enable. Set to 1 to enable the differential comparators and disable the CH_ window comparators. Set to 0 to enable the CH_ window comparators and disable the differential comparators. See Tables 3a and 3b.
D1	CDIFF	
D م	LDS	Load Disable. Set LDDIS to 1 to disable the

Analog control input THR sets the threshold for the input logic, allowing operation with CMOS logic as low as 0.9 V . Leaving THR unconnected results in a nominal threshold of 1.25 V from an internal reference, providing compatibility with 2.5 V to 3.3 V logic.

Temperature Monitor

The MAX9975 supplies a temperature output signal, TEMP, that asserts a 3.33 V nominal output voltage at a $+70^{\circ} \mathrm{C}(343 \mathrm{~K})$ die temperature. The output voltage changes proportionally with temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Heat Removal

Under normal circumstances, the MAX9975 requires heat removal through the exposed pad by use of an external heat sink. The exposed pad is electrically at VEE potential, and must be either connected to VEE or isolated.
Power dissipation is highly dependent upon the application. The Electrical Characteristics table indicates power dissipation under the condition that the source and sink currents are programmed to 0mA. Maximum dissipation occurs when the source and sink currents are both at 35 mA , the VDUT_ is at an extreme of the voltage range, and the diode bridge is fully commutated. Under these conditions, the additional power dissipated (per channel) is:
If DUT_ is sourcing current:

$$
\text { PD }=\left(V_{\text {DUT_ }}-V_{E E}\right) \times \text { ISOURCE }
$$

If DUT_ is sinking current:

$$
\text { PD }=\left(V_{C C}-V_{\text {DUT_ }}\right) \times I \text { IINK }
$$

DUT_ sources the programmed (low) current when VDUT_ > VCOM_. The path of the current is from DUT_ through the outside of the diode bridge and the source (low) current source to Vee. The programmed sink current is greatly reduced by the class AB load architecture. DUT_ sinks the programmed (high) current when VDUT_ $<\mathrm{VCOM}_{-}$. The path of the current is from Vcc through the sink (high) current source and the outside of the diode bridge to DUT_. The programmed source current is greatly reduced by the Class AB architecture.
θ_{Jc} of the exposed-pad package is very low, approximately $1^{\circ} \mathrm{C} / \mathrm{W}$ to $2^{\circ} \mathrm{C} / \mathrm{W}$. Die temperature is thus highly dependent upon the heat removal techniques used in the application. Maximum total power dissipation occurs under conditions shown in Table 6.

Table 6. Maximum Power Dissipation Conditions

PARAMETER	MAX9975AR	MAX9975AZ
V_{CC}	+10.5 V	+11 V
$\mathrm{~V}_{\mathrm{EE}}$	-5.25 V	-4.75 V
ISOURCE $=$ ISINK	35 mA	35 mA
LOAD	Both Channels Enabled	Both Channels Enabled
VDUT_ $^{\text {VCOM_ }}$	-1.5 V	-1 V
+0.5V	+0.5 V	

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Under these extreme conditions, the total power dissipation is 4.3 W typical and 4.8 W maximum. If the die temperature cannot be maintained at an acceptable level under these conditions, use software clamping to limit the load output currents to lower values and/or reduce the supply voltages.

Power-Supply Considerations

Bypass all $V_{C C}$ and $V_{E E}$ power input pins with $0.01 \mu \mathrm{~F}$ capacitors, and use bulk bypassing of at least $10 \mu \mathrm{~F}$ on each supply.

Selector Guide

PART	ACCURACY GRADE	COMPARATOR OUTPUT TERMINATION	HIGH-SPEED DIGITAL INPUT TERMINATION (Ω)			HEAT EXTRACTION
			RCV	DATA	LDEN	
MAX9969ADCCQ	A	None	None	None	None	Top
MAX9969AGCCQ	A	None	100	100	100	Top

Pin Configuration

Dual, Low-Power, 1200Mbps ATE Driver/Comparator with 35mA Load

Package Information

For the latest package outline information, go to www.maxim-ic.com/packages

