FEATURES

- 3.3V power supply
- 2.0ns typical propagation delay

■ <500ps typical output-to-output skew

- Differential LVPECL inputs
- 24mA LVTTL outputs

■ Flow-through pinouts
■ Available in 8-pin SOIC package

PIN NAMES

Pin	Function
Qn	LVTTL Outputs
Dn	Differential LVPECL Inputs
VCC	+3.3V Supply
GND	Ground

TRUTH TABLE

D	/D	Q
L	H	L
H	L	H
Open	Open	L

PACKAGE/ORDERING INFORMATION(1)

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10ELT23LZC	Z8-1	Commercial	HEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY10ELT23LZCTR ${ }^{(2)}$	Z8-1	Commercial	HEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY100ELT23LZC	Z8-1	Commercial	XEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY100ELT23LZCTR ${ }^{(2)}$	Z8-1	Commercial	XEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY10ELT23LZI	Z8-1	Industrial	HEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY10ELT23LZITR ${ }^{(2)}$	Z8-1	Industrial	HEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY100ELT23LZI	Z8-1	Industrial	XEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY100ELT23LZITR ${ }^{(2)}$	Z8-1	Industrial	XEL23L	$\mathrm{Sn}-\mathrm{Pb}$
SY10ELT23LZG ${ }^{(3)}$	Z8-1	Industrial	HEL23L with Pb -Free bar-line indicator	Pb-Free NiPdAu
SY10ELT23LZGTR ${ }^{(2,3)}$	Z8-1	Industrial	HEL23L with Pb -Free bar-line indicator	Pb-Free NiPdAu
SY100ELT23LZG ${ }^{(3)}$	Z8-1	Industrial	XEL23L with Pb -Free bar-line indicator	Pb-Free NiPdAu
SY100ELT23LZGTR ${ }^{(2,3)}$	Z8-1	Industrial	XEL23L with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.
3. Pb -Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
V_{CC}	Power Supply Voltage	-0.5 to +3.8	V
$\mathrm{~V}_{\text {IN }}$	PECL Input Voltage	0 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output at HIGH State	-0.5 to V_{CC}	V
$\mathrm{I}_{\mathrm{OUT}}$	Current Applied to Output at LOW State	Twice the Rated I_{OL}	mA
$\mathrm{T}_{\text {LEAD }}$	Lead Temperature (soldering, 20sec.)	+260	${ }^{\circ} \mathrm{C}$
T_{S}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratling conditions for extended periods may affect device reliability.

LVTTL DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
V_{OH}	Output HIGH Voltage	2.0	-	2.0	-	2.0	-	2.0	-	V	$\mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	-	0.5	-	0.5	-	0.5	-	0.5	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
I_{CC}	Power Supply Current	-	30	-	30	-	30	-	30	mA	
I_{OS}	Output Short-Circuit Current	-80	-240	-80	-240	-80	-240	-80	-240	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

LVPECL DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3.3 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.										
I_{IH}	Input HIGH Current	-	-	150	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5	-	-	0.5	-	-	0.5	-	-	0.5	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CMR }}$	Common Mode Range	1.5	-	V_{CC}	V									
V_{PP}	Minimum Peak-to-Peak Input ${ }^{1}$)	200	-	-	200	-	-	200	-	-	200	-	-	mV
V_{IH}	$\begin{array}{r} \hline \text { Input HIGH Voltage }{ }^{(2)} \\ 10 \mathrm{ELT} \\ 100 \mathrm{ELT} \end{array}$	$\begin{aligned} & 2070 \\ & 2135 \end{aligned}$	-	$\begin{aligned} & 2410 \\ & 2420 \end{aligned}$	$\begin{aligned} & 2130 \\ & 2135 \end{aligned}$	-	$\begin{aligned} & 2460 \\ & 2420 \end{aligned}$	$\begin{aligned} & 2170 \\ & 2135 \end{aligned}$	-	$\begin{aligned} & 2490 \\ & 2420 \end{aligned}$	$\begin{aligned} & 2130 \\ & 2135 \end{aligned}$	-	$\begin{aligned} & 2565 \\ & 2420 \end{aligned}$	mV
$\mathrm{V}_{\text {IL }}$	$\begin{array}{r} \text { Input LOW Voltage }{ }^{(2)} \\ 10 \mathrm{ELT} \\ 100 \mathrm{ELT} \end{array}$	$\begin{aligned} & 1350 \\ & 1490 \end{aligned}$	-	$\begin{aligned} & 1800 \\ & 1825 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1490 \end{aligned}$	-	$\begin{aligned} & 1820 \\ & 1825 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1490 \end{aligned}$	-	$\begin{aligned} & 1820 \\ & 1825 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1490 \end{aligned}$	-	$\begin{aligned} & 1820 \\ & 1825 \end{aligned}$	mV

Notes:

1. 200 mV input guaranteed full logic at output.
2. These values are fro $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. Level specification will vary $1: 1$ with V_{CC}.

AC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3.3 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency ${ }^{(1,2)}$	160	-	160	-	160	-	160	-	MHz	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {PD }}$	Propagation Delay	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {skpp }}$	Part-to-Part Skew(3, 6)	-	0.5	-	0.5	-	0.5	-	0.5	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {SKEW }++}$	Within-Device Skew(${ }^{(4,6)}$	-	0.3	-	0.3	-	0.3	-	0.3	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {SKEW - - }}$	Within-Device Skew ${ }^{(5,6)}$	-	0.3	-	0.3	-	0.3	-	0.3	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
tr, tf	Output Rise/Fall Times 1.0 V to 2.0 V	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

Notes:

1. Frequency at which output levels will meet a 0.8 V to 2.0 V minimum swing.
2. The $f_{M A X}$ value is specified as the minimum guaranteed maximum frequency. Actual operational maximum frequency may be greater.
3. Device-to-Device skew considering HIGH-to-HIGH transitions at common V_{Cc} level.
4. Within-device skew considering HIGH-to-HIGH transitions at common V_{CC} level.
5. Within-device skew considering LOW-to-LOW transitions at common V_{CC} level.
6. All skew parameters are guaranteed, but not tested.

8-PIN SOIC .300" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

