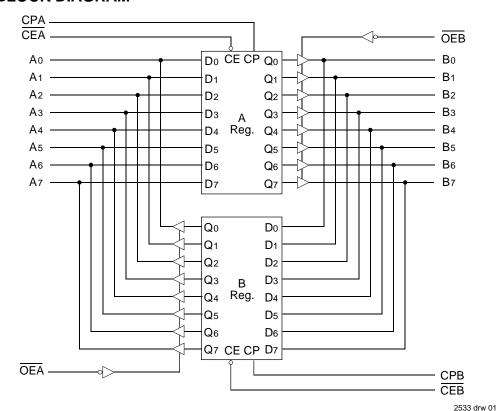


FAST CMOS OCTAL REGISTERED TRANSCEIVERS

IDT29FCT52A/B/CIDT29FCT53A/B/C

FEATURES:

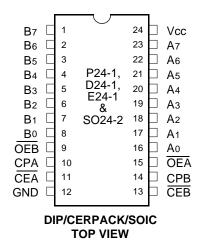

- Equivalent to AMD's Am2952/53 and National's 29F52/53 in pinout/function
- IDT29FCT52A/53A equivalent to FAST™ speed
- IDT29FCT52B/53B 25% faster than FAST
- IDT29FCT52C/53C 37% faster than FAST
- IoL = 64mA (commercial) and 48mA (military)
- IIH and IIL only 5μA max.
- CMOS power levels (2.5mW typ. static)
- TTL input and output level compatible
- CMOS output level compatible
- Available in 24-pin DIP, SOIC, 28-pin LCC with JEDEC standard pinout
- Product available in Radiation Tolerant and Radiation Enhanced versions
- · Military product compliant to MIL-STD-883, Class B

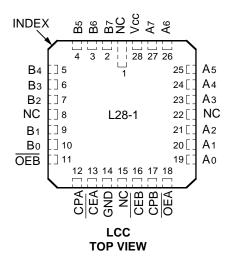
DESCRIPTION:

The IDT29FCT52A/B/C and IDT29FCT53A/B/C are 8-bit registered transceivers manufactured using an advanced dual metal CMOS technology. Two 8-bit back-to-back registers store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3-state output enable signals are provided for each register. Both A outputs and B outputs are guaranteed to sink 64mA.

The IDT29FCT52A/B/C is a non-inverting option of the IDT29FCT53A/B/C.

FUNCTIONAL BLOCK DIAGRAM⁽¹⁾




NOTE:1. IDT29FCT52 function is shown.

The IDT logo is a registered trademark of Integrated Device Technology, Inc. FAST is a trademark of National Semiconductor Co.

MAY 1992

PIN CONFIGURATIONS

2533 drw 02

PIN DESCRIPTION

Name	I/O	Description
A0-7	I/O	Eight bidirectional lines carrying the A Register inputs or B Register outputs.
B0-7	I/O	Eight bidirectional lines carrying the B Register inputs or A Register outputs.
СРА	_	Clock for the A Register. When $\overline{\text{CEA}}$ is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal.
CEA	_	Clock Enable for the A Register. When $\overline{\text{CEA}}$ is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. When $\overline{\text{CEA}}$ is HIGH, the A Register holds its contents, regardless of CPA signal transitions.
ŌĒB	I	Output Enable for the A Register. When OEB is LOW, the A Register outputs are enabled onto the Bo-7 lines. When OEB is HIGH, the Bo-7 outputs are in the high-impedance state.
СРВ	I	Clock for the B Register. When CEB is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal.
CEB	I	Clock Enable for the B Register. When $\overline{\text{CEB}}$ is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. When $\overline{\text{CEB}}$ is HIGH, the B Register holds its contents, regardless of CPB signal transitions.
ŌĒĀ	I	Output Enable for the B Register. When $\overline{\text{OEA}}$ is LOW, the B Register outputs are enabled onto the A0-7 lines. When $\overline{\text{OEA}}$ is HIGH, the A0-7 outputs are in the high-impedance state.

2533 tbl 01

REGISTER FUNCTION TABLE(1) (Applies to A or B Register)

	Inputs		Internal	
D	СР	CE	Q	Function
Х	Х	Н	NC	Hold Data
L	1	L	L	Load Data
Н	1	L	Н	

OUTPUT CONTROL⁽¹⁾

	Internal	Y-Ou	tputs	
ŌĒ	Q	52	53	Function
Н	Х	Z	Z	Disable Outputs
L	L	L	Н	Enable Outputs
L	Н	Н	L	

NOTE: 2533 tbl 02

7.1

2533 tbl 03

1. H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care NC = No Change

↑ = LOW-to-HIGH Transition

2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc	–0.5 to Vcc	>
ТА	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	Ô
Рт	Power Dissipation	0.5	0.5	W
lout	DC Output Current	120	120	mA

NOTES:

533 tbl 04

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Outputs and I/O terminals only.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
CI/O	I/O Capacitance	Vout = 0V	8	12	pF

NOTE:

2533 tbl 05

1. This parameter is guaranteed by characterization data and not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V

Commercial: TA = 0°C to +70°C, VCC = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, VCC = $5.0V \pm 10\%$

Symbol	Parameter	Test Co	Min.	Typ. ⁽²⁾	Max.	Unit	
ViH	Input HIGH Level	Guaranteed Logic HIG	2.0	_	_	V	
VIL	Input LOW Level	Guaranteed Logic LO\	N Level	_	_	8.0	V
Іін	Input HIGH Current	Vcc = Max.	VI=VCC	_	_	5	μΑ
	(Except I/O Pins)		VI = 2.7V	_	_	5 ⁽⁴⁾	
IIL	Input LOW Current		VI = 0.5V	_	_	-5 ⁽⁴⁾	
	(Except I/O Pins)		VI = GND	_	_	-5	
Іін	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	15	μΑ
	(I/O Pins Only)		VI = 2.7V	_	_	15 ⁽⁴⁾	
IIL	Input LOW Current		VI = 0.5V	_	_	-15 ⁽⁴⁾	
	(I/O Pins Only)		VI = GND	_	_	-15	
Vıĸ	Clamp Diode Voltage	Vcc = Min., IN = −18m	Vcc = Min., IN = -18mA		-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GI	ND	-60	-120	_	mA
Vон	Output HIGH Voltage	Vcc = 3V, VIN = VLC OI	· VHC, IOH = -32μA	VHC	Vcc	_	V
		Vcc = Min.	IOH = -300μA	VHC	Vcc	<u> </u>	
		VIN = VIH or VIL	IOH = -15mA MIL.	2.4	4.0	_	
			IOH = -24mA COM'L.	2.4	4.0	_	
Vol	Output LOW Voltage	Vcc = 3V, VIN = VLC OI	· VHC, IOL = 300μA	_	GND	VLC	V
		Vcc = Min.	IOL = 300μA	_	GND	VLC ⁽⁴⁾	
		VIN = VIH or VIL	IOL = 48mA MIL. (5)	_	0.3	0.55	
			IOL = 64mA COM'L. (5)	_	0.3	0.55	

NOTES:

2533 tbl 06

3

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. These are maximum IoL values per output, for 8 outputs turned on simultaneously. Total maximum IoL (all outputs) is 512mA for commercial and 384mA for military. Derate IoL for number of outputs exceeding 8 turned on simultaneously.

7.1

POWER SUPPLY CHARACTERISTICS

VLC = 0.2V; VHC = VCC - 0.2V

Symbol	Parameter	Test Conditio	ns ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	Vcc = Max. Vin ≥ Vhc; Vin ≤ VLc	_	0.5	1.5	μΑ	
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $Vin = 3.4V^{(3)}$		_	0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OEA or OEB= GND One Input Toggling 50% Duty Cycle	VIN ≥ VHC VIN ≤ VLC	_	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcP = 10MHz 50% Duty Cycle OEA or OEB= GND	VIN ≥ VHC VIN ≤ VLC (FCT)	_	2.0	4.0	mA
		One Bit Toggling at fi = 5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	2.5	6.0	
		Vcc = Max. Outputs Open fcp = 10MHz 50% Duty Cycle OEA or OEB = GND	VIN ≥ VHC VIN ≤ VLC (FCT)	_	4.3	7.8 ⁽⁵⁾	
		Eight Bits Toggling at fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	6.5	16.8 ⁽⁵⁾	

NOTES: 2533 tbl 07

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

Icco = Dynamic Current Caused by an Output Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

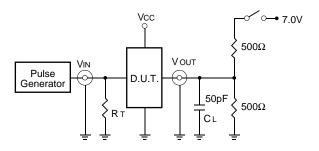
Ni = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

7.1 4

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			IDT29FCT52A/53A			IDT29FCT52B/53B				IDT29FCT52C/53C					
			Co	m'l.	Mi	il.	Co	m'l.	N	lil.	Con	n'l.	М	il.	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay CPA, CPB to An, Bn	CL = 50pF $RL = 500\Omega$	2.0	10.0	2.0	11.0	2.0	7.5	2.0	8.0	2.0	6.3	2.0	7.3	ns
tPZH tPZL	Output Enable Time OEA or OEB to An or Bn		1.5	10.5	1.5	13.0	1.5	8.0	1.5	8.5	1.5	7.0	1.5	8.0	ns
tPHZ tPLZ	Output Disable Time OEA or OEB to An or Bn		1.5	10.0	1.5	10.0	1.5	7.5	1.5	8.0	1.5	6.5	1.5	7.5	ns
tsu	Set-up Time HIGH or LOW An, Bn to CPA, CPB		2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	ns
tH	Hold Time HIGH or LOW An, Bn to CPA, CPB		2.0	1	2.0	_	1.5	_	1.5		1.5	1	1.5		ns
tsu	Set-up Time HIGH or LOW CEA, CEB to CPA, CPB		3.0	_	3.0	_	3.0	_	3.0	_	3.0	-	3.0	-	ns
tH	Hold Time HIGH or LOW CEA, CEB to CPA, CPB		2.0	_	2.0	_	2.0	_	2.0	_	2.0	_	2.0		ns
tw	Pulse Width, HIGH ⁽³⁾ or LOW CPA or CPB		3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns


NOTES:

2533 tbl 08

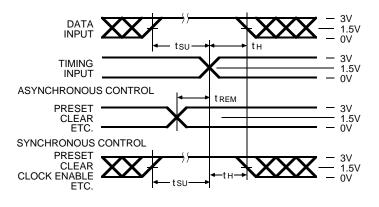
- 1. See test circuit and waveforms.
- Minimum limits are guaranteed but not tested on Propagation Delays.
 This parameter is guaranteed but not tested.

7.1 5

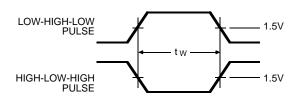
TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

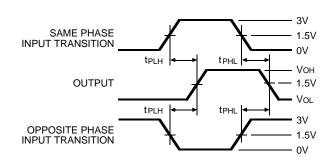
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

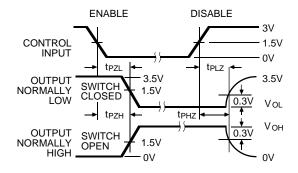

DEFINITIONS:

2533 tbl 09


 $\mathsf{CL} = \mathsf{Load}$ capacitance: includes jig and probe capacitance.

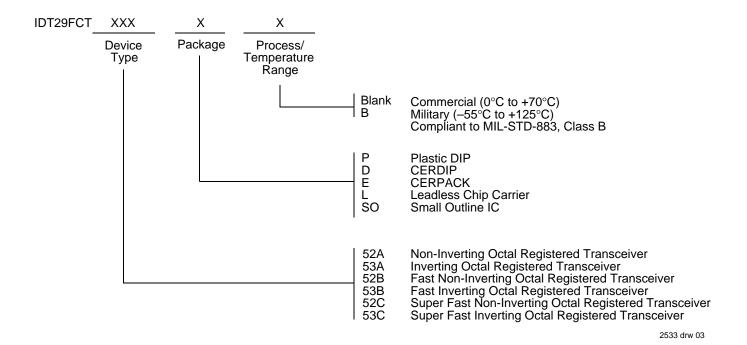
RT = Termination resistance: should be equal to Zo∪T of the Pulse Generator.


SET-UP, HOLD AND RELEASE TIMES


PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES



NOTES 2533 drw 04

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Zo \leq 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.

7.1 6

ORDERING INFORMATION

7.1

7