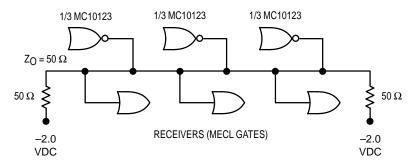
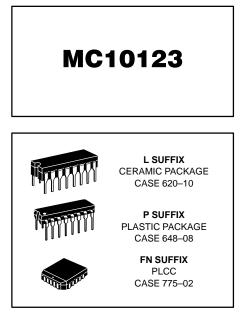

Triple 4-3-3-Input Bus Driver

The MC10123 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with $V_{OL} = -2.1$ Vdc so that the bus may be terminated to -2.0 Vdc. The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC10123 are "turned-off." This eliminates discontinuities in the characteristic impedance of the bus.


The V_{OH} level is specified when driving a 25–ohm load terminated to -2.0 Vdc, the equivalent of a 50–ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the MC10123, higher impedance values may be used with this part. A typical 50–ohm bus is shown in Figure 1.


 $P_D = 310 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 3.0 \text{ ns typ}$ $t_r, t_f = 2.5 \text{ ns typ } (20\%-80\%)$

 $V_{FF} = PIN 8$

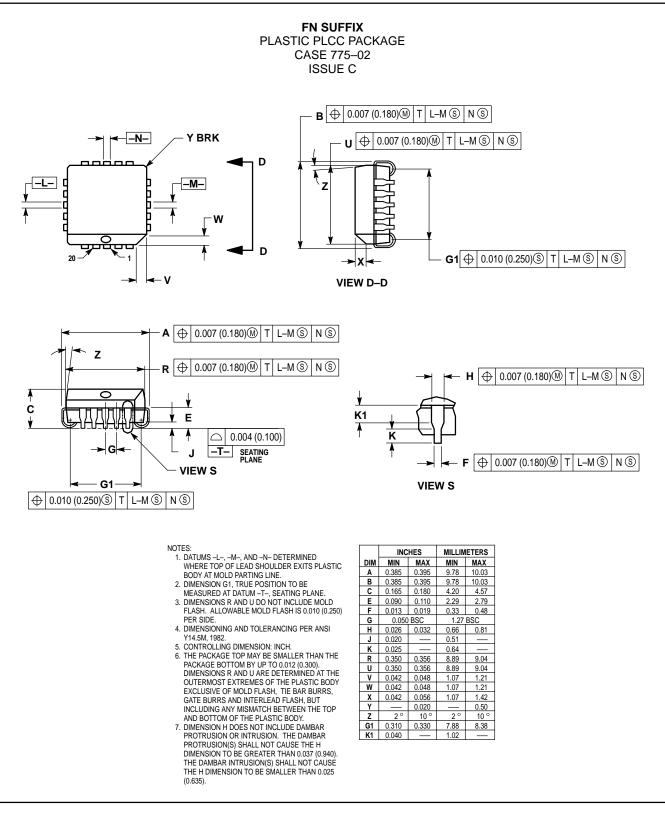
FIGURE 1 — 50–OHM BUS DRIVER (TYPICAL APPLICATION)

DIP PIN ASSIGNMENT

		\sim		
VCC1	1		16	V _{CC2}
BOUT	2		15	COUT
AOUT	3		14	C _{IN}
AIN	4		13	C _{IN}
A _{IN}	5		12	C _{IN}
A _{IN}	6		11	B _{IN}
A _{IN}	7		10	B _{IN}
V_{EE}	8		9	B _{IN}

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6–11 of the Motorola MECL Data Book (DL122/D).

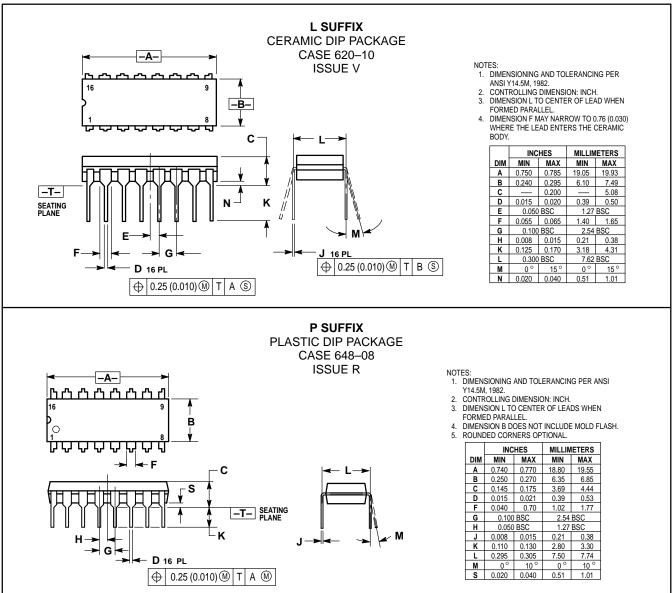
ELECTRICAL CHARACTERISTICS


			Test Limits							
		Pin Under Test	–30°C		+25°C			+85°C		
Characteristic	Symbol		Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	8		82		71	75		82	mAdc
Input Current	l _{inH}	4		350			220		220	μAdc
	l _{inL}	4			0.5					μAdc
Output Voltage Logic 1	VOH	3	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage Logic C	VOL	3	-2.100	-2.030	-2.100		-2.030	-2.100	-2.030	Vdc
Threshold Voltage Logic 1	VOHA	3	-1.080		-0.980			-0.910		Vdc
Threshold Voltage Logic C	VOLA	3		-2.100			-2.100		-2.100	Vdc
Switching Times (50 Ω Load)										ns
Propagation Delay	t _{4+3–} t _{4–3+}	3 3	1.2 1.2	4.6 4.6	1.2 1.2	3.0 3.0	4.4 4.4	1.2 1.2	4.8 4.8	
Rise Time (20 to 80%)	t ₃₊	3	1.0	3.7	1.0	2.5	3.5	1.0	3.9	
Fall Time (20 to 80%)	t3-	3	1.0	3.7	1.0	2.5	3.5	1.0	3.9	

ELECTRICAL CHARACTERISTICS (continued)

		@ Test Temperature		V _{IHmax}	V _{ILmin}	V _{IHAmin}	VILAmax	VEE		
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2		
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2		
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2		
			Pin	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
Characteristic		Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	VEE	(VCC) Gnd	
Power Supply Drain Current		ΓE	8	4,5,6,7,9 10,11,12 13,14				8	1, 16	
Input Current		l _{inH}	4	4				8	1, 16	
		l _{inL}	4		4			8	1, 16	
Output Voltage	Logic 1	VOH	3					8	1, 16	
Output Voltage	Logic 0	V _{OL}	3	4,5,6,7 9,12				8	1, 16	
Threshold Voltage	Logic 1	VOHA	3				4,5,6,7	8	1, 16	
Threshold Voltage	Logic 0	VOLA	3	9,12		4,5,6,7		8	1, 16	
Switching Times	(50 Ω Load)					Pulse In	Pulse Out	–3.2 V	+2.0 V	
Propagation Delay		t _{4+3–} t _{4–3+}	3 3			4 4	3 3	8 8	1, 16 1, 16	
Rise Time	(20 to 80%)	t ₃₊	3			4	3	8	1, 16	
Fall Time	(20 to 80%)	t3-	3			4	3	8	1, 16	

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.


OUTLINE DIMENSIONS

MOTOROLA

MC10123

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

 \Diamond

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

