

LMX2377U

PLLatinum™ Ultra Low Power Dual Frequency Synthesizer for RF Personal Communications 2.5 GHz/1.2 GHz

General Description

The LMX2377U device is a high performance frequency synthesizer with integrated dual modulus prescalers. The LMX2377U device is designed for use as a local oscillator for the first and second RF of a dual conversion radio transceiver.

A 16/17 or a 32/33 prescale ratio can be selected for the Main synthesizer. An 8/9 or a 16/17 prescale ratio can be selected for the Aux synthesizer. Using a proprietary digital phase lock technique, the LMX2377U device generates very stable, low noise control signals for UHF and VHF voltage controlled oscillators. Both the Main and Aux synthesizers include a two-level programmable charge pump. The Main synthesizer has dedicated Fastlock circuitry.

Serial data is transferred to the devices via a three-wire interface (Data, LE, Clock). The low voltage logic interface allows connection to 1.8V devices. Supply voltages from 2.7V to 5.5V are supported. The LMX2377U features ultra low current consumption, typically 3.5 mA at 3.0V.

The LMX2377U devices are available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

Features

- Ultra Low Current Consumption
- Upgrade and Compatible to the LMX2370
- 2.7V to 5.5V Operation
- 1.8V to 5.0V MICROWIRE Logic Interface
- Selectable Synchronous or Asynchronous Powerdown Mode:

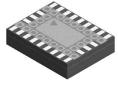
 $I_{CC-PWDN} = 1 \mu A typical$

Selectable Dual Modulus Prescaler:
 Main: 16/17 or 32/33

Aux: 8/9 or 16/17

- Selectable Charge Pump TRI-STATE® Mode
- Programmable Charge Pump Current Levels Main and Aux: 0.95 or 3.8 mA
- Selectable Fastlock[™] Mode for the Main Synthesizer
- Open Drain Analog Lock Detect Output
- Available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

Applications


- Mobile Handsets (GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets (DECT, DCT)
- Wireless Data
- Cable TV Tuners

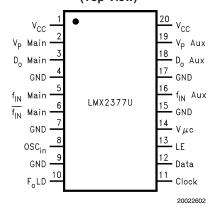
Thin Shrink Small Outline Package (MTC20)

20022680

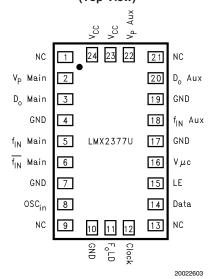
Chip Scale Package (SLB24A)

20022681

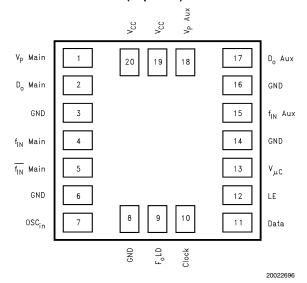
Ultra Thin Chip Scale Package (SLE20A)



PLLatinum™ is a trademark of National Semiconductor Corporation.


Functional Block Diagram V_P Aux 18-BIT Aux Aux PRESCALER PHASE N COUNTER CHARGE DETECTOR PUMP Aux LOCK DETECT 15-BIT Aux R COUNTER MUX osc_{in} Main 15-BIT Main R COUNTER LOCK DETECT **♦** V_P Main PHASE DETECTOR CHARGE **∙** D_o Main $\frac{f_{\text{IN}}}{f_{\text{IN}}} \ \text{Main } 0$ Main PRESCALER 18-BIT Main PUMP N COUNTER MICROWIRE FASTLOCK Data 🕻 INTERFACE LE LMX2377U GND GND GND GND GND $V_{\mu C}$ 20022604

Connection Diagrams

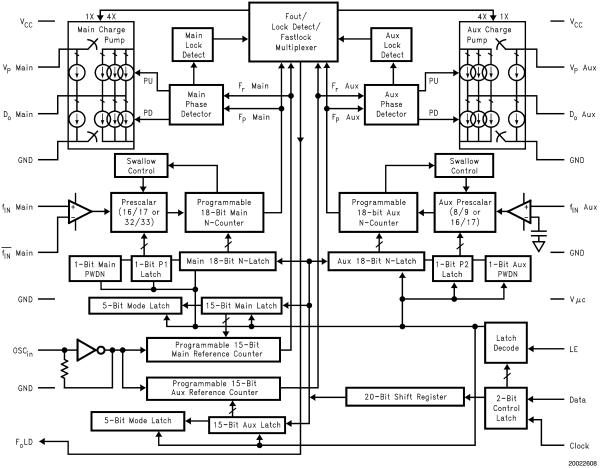

Thin Shrink Small Outline Package (TM) (Top View)

Chip Scale Package (SLB) (Top View)

Ultra Thin Chip Scale Package (SLE) (Top View)

Pin Descriptions

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	1/0	Description
V _{CC}	20	24	1	_	Power supply bias for the Main PLL analog and digital circuits. $V_{\rm CC}$ may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
V _P Main	1	2	2	-	Main PLL charge pump power supply. Must be $\geq V_{CC}$.
D _o Main	2	3	3	0	Main PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
GND	3	4	4	—	Ground for the Main PLL digital circuitry.
f _{IN} Main	4	5	5		Main PLL prescaler input. Small signal input from the VCO.


Pin Descriptions (Continued)

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
f _{IN} Main	5	6	6	I	Main prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX2377U Main PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	<u> — </u>	Ground for the Main PLL analog circuitry.
OSC _{in}	7	8	8	I	Reference oscillator input. It has an approximate $V_{\rm CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate.
GND	8	10	9		Ground for the Aux PLL digital circuitry, MICROWIRE, F _o LD, and oscillator circuits.
F _o LD	9	11	10	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output, Main/Aux PLL open drain analog lock detect output, N and R divider output or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	12	11	1	MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shift register on the rising edge of Clock.
Data	11	14	12	I	MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is shifted in first. The last two bits are the control bits.
LE	12	15	13	I	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift register is loaded into one of 4 internal control registers.
Vµс	13	16	14	_	Power supply bias for the MICROWIRE circuitry. Must be \leq V _{CC} . Typically connected to the same supply level as the microprocessor or baseband controller to enable programming at low voltages.
GND	14	17	15	<u> </u>	Ground for the Aux PLL analog circuitry.
f _{IN} Aux	15	18	16	I	Aux PLL prescaler input. Small signal input from the VCO.
GND	16	19	17	_	Ground for the Aux PLL digital circuitry, MICROWIRE, F _o LD, and oscillator circuits.
D _o Aux	17	20	18	0	Aux PLL charge pump output. the output is connected to an external loop filter, which drives the input of the VCO.
V _P Aux	18	22	19	_	Aux PLL charge pump power supply. Must be \geq V _{CC} .
V _{CC}	19	23	20	_	Power supply bias for the Aux PLL analog and digital circuits, F_oLD , and oscillator circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC	_	1, 9, 13, 21	_	—	No Connect

Ordering Information

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2377USLEX	-40°C to +85°C	Ultra Thin Chip Scale	2500 Units Per Reel	SLE20A
		Package (UTCSP)		
		Tape and Reel		
LMX2377USLBX	-40°C to +85°C	Chip Scale Package	2500 Units Per Reel	SLB24A
		(CSP) Tape and Reel		
LMX2377UTM	-40°C to +85°C	Thin Shrink Small	73 Units Per Rail	MTC20
		Outline Package		
		(TSSOP)		
LMX2377UTMX	-40°C to +85°C	Thin Shrink Small	2500 Units Per Reel	MTC20
		Outline Package		
		(TSSOP) Tape and		
		Reel		

Detailed Block Diagram

Notes:

- 1. V_{CC} supplies power to the Main and Aux prescalers, Main and Aux feedback dividers, Main and Aux reference dividers, Main and Aux phase detectors, the OSC_{in} buffer, and F₀LD circuitry.
- 2. Vµc supplies power to the MICROWIRE circuitry.
- 3. V_P Main and V_P Aux supply power to the charge pumps. They can be run separately as long as V_P Main $\geq V_{CC}$ and V_P Aux $\geq V_{CC}$.

Absolute Maximum Ratings (Notes 1,

2, 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage

 $\begin{array}{lll} V_{CC} \text{ to GND} & -0.3 \text{V to } +6.5 \text{V} \\ V_{P} \text{ Main to GND} & -0.3 \text{V to } +6.5 \text{V} \\ V_{P} \text{ Aux to GND} & -0.3 \text{V to } +6.5 \text{V} \end{array}$

Voltage on any pin to GND (V_I)

 $\begin{array}{ll} \text{Lead Temperature (solder 4 s) (T_L)} & +260^{\circ}\text{C} \\ \text{TSSOP θ_{JA} Thermal Impedance} & 114.5^{\circ}\text{C/W} \\ \end{array}$

 ${\rm CSP}\;\theta_{\rm JA}\;{\rm Thermal\;Impedance} \qquad \qquad {\rm 112°C/W}$

Recommended Operating Conditions (Note 1)

Power Supply Voltage

 V_{CC} to GND +2.7V to +5.5V V_{P} Main to GND V_{CC} to +5.5V V_{P} Aux to GND V_{CC} to +5.5V Operating Temperature (T_{A}) -40°C to +85°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations.

Note 3: GND = 0V

Electrical Characteristics

 $V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V \mu c = 3.0 V, -40 ^{\circ} \text{C} \le T_A \le +85 ^{\circ} \text{C}, \text{ unless otherwise specified}$

Cumbal	Parameter	Conditions		Value		Units
Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{CC} PARAME	ETERS			•		
I _{CCMain + Aux}	Power Supply Current, Main + Aux Synthesizers	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 0 PWDN Aux Bit = 0		3.5	4.6	mA
I _{CC_{Main}}	Power Supply Current, Main Synthesizer Only	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 0 PWDN Aux Bit = 1		2.3	3.0	mA
I _{CC_{Aux}}	Power Supply Current, Aux Synthesizer Only	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 1 PWDN Aux Bit = 0		1.0	1.6	mA
I _{CC-PWDN}	Powerdown Current	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 1 PWDN Aux Bit = 1		1.0	10.0	μА
MAIN SYNTI	HESIZER PARAMETERS		'		•	
f _{IN} Main	Main Operating Frequency		500		2500	MHz
N _{Main}	Main N Divider Range	Prescaler = 16/17 (Note 4)	48		131087	
		Prescaler = 32/33 (Note 4)	96		262143	
R _{Main}	Main R Divider Range		2		32767	
F _{\phiMain}	Main Phase Detector Frequency				10	MHz
Pf _{IN} Main	Main Input Sensitivity	2.7V ≤ V _{CC} ≤ 3.0V (Note 5)	-15		0	dBm
		3.0V < V _{CC} ≤ 5.5V (Note 5)	-10		0	dBm

Electrical Characteristics (Continued) $V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V \mu c = 3.0 \text{V}, -40 ^{\circ}\text{C} \leq T_A \leq +85 ^{\circ}\text{C}, \text{ unless otherwise specified}$

Symbol	Parameter	Conditions		Value		Units
Зуппоот	Farameter	Conditions	Min	Тур	Max	Office
MAIN SYNTH	HESIZER PARAMETERS					
ID _o Main	Main Charge Pump Output Source	VD _o Main = V _P Main/2		-0.95		mA
SOURCE	Current	ID _o Main Bit = 0				
		(Note 6)				
		VD _o Main = V _P Main/2		-3.80		mA
		ID _o Main Bit = 1				
		(Note 6)				
ID _o Main	Main Charge Pump Output Sink Current	VD _o Main = V _P Main/2		0.95		mA
SINK		ID _o Main Bit = 0				
		(Note 6)				
		VD _o Main = V _P Main/2		3.80		mA
		ID _o Main Bit = 1				
		(Note 6)				
ID _o Main	Main Charge Pump Output TRI-STATE	$0.5V \le VD_o Main \le V_P Main - 0.5V$	-2.5		2.5	nA
TRI-STATE	Current	(Note 6)				
ID _o Main	Main Charge Pump Output Sink Current	VD _o Main = V _P Main/2		3	10	%
SINK	Vs Charge Pump Output Source Current	$T_A = 25^{\circ}C$				
Vs	Mismatch	(Note 7)				
ID _o Main						
SOURCE	M : 01	O.E.V. (AVD. M.). O.E.V.		40	45	0/
ID _o Main	Main Charge Pump Output Current	$0.5V \le VD_o$ Main $\le V_P$ Main - 0.5V		10	15	%
Vs VD _o Main	Magnitude Variation Vs Charge Pump Output Voltage	T _A = 25°C (Note 7)				
		, ,		10		%
ID _o Main Vs	Main Charge Pump Output Current Magnitude Variation Vs Temperature	VD _o Main = V _P Main/2 (Note 7)		10		%
T _A	Iviagrillade Variation VS Temperature	(Note 1)				
	│ ESIZER PARAMETERS					
f _{IN} Aux	Aux Operating Frequency		45		1200	MHz
N _{Aux}	Aux N Divider Range	Prescaler = 8/9	24		65559	1411.12
Aux	Adx IV Dividor Harigo	(Note 4)			00000	
		Prescaler = 16/17	48		131087	
		(Note 4)	.0		101007	
R _{Aux}	Aux R Divider Range		2		32767	
F _{φAux}	Aux Phase Detector Frequency				10	MHz
Pf _{IN} Aux	Aux Input Sensitivity	2.7V ≤ V _{CC} ≤ 5.5V	-10		0	dBm
IIN		(Note 5)				

Electrical Characteristics (Continued) $V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V \mu c = 3.0 \text{V}, -40 ^{\circ} \text{C} \leq T_A \leq +85 ^{\circ} \text{C}, unless otherwise specified}$

Symbol	Parameter	Conditions		Value		Units
Эупроі	Parameter	Conditions	Min	Тур	Max	Units
AUX SYNTHI	ESIZER PARAMETERS					
ID _o Aux	Aux Charge Pump Output Source	$VD_o Aux = V_P Aux/2$		-0.95		mA
SOURCE	Current	ID _o Aux Bit = 0				
		(Note 6)				
		$VD_o Aux = V_P Aux/2$		-3.80		mA
		ID _o Aux Bit = 1				
		(Note 6)				
ID _o Aux	Aux Charge Pump Output Sink Current	$VD_o Aux = V_P Aux/2$		0.95		mA
SINK		ID _o Aux Bit = 0				
		(Note 6)				
		$VD_o Aux = V_P Aux/2$		3.80		mA
		ID _o Aux Bit = 1				
		(Note 6)				
ID _o Aux	Aux Charge Pump Output TRI-STATE	$0.5V \le VD_o Aux \le V_P Aux - 0.5V$	-2.5		2.5	nA
TRI-STATE	Current	(Note 6)				
ID _o Aux	Aux Charge Pump Output Sink Current	$VD_o Aux = V_P Aux/2$		3	10	%
SINK	Vs Charge Pump Output Source Current	$T_A = 25^{\circ}C$				
Vs	Mismatch	(Note 7)				
ID _o Aux						
SOURCE						
ID _o Aux	Aux Charge Pump Output Current	$0.5V \le VD_o Aux \le V_P Aux - 0.5V$		10	15	%
Vs	Magnitude Variation Vs Charge Pump	$T_A = 25^{\circ}C$				
VD _o Aux	OutputVoltage	(Note 7)				
ID _o Aux	Aux Charge Pump Output Current	$VD_o Aux = V_P Aux/2$		10		%
Vs	Magnitude Variation Vs Temperature	(Note 7)				
T _A						
OSCILLATOR	R PARAMETERS					
Fosc	Oscillator Operating Frequency		2		40	MHz
V _{OSC}	Oscillator Sensitivity	(Note 8)	0.5		V _{cc}	V_{PP}
I _{osc}	Oscillator Input Current	$V_{OSC} = V_{CC} = 5.5V$			100	μA
		$V_{OSC} = 0V, V_{CC} = 5.5V$	-100			μA

Electrical Characteristics (Continued) $V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V \mu c = 3.0 \text{V}, -40 ^{\circ}\text{C} \leq T_A \leq +85 ^{\circ}\text{C}, \text{ unless otherwise specified}$

0	Daniero etc.;	0		Value		11
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL INT	ERFACE (Data, LE, Clock, F _o LD)					
V _{IH}	High-Level Input Voltage	1.72V ≤ Vµc ≤ 5.5V	0.8 Vµc			V
V _{IL}	Low-Level Input Voltage	1.72V ≤ Vµc ≤ 5.5V			0.2 Vµc	V
I _{IH}	High-Level Input Current	$V_{IH} = V\mu c = 5.5V$	-1.0		1.0	μA
I _{IL}	Low-Level Input Current	$V_{IL} = 0V$, $V\mu c = 5.5V$	-1.0		1.0	μA
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA	V _{CC} - 0.4			V
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA			0.4	V
MICROWIRE	INTERFACE	•			'	
t _{CS}	Data to Clock Set Up Time	(Note 9)	50			ns
t _{CH}	Data to Clock Hold Time	(Note 9)	20			ns
t _{CWH}	Clock Pulse Width HIGH	(Note 9)	50			ns
t _{CWL}	Clock Pulse Width LOW	(Note 9)	50			ns
t _{ES}	Clock to Load Enable Set Up Time	(Note 9)	50			ns
t _{EW}	Latch Enable Pulse Width	(Note 9)	50			ns

Electrical Characteristics (Continued)

 $V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V \mu c = 3.0 \text{V}, -40 ^{\circ} \text{C} \le T_A \le +85 ^{\circ} \text{C}, \text{ unless otherwise specified}$

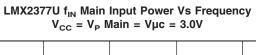
Cumbal	Dovernator	Conditions		Value		Linita
Symbol	Parameter	Conditions	Min	Тур	Max	Units
PHASE NOIS	SE CHARACTERISTICS					
L _N (f) Main	Main Synthesizer Normalized Phase	TCXO Reference Source		-212.0		dBc/
	Noise Contribution	ID _o Main Bit = 1				Hz
	(Note 10)					
L(f) Main	Main Synthesizer Single Side Band	f _{IN} Main = 2450 MHz		-77.24		dBc/
	Phase Noise Measured	f = 1 kHz Offset				Hz
		F _{φMain} = 200 kHz				
		Loop Bandwidth = 7.5 kHz				
		N = 12250				
		F _{OSC} = 10 MHz				
		$V_{OSC} = 0.632 V_{PP}$				
		ID _o Main Bit = 1				
		PWDN Aux Bit = 1				
		$T_A = 25^{\circ}C$				
		(Note 11)				
L _N (f) Aux	Aux Synthesizer Normalized Phase	TCXO Reference Source		-212.0		dBc/
	Noise Contribution	ID _o Aux Bit = 1				Hz
	(Note 10)					
L(f) Aux	Aux Synthesizer Single Side Band	f_{IN} Aux = 900 MHz		-85.94		dBc/
	Phase Noise Measured	f = 1 kHz Offset				Hz
		$F_{\phi Aux} = 200 \text{ kHz}$				
		Loop Bandwidth = 12 kHz				
		N = 4500				
		F _{OSC} = 10 MHz				
		$V_{OSC} = 0.632 V_{PP}$				
		ID _o Aux Bit = 1				
		PWDN Main Bit = 1				
		$T_A = 25^{\circ}C$				
		(Note 11)				

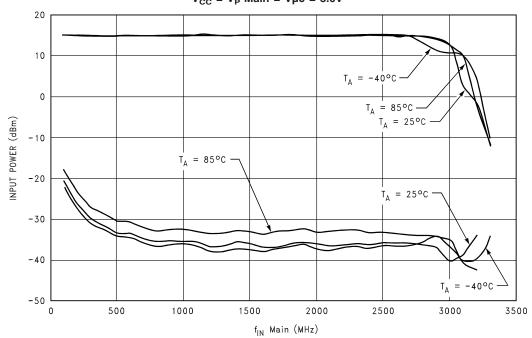
Note 4: Some of the values in this range are illegal divide ratios (B < A). To obtain continuous legal division, the Minimum Divide Ratio must be calculated. Use N \geq P * (P-1), where P is the value of the prescaler selected.

Note 5: Refer to the LMX2377U $f_{\mbox{\scriptsize IN}}$ Sensitivity Test Setup section

Note 6: Refer to the LMX2377U Charge Pump Test Setup section

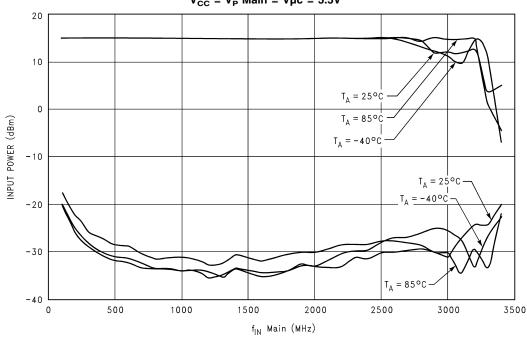
Note 7: Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made.

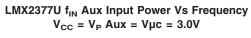

Note 8: Refer to the LMX2377U $\ensuremath{\mathsf{OSC}_{\mathsf{in}}}$ Sensitivity Test Setup section

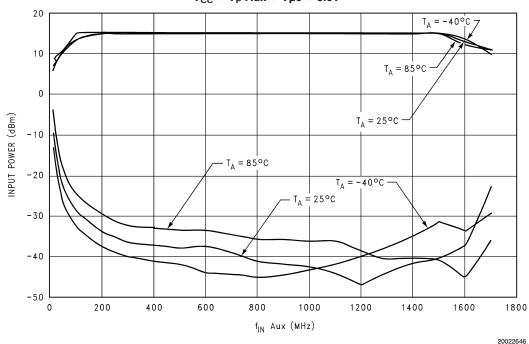

Note 9: Refer to the LMX2377U Serial Data Input Timing section

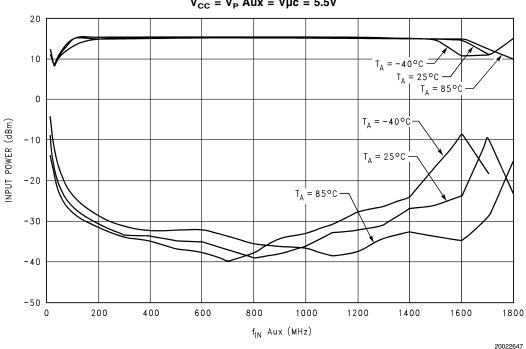
Note 10: Normalized Phase Noise Contribution is defined as : $L_N(f) = L(f) - 20 \log (N) - 10 \log (F_{\phi})$, where L(f) is defined as the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth. The offset frequency, f, must be chosen sufficiently smaller than the PLL's loop bandwidth, yet large enough to avoid substantial phase noise contribution from the reference source. N is the value selected for the feedback divider and F_{ϕ} is the Main/Aux phase detector comparison frequency.

Note 11: The synthesizer phase noise is measured with the LMX2370TMEB/LMX2370SLBEB/LMX2370SLEEB Evaluation boards and the HP8566B Spectrum Analyzer.

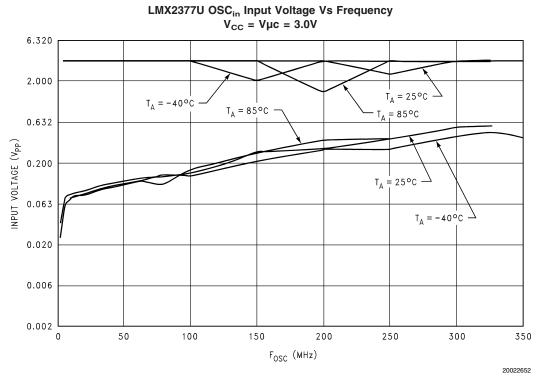

Typical Performance Characteristics Sensitivity

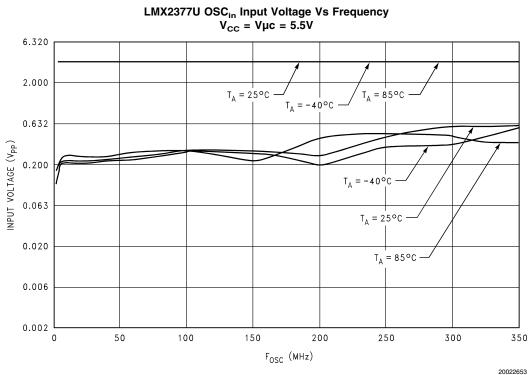

20022642


LMX2330U f_{IN} Main Input Power Vs Frequency $V_{CC} = V_P Main = V\mu c = 5.5V$

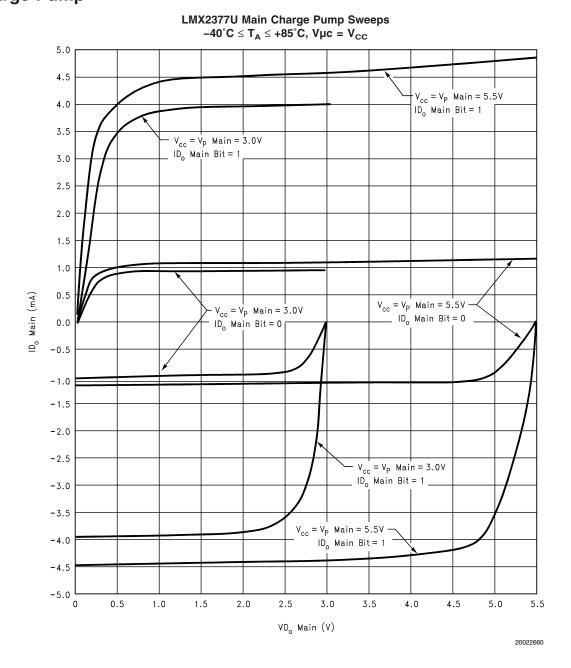

20022643

Typical Performance Characteristics Sensitivity (Continued)

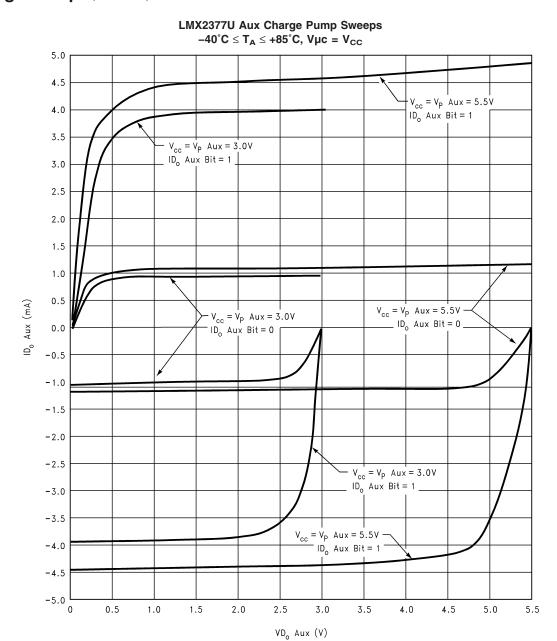




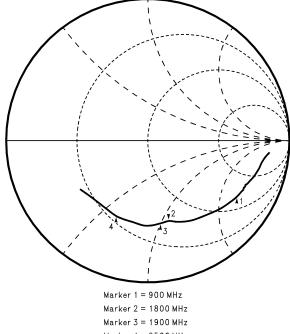
LMX2377U f $_{\rm IN}$ Aux Input Power Vs Frequency V $_{\rm CC}$ = V $_{\rm P}$ Aux = V $_{\rm \mu C}$ = 5.5V



Typical Performance Characteristics Sensitivity (Continued)

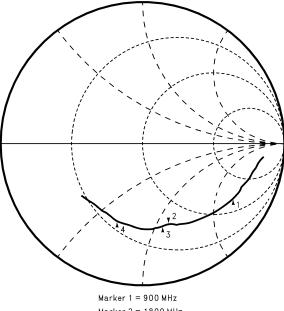


Typical Performance Characteristics Charge Pump


Typical Performance Characteristics Charge Pump (Continued)

20022661

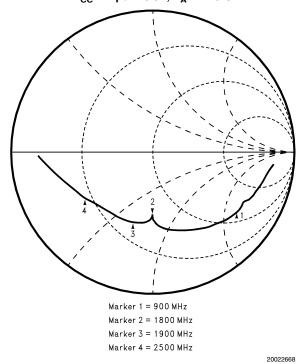
Typical Performance Characteristics Input Impedance


LMX2377U TSSOP f_{IN} Main and f_{IN} Aux Input Impedance $V_{CC} = V\mu c = 3.0V$, $T_A = +25^{\circ}C$

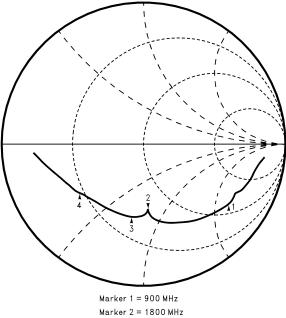
Marker 4 = 2500 MHz

20022666

LMX2377U TSSOP f_{IN} Main and f_{IN} Aux Input Impedance $V_{CC} = V\mu c = 5.5V, T_A = +25^{\circ}C$


Marker 2 = 1800 MHz

Marker 3 = 1900 MHz


Marker 4 = 2500 MHz

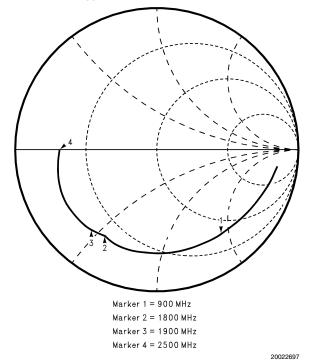
20022667

LMX2377U CSP f_{IN} Main and f_{IN} Aux Input Impedance V_{CC} = Vµc = 3.0V, T_{A} = +25 $^{\circ}\text{C}$

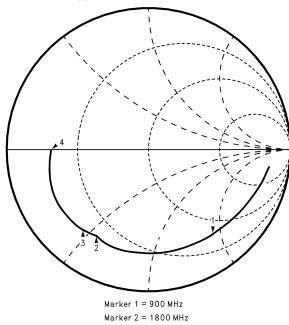
LMX2377U CSP f_{IN} Main and f_{IN} Aux Input Impedance $V_{CC} = V\mu c = 5.5V, T_A = +25^{\circ}C$

Marker 3 = 1900 MHz

Marker 4 = 2500 MHz


20022669

LMX2377U TSSOP and LMX2377U CSP fin Main and fin Aux Input Impedance Table

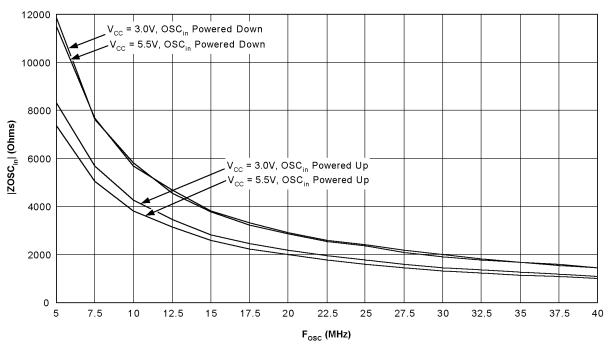

			3	LMX2377U T	TSSOP (Zfin	Mai	n and Z	Main and Zfin Aux)					5	MX2377U	LMX2377U CSP (Zfln Main and Zfln Aux)	N Mair	J and Zi	f _{IN} Aux)		
	7 80	= V _P M	$ain = V_P / I$ $(T_A = 2\xi$	$V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V_{\mu C}$ $(T_A = 25^{\circ}C)$	= 3.0V	ν (= V _P Ma	$V_{CC} = V_P Main = V_P Aux = V_{LIC} = 5.5V$ $(T_A = 25^{\circ}C)$	λux = Vμc 5°C)	:= 5.5V	N	= V _P Ms	$V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V_{LIC} = 3.0V$ $(T_A = 25^{\circ}C)$	ωx = Vμc °C)	= 3.0V	>	= V _P M	$ain = V_P Aux$ $(T_A = 25^{\circ}C)$	$V_{cc} = V_P \text{ Main} = V_P \text{ Aux} = V_{\mu C} = (T_A = 25^{\circ}C)$	= 5.5V
Ę		7	Z, Z	2fin	IZf _{IN} I	Ē	77	Z, Z	ZÍ _N	IZf _{IN} I	드	7	g, Zf _{IN}	ZÍ _N	IZf _{IN} I	⊑	77	Zf _{IN}	Zfin	IZf _{in} i
(MHz)			(G)	G	(C)			(C)	(C)	(G)			G	a	G			(U)	(D)	(C)
100	0.862	-6.23	0.862 -6.23 439.774 -319.86	-319.866	543.798	0.862	-6.07	448.230	-318.841	550.064	0.864	-6.44	431.004	-330.013	542.838	0.864	-6.30	438.240	-327.814	547.281
200	0.834	-9.30	0.834 -9.30 307.614 -272.27	-272.274	410.803	0.834	-9.00	316.479	-271.581	417.031	0.836	-9.88	291.252	-277.923	402.577	0.836	-9.57	300.190	-277.552	408.838
300	0.820	-12.11	0.820 -12.11 237.700 -249.291	-249.291	344.452	0.821	-11.66	247.264	-251.098	352.406	0.821	-13.24	215.318	-248.361	328.702	0.821	-12.76	224.624	-249.637	335.819
400	0.808	-15.25	0.808 -15.25 185.048 -227.171	-227.171		0.808	-14.61	293.001 0.808 -14.61 194.668 -229.054 300.601	-229.054	300.601	0.808 -16.88	16.88	163.190	-219.893	273.832		0.808 -16.24	171.345	-222.518	280.844
200	0.796	-18.51	0.796 -18.51 147.785 -203.92	-203.923	251.843	0.796	-17.66	-17.66 156.935	-207.313	260.014	0.793	-20.90	126.193	-191.939	229.707	0.794	-20.00	133.885	-196.200	237.528
009	0.781	-21.81	0.781 -21.81 122.091 -181.461	-181.461	218.710	0.782	-20.70	0.782 -20.70 130.906 -185.850	-185.850	227.325	0.775 -24.82		102.956	-168.026	197.060	0.777	-23.70	109.531	-172.887	204.663
700	0.765	-24.72	0.765 -24.72 106.107 -163.758	-163.758	195.129	0.767	-23.45	113.780	-168.514	195.129 0.767 -23.45 113.780 -168.514 203.329 0.749 -28.29	0.749 -	- 1	90.820	-146.582	90.820 -146.582 172.437	0.752	0.752 -27.02	96.279	-151.333	179.363
800	0.760	-28.35	0.760 -28.35 87.984 -150.524	-150.524	174.352	0.762	-26.97	94.255	-155.481	181.819	0.742	-31.22	79.737	-136.782	158.327	0.746	-29.85	84.470	-141.473	164.772
006	0.747	0.747 -32.60	73.777	-134.500 153.406		0.750	-30.95	79.270	-139.668	160.596	0.739 -	-36.04	64.577	-123.951	139.764	0.742	-34.37	900.69	-128.610	145.954
1000	0.732	-36.68	1000 0.732 -36.68 64.122 -120.908	-120.908	136.859 0.735 -34.73	0.735	-34.73	69.215	-126.104	69.215 -126.104 143.851 0.719 -41.44	0.719 -	- 1	55.019	-108.415	121.577 0.723 -39.46	0.723	-39.46	58.684	-113.123	127.439
1100	0.717	-41.25	0.717 -41.25 55.780 -108.398	-108.398	121.908	0.720	0.720 -39.12	60.041	-113.215	128.151	0.694 -	-47.27	48.056	-94.403	105.931	0.698	-45.08	51.159	-98.547	111.035
1200	0.698	-46.24	0.698 -46.24 49.180	-96.605	108.403	0.702	0.702 -43.84	52.848	-101.254	114.216	0.669 -53.59		42.269	-82.401	92.610	0.674 -51.01	-51.01	45.061	-86.388	97.434
1300	0.678	-51.43	1300 0.678 -51.43 43.982	-86.291	96.853	0.683 -48.77	-48.77	47.173	-90.676	102.212 0.641 -60.42	0.641 -	- 1	37.856	-71.653	81.039	0.647	0.647 -57.50	40.230	-75.400	85.461
1400	0.663	-56.68	0.663 -56.68 39.397	-77.901	87.296	0.667	-53.71	42.317	-82.070	92.337	0.610	-68.33	34.108	-61.481	70.308	0.613	-64.90	36.477	-64.872	74.424
1500	0.649	-62.08	0.649 -62.08 35.566	-70.500	78.963	0.653	0.653 -58.74	38.281	-74.569	83.821	0.577	-77.01	31.049	-52.388	60.898	0.581	0.581 -73.18	33.064	-55.554	64.649
1600	0.630	-67.58	1600 0.630 -67.58 32.912	-63.544	71.562	0.634	0.634 -63.96	35.335	-67.423	76.121	0.539 -84.86	- 1	29.732	-44.952	53.895	0.543	0.543 -80.36	31.654	-48.119	57.597
1700	0.608	0.608 -72.22	31.565	-57.996	66.030	0.614	-68.51	33.590	-61.632	70.191	0.477	-27.97	100.359	-58.171	115.999	0.487	-84.99	33.106	-42.105	53.562
1800	0.596	-75.66	1800 0.596 -75.66 30.440	-54.462	62.392	0.601 -71.81	-71.81	32.358	-57.943	998.99	0.455 89.90		32.829	-37.624	49.933	0.468 -85.87	-85.87	33.886	-40.554	52.847
1900	0.598	-80.06	1900 0.598 -80.06 27.915	-51.164	58.284	0.602 -76.22	-76.22	29.678	-54.335	61.912	0.493 87.34	87.34	29.357	-38.214	48.189	0.500 -88.90	-88.90	29.576	-39.369	49.241
2000	0.607	0.607 -85.31	24.914	-47.651	53.771	0.607	-81.32	26.675	-50.603	57.203	0.520	79.89	25.120	-35.225	43.264	0.521	84.05	26.396	-37.576	45.921
2100	0.612	0.612 89.24	22.502	-43.994	49.414	0.611	-86.42	21.612	45.064	47.292	0.529 70.97	70.97	22.177	-30.771	37.930	0.525 75.52	75.52	23.556	-33.043	40.580
2200	0.605	2200 0.605 84.09	21.289	-40.358	45.629	0.602	88.61	22.901	-43.251	48.940	0.531 61.99	51.99	20.155	-26.331	33.159	0.524	66.93	21.544	-28.595	35.802
2300	0.594 78.44	78.44	20.367	-36.566	41.855	0.589	83.13	21.961	-39.298	45.018	0.533	52.71	18.533	-21.975	28.747	0.525	57.61	19.706	-24.119	31.146
2400	0.590	2400 0.590 72.27	19.111	-32.907	38.054	0.584 77.11	77.11	20.598	-35.536	41.074	0.550 43.18		16.578	-17.883	24.385	0.537 47.69	47.69	17.671	-19.749	26.501
2500	0.586 67.24		18.297	-30.064	35.194	0.576	72.09	19.792	-32.516	38.066	0.583	34.44	14.340	-14.328	20.272	0.566	38.69	15.416	-16.055	22.257

20022670

LMX2377U UTCSP f_{IN} Main and f_{IN} Aux Input Impedance V_{CC} = V μ C = 3.0V, T_A = +25 $^{\circ}$ C

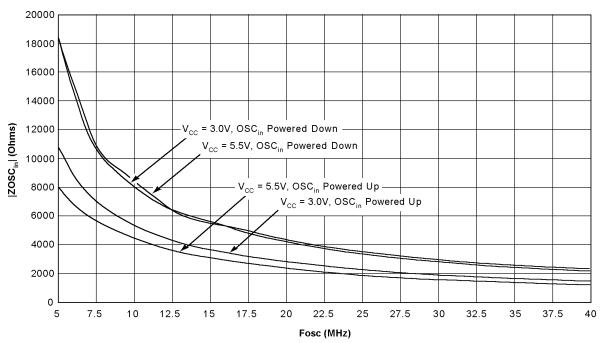
LMX2377U UTCSP f_{IN} Main and f_{IN} Aux Input Impedance V_{CC} = V μ c = 5.5V, T_A = +25 $^{\circ}$ C

Marker 3 = 1900 MHz


Marker 4 = 2500 MHz

20022697

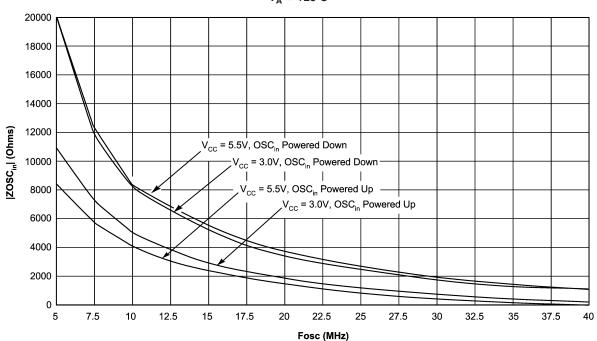
LMX2377U UTCSP f_{IN} Main and f_{IN} Aux Input Impedance Table


				LMX	LMX2377U UTCSP Zfin Main and Zfin Aux	fin Main and	Zf _{IN} Aux			
		V _{CC} = V _P	$V_{CC} = V_P \text{ Main} = V_P \text{ Aux} = V_{\mu C}$ $(T_A = 25^{\circ}C)$	$c = V\mu c = 3.0V$			V _{cc} = V _P	$V_{CC} = V_P Main = V_P Aux = V \mu c = 5.5V$ $(T_A = 25^{\circ}C)$	c = Vμc = 5.5V)	
f _{in} (MHz)	ΙΊ	Z	Re Zf _{in} (Ω)	m Zf _{in} (Ω)	Zf _{IN} (Ω)	딥	4	Re Zf _{in} (Ω)	III Zf _{in} (Ω)	Zf _{IN} (Ω)
100	0.86	-8.57	335.53	-330.26	470.80	0.86	-8.61	333.98	-330.26	469.70
200	0.83	-13.59	206.36	-258.74	330.95	0.83	-13.55	207.11	-258.92	331.57
300	0.81	-18.53	143.19	-214.36	257.79	0.81	-18.45	144.05	-214.75	258.59
400	08.0	-23.67	103.09	-183.95	210.86	08.0	-23.63	103.36	-184.12	211.15
200	0.79	-29.24	76.58	-157.24	174.89	0.79	-29.07	77.30	-157.87	175.78
009	0.77	-34.87	61.79	-133.64	147.24	0.77	-34.64	62.46	-134.31	148.12
700	0.76	-40.52	50.03	-116.97	127.23	92.0	-40.33	50.42	-117.43	127.80
800	0.76	-46.45	39.82	-103.86	111.24	92.0	-46.18	40.22	-104.42	111.89
006	0.75	-53.27	32.87	-90.33	96.13	0.75	-52.89	33.27	-90.97	98.96
1000	0.74	-60.04	27.98	-79.30	84.09	0.74	-59.70	28.24	-79.77	84.63
1100	0.73	-66.62	24.49	-70.27	74.42	0.73	-66.10	24.81	-70.90	75.11
1200	0.73	-74.07	20.63	-62.00	65.34	0.73	-73.57	20.85	-62.52	65.91
1300	0.73	-81.67	17.67	-54.66	57.45	0.73	-81.15	17.85	-55.13	57.95
1400	0.73	-89.59	15.34	-47.95	50.34	0.73	-88.94	15.51	-48.47	50.89
1500	0.73	-97.85	13.48	-41.75	43.87	0.73	-97.12	13.63	-42.27	44.41
1600	0.73	-106.72	11.96	-35.80	37.74	0.73	-105.87	12.09	-36.34	38.30
1700	0.72	-115.82	11.22	-30.21	32.22	0.72	-114.76	11.35	-30.82	32.84
1800	0.70	-123.41	11.28	-25.85	28.20	0.70	-122.28	11.40	-26.45	28.80
1900	0.72	-130.68	9.80	-22.22	24.29	0.72	-129.92	9.86	-22.61	24.66
2000	0.74	-140.55	8.41	-17.48	19.39	0.74	-139.88	8.44	-17.80	19.70
2100	0.74	-150.74	76.7	-12.74	15.03	0.74	-150.01	7.99	-13.07	15.32
2200	0.73	-160.86	8.02	-8.22	11.48	0.73	-160.03	8.04	-8.58	11.76
2300	0.71	-170.43	8.54	-4.06	9.46	0.71	-169.62	8.55	-4.41	9.62
2400	0.69	-179.08	9.17	-0.39	9.18	0.69	-178.32	9.17	-0.71	9.20
2500	0.67	172.38	9.92	3.20	10.43	0.67	173.11	9.91	2.89	10.33

LMX2377U TSSOP OSC $_{in}$ Input Impedance Vs Frequency T_A = +25 $^{\circ}$ C

20022676

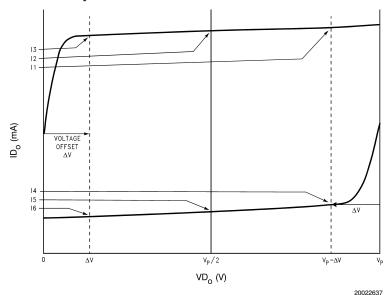
LMX2377U CSP OSC_{in} Input Impedance Vs Frequency $T_A = +25^{\circ}C$



20022677

LMX2377U TSSOP and LMX2377U CSP OSC_{in} Input Impedance Table

POWERED DOWN POWERED UP POWERED DOWN POWERED POWN POWERED POWER POWERED POWN POWERED POWER POWERED POWN POWERED POWN POWERED POWER POWERED POWN POWER POWERED POWER POWERED POWER POWER POWER POWERED POWN POWER	LMX2377U TSSOP ZOSC _{In}	LMX2377U TS	LMX2377U TS	LMX2377U TS:	X2377U TS:	SS L	SOP ZO	"SC									Ē	LMX2377U CSP ZOSCin	SP ZOS	٠,ξ				
COSC _{III} BUFFER COSC _{III} BUFFER POWERED DOWN	$V_{cc} = V_{\mu c} = 3.0V (T_A = 25^{\circ}C)$ $V_{cc} = V_{\mu c} = 5.5V (T_A = 25^{\circ}C)$	Vcc	Vcc	Vcc	V _{oc} = Vμc = 5.5V (1	$V_{cc} = V_{\mu c} = 5.5V$ (1	$V_{cc} = V_{\mu c} = 5.5V$ (1	νμς = 5.5V (אַ		25°C)			V _{cc} = \	/µc = 3.0	V (T _A = 2	(2°C)			V _{cc} = V	μc = 5.5	V (TA =	25°C)	
ZOSCn. (D) (D)<	OSC _{In} BUFFER OSC _{In} BUFFER OSC _{In} BUFFER POWERED UP POWERED UP P	OSC, BUFFER OSC, BUFFER POWERED DOWN	OSC _{in} BUFFER POWERED UP	OSC _{in} BUFFER POWERED UP	OSC _{in} BUFFER POWERED UP				•	OSC	a BUFFE	ER WN	OSC POV	in BUFFE VERED U	H. G	OSC	in BUFF RED DO	ER WN	OSC	" BUFFE FRED L	R. 9	OSC	". BUFFI	ER WN
-11436.600 11504.282 5107.688 -9526.374 10809.27 4154.104 -18073.24 18544.50 -1675.309 7892.910 2249.061 -6544.476 6920.146 1571.331 -10205.48 10325.74 -6659.65 5680.388 1664.886 -5170.920 5432.335 1066.861 -8350.651 8418.489 -4665.169 4666.295 1048.750 -4245.537 4373.153 727.756 -6341.105 6382.730 -2399.626 3803.003 812.629 3658.426 3663.861 442.319 -5658.273 5675.536 -2397.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.281 2915.291 2915.291 2915.291 2915.291 2917.281 2916.233 344.244 -2512.522 2551.129 1917.39 3114.867 3120.763 -2392.991 344.244 -2512.522 2551.129 1917.39 3114.867 3120.763 -2392.400 3406.648 -2471.170 2162.832 367.245 -2060.013 2092.491 1917.39 3114.867 3120.763 -2392.400 3406.648 -2471.170 2913.997 -2402.400 3406.648 -2471.170 2913.997 -2402.400 3406.648 -2471.170 -2512.281 -2402.475 -2402.400 3406.648 -2471.170 -2512.281 -2402.475 -2402.470	Re		ZOSC _n ZOSC	In ZOSC, IZOSC, IZOSC, IZOSC, IZOSC, ICOSC,		Im ZOSC _{in} IZOSC _{in} I	ZOSC _{in}			Re ZOSCin		ZOSCIN	Re ZOSC _m			Re ZOSCm								ZOSCIII
-7675.309 7682.910 2249.061 -6544.475 6920.146 1571.331 -10205.48 10325.47 -656.9.675 5680.388 1664.886 -1570.200 5432.335 1066.661 -8350.661 8418.499 -4665.169 4669.296 1048.750 -4245.537 4373.153 127.756 -6341.105 6382.730 -3799.626 3803.003 872.629 -3558.426 3863.861 442.319 -568.273 567.536 -390.741 3311.570 691.377 -3180.00 322.82.85 266.01 -424.475 424.247 442.99.917 440.03 -208.411 261.049 442.147 -2512.522 2551.129 186.123 -377.847 378.429 -238.8.967 238.91 -2761.252 2561.129 186.123 -377.847 378.429 -248.766 1385.928 367.245 -2060.013 2092.491 191.739 -3114.867 3120.763 -188.76 188.308 368.316 -1776.540 180.480 1280.448 2864.486 2	13 -8000.376 8321.972 986.863 -11825.209 11866.234 2832.878 -6774.525 7342.982	985.863 -11825.209 11866.234 2832.878 -6774.525 7342.982	985.863 -11825.209 11866.234 2832.878 -6774.525 7342.982	525 7342.982	525 7342.982	525 7342.982	525 7342.982			1	11436.600	1504.282	5107.688	9526.374	10809.27	1154.104	18073.24		98.960	544.007	056.318	154.104	18073.24	8544.50
-665.65 675 5680.388 1664.886 -5170.920 5422.335 1066.661 -8350.651 8418.499 1625.723 4209.219 4512.261 976.808 4665.165 866.295 1048.750 -4245.537 4373.153 727.756 -6341.105 6382.730 1182.342 -3466.892 3663.045 899.897 377.99 628 3803.003 872.629 3658.426 3663.861 442.319 -5658.273 5675.536 866.006 -2977.931 3098.519 436.542 3305.741 3311.570 891.377 -3158.030 322.825 296.061 47.99.917 4900.039 877.81 -2605.886 2997.893 3098.519 309.519 309.519 2917.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2916.281 2917.991 291	1202.389 -5538.197 5667.218 294.460 -7640.322 7645.994 1267.479 4861.053 5023.579	.053	.053	.053	.053	.053	.053	9023.579	47	520.098	7675.309	7692.910	2249.061	6544.475 6	950.146	- 1571.331	10205.48	10325.74	626.329 ~	998.105 5	646.119	812.311 -	10602.90	0756.68
-4665.169 4669.269 1048.750 -4245.537 4373.153 727.756 -6841.105 6882.730 1182.342 3466.982 3663.045 899.697 -3799.626 3803.003 872.629 -355.84.56 365.3861 442.319 -5658.273 5675.536 866.006 -2977.331 3098.519 438.542 -3306.741 3311.570 691.377 -3158.030 3222.825 296.061 4799.917 4809.039 697.761 -2605.886 2697.692 309.618 -2917.281 281.377 -3158.030 3222.825 296.061 4799.917 4809.039 697.761 -2605.886 2697.692 309.618 -2801.281 281.377 -318.076 -3402.475 4246.948 554.417 -2318.961 238.315 309.618 564.417 -2318.961 309.618 309.618 309.618 309.618 309.618 309.618 309.618 309.618 309.618 309.618 309.618 309.711 309.618 309.618 309.618 309.711 309.711 309.618	791.970 -4218.658 4292.353 266.942 -5793.060 5799.207 739.926 -3754.673 3826.886							1826.886	4	484.656	5659.675	5680.388	1664.886	5170.920 5	432.335	1066.661	3350.651	8418.499	625.723	209.219		976.808	3800.590	854.633
3799 626 3803 003 372 629 3568 426 3663 861 442.319 5658 273 5675 536 6675 537 6675 537 <	527.664 -3418.978 3459.456 197.874 4547.094 4551.397 544.280 -3078.845 3126.584	-4547.094 4551.397 544.280 -3078.	-4547.094 4551.397 544.280 -3078.	-4547.094 4551.397 544.280 -3078.	544.280 -3078.	544.280 -3078.	3078.845 3126.584	1126.584	-	196.239	4665.169	4669.295	1048.750	4245.537 4			3341.105	5382.730	182.342	466.982			5248.932	3313.367
-3365.741 3311.570 691.377 -3158.030 3232.825 296.061 -4799.917 4809.039 697.781 -2695.865 2997.692 309.618 -2917.281 2918.215 556.597 -2791.912 2847.441 194.872 -424.2475 4246.946 554.417 -2318.961 2384.315 303.378 -28608.411 2810.449 442.147 -2512.522 2551.129 186.123 -3777.847 3782.429 455.437 -2041.170 2098.100 168.163 -2388.967 2388.913 444.524 -2261.024 2304.307 170.072 -3402.400 3406.648 424.599 -1865.270 1912.996 174.460 -2161.702 2162.832 365.692 -1893.442 1926.747 188.280 -2897.317 2843.567 37.340 -1567.379 1908.182 157.24 -1984.769 1985.928 356.692 -1893.421 192.014 -2664.486 2667.608 332.065 -1461.571 1498.818 157.389 -1688.748 1690.365 302.932 -1648.356 1675.961 1578.37 117.732 -2331.694 242.694 1451.370 1305.74 144.727 -470.482 1471.004 281.334 -1464.298 14461.260 81.318 -2182.473 213.329 7 1793.32 -1199.918 1230.654 152.283	343.020 -2817.993 2838.794 161.801 -3761.566 3765.044 416.644 -2536.243 2570.238	7.993 2838.794 161.801 -3761.566 3765.044 416.644 -2536.243 2570.238	94 161.801 -3761.566 3765.044 416.644 -2536.243 2570.238	1 -3761.566 3765.044 416.644 -2536.243 2570.238	3765.044 416.644 -2536.243 2570.238	416.644 -2536.243 2570.238	2536.243 2570.238	570.238	-	160.236	3799.626	3803.003	872.629 -	3558.426		442.319	5658.273	_		977.931		136.542	5712.788	5729.443
2917.281 2918.215 559.597 -2791.912 2847.441 194.872 422.475 4246.948 554.417 -2318.961 2398.315 -2608.411 2610.449 442.147 -2512.522 25551.129 186.123 -3777.847 3782.449 485.437 -2041.170 2098.100 -2388.967 2288.967 2288.967 2288.967 2206.013 2092.491 191.739 -3114.867 3120.763 379.086 -1714.733 1756.196 -1964.769 1965.928 356.692 -1893.442 1926.747 188.280 2837.317 2843.557 379.086 -1714.733 1756.196 -1964.769 1985.928 356.692 -1893.442 192.014 2864.486 2867.506 357.340 -1567.979 1608.182 -1964.769 1985.028 356.892 1875.501 1810.480 2864.486 2867.508 332.085 -1461.571 1498.818 -1899.748 1699.366 1675.961 187.596 95.424 -2471.170 2473.011 298.913 -1361.577 <td>316.446 -2439.647 2460.085 141.326 -3203.351 3206.467 309.867 -2192.584 2214.372</td> <td>-3203.351 3206.467 309.867 -2192.</td> <td>-3203.351 3206.467 309.867 -2192.</td> <td>-3203.351 3206.467 309.867 -2192.</td> <td>309.867 -2192.</td> <td>309.867 -2192.</td> <td>2192.584 2214.372</td> <td>214.372</td> <td></td> <td>196.400</td> <td></td> <td>3311.570</td> <td>_</td> <td>3158.030</td> <td></td> <td></td> <td>4799.917</td> <td></td> <td>$\overline{}$</td> <td>605.886 2</td> <td></td> <td></td> <td>1985.007</td> <td>1994.613</td>	316.446 -2439.647 2460.085 141.326 -3203.351 3206.467 309.867 -2192.584 2214.372	-3203.351 3206.467 309.867 -2192.	-3203.351 3206.467 309.867 -2192.	-3203.351 3206.467 309.867 -2192.	309.867 -2192.	309.867 -2192.	2192.584 2214.372	214.372		196.400		3311.570	_	3158.030			4799.917		$\overline{}$	605.886 2			1985.007	1994.613
-2686.411 2610.449 442.147 -2512.522 2551.129 186.123 3777.847 3782.429 485.437 -2041.170 2098.100 -2388.967 2389.913 444.524 -2261.024 2304.307 170.072 -3402.400 3406.648 424.599 -1865.270 1912.996 -2161.702 2162.832 367.245 -2060.013 2092.491 1917.39 -3114.867 3120.763 379.086 -1714.7783 1756.195 -1984.769 1985.928 356.692 -1893.442 1926.747 188.280 -2837.317 2843.557 357.340 -1567.979 1608.182 -1892.700 1813.090 348.916 -1775.540 1810.489 129.014 2664.486 2667.508 332.065 -1461.571 1498.818 -1689.748 1690.365 302.932 -1548.356 1575.961 1578.37 117.732 -2231.694 2334.664 284.654 -1274.370 1390.840 -1591.439 1591.844 344.529 1481.280 813.31 6.2182.473 183.387 273.32 -1199.918 1230.654 -1274.370 1305.774	228.526 -2179.146 2191.096 63.505 -2879.931 2880.631 227.640 -1974.267 1987.347	9.146 2191.096 63.505 -2879.931 2880.631 227.640 -1974.267 1987.347	96 63.505 -2879.931 2880.631 227.640 -1974.267 1987.347	5 -2879.931 2880.631 227.640 -1974.267 1987.347	2880.631 227.640 -1974.267 1987.347	227.640 -1974.267 1987.347	1974.267 1987.347	987.347		73.816	2917.281	2918.215	- 269.592	2791.912		194.872	4242.475		554.417	318.961		303.378	1345.597	1356.174
170.072 3402.400 3406.648 424.599 -1865.270 1912.986 191.739 -3114.867 3120.763 379.086 -1714.793 1756.195 188.280 -2887.317 2843.557 357.340 -1567.979 1608.182 129.014 -2664.486 2667.608 332.066 -1461.571 1498.818 95.424 -2471.170 2473.011 299.913 -1358.120 1390.840 117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.967 273.323 -1199.918 1230.654	211.659 -1932.535 1944.091 98.108 -2543.330 2545.222 214.873 -1741.101 1754.310	2.535 1944.091 98.108 -2543.330 2545.222 214.873 -1741.101 1754.310	91 98.108 -2543.330 2545.222 214.873 -1741.101 1754.310	3 -2543.330 2545.222 214.873 -1741.101 1754.310	2545.222 214.873 -1741.101 1754.310	214.873 -1741.101 1754.310	1741.101 1754.310	754.310		103.131	2608.411		442.147	2512.522		186.123	3777.847		185.437	041.170		168.163	3935.873	939.464
191.739 -3114.867 3120.763 379.086 -1714.793 1756.195 186.280 2887.317 2843.557 357.340 -1567.979 1608.182 129.014 -2664.486 2667.609 332.065 -1461.571 1498.818 95.424 -2471.170 2473.011 299.913 -1358.120 1390.840 117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.967 273.323 -1199.918 1230.654	163.618 -1762.903 1770.480 89.270 -2340.221 2341.923 169.812 -1589.814 1598.857	2.903 1770.480 89.270 -2340.221 2341.923 169.812 -1589.814 1598.857	80 89.270 -2340.221 2341.923 169.812 -1589.814 1598.857	-2340.221 2341.923 169.812 -1589.814 1598.857	2341.923 169.812 -1589.814 1598.857	169.812 -1589.814 1598.857	1589.814 1598.857	598.857		67.246	2388.967	2389.913	444.524	2261.024 2	304.307	170.072	3402.400			865.270		174.460	3506.895	1232
188.280 -2837.317 2843.557 357.340 -1567.979 1608.182 129.014 -2664.486 2667.608 332.066 -1461.571 1498.818 95.424 -2471.170 2473.011 299.913 -1358.120 1390.840 117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.987 273.323 -1199.918 1230.654	163.733 -1589.620 1598.030 69.675 -2106.253 2107.405 160.401 -1435.713 1444.646						1435.713 1444.646	444.646		69.923	2161.702	2162.832	367.245 -	2060.013 2	092.491	191.739	3114.867		- 980.628	714.793		59.273	3213.478	217.422
129.014 - 2664.486 2667.608 332.065 -1461.571 1498.818 95.424 -2471.170 2473.011 299.913 -1368.120 1390.840 117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.987 273.323 -1199.918 1230.654	148.446 -1463.071 1470.583 81.310 -1926.889 1928.604 141.501 -1314.929 1322.520	81.310 -1926.889 1928.604 141.501 -1314.	81.310 -1926.889 1928.604 141.501 -1314.	1926.889 1928.604 141.501 -1314.929 1322.520	1928.604 141.501 -1314.929 1322.520	141.501 -1314.929 1322.520	1314.929 1322.520	322.520		67.843	1984.769	1985.928	356.692 -	1893.442	926.747		2837.317		357.340	567.979		157.424	2934.223	938.443
95.424 -2471.170 2473.011 299.913 -1358.120 1390.840 117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.987 273.323 -1199.918 1230.654	130.683 -1340.206 1346.562 46.548 -1750.824 1751.443 121.612 -1213.403 1219.482							219.482		37.610 -	1812.700		348.916	1776.540	810.480	129.014	2664.486		332.065 -	461.571		- 686.751	2780.469	784.920
117.732 -2331.694 2334.664 284.654 -1274.370 1305.774 81.318 -2182.473 2183.987 273.323 -1199.918 1230.654	126.059 -1255.034 1261.349 38.046 -1662.230 1662.666 116.385 -1131.429 1137.399							137.399		45.646 -	1689.748		302.932	1648.356 1	675.961	95.424	2471.170		616.666	358.120 1		125.530	2600.472	603.500
81.318 -2182.473 2183.987	115.848 -1178.954 1184.632 37.202 -1547.816 1548.263 109.381 -1064.461 1070.066	37.202 -1547.816 1548.263 109.381 -1064.	37.202 -1547.816 1548.263 109.381 -1064.	109.381 -1064.	109.381 -1064.	109.381 -1064.		070.066		36.346 -	1591.439		300.020	1549.601	578.377		2331.694		84.654	274.370		44.727	2419.904	424.228
	40.0 108.280 -1089.931 1095.296 36.351 -1439.460 1439.919 100.267 -985.544 990.631	-985.544	-985.544	-985.544	-985.544	-985.544	-985.544 990.631	990.631		39.180	1470.482	1471.004	281.334 -	1454.298 1	481.260	81.318	2182.473	2183.987	273.323	199.918	230.654	152.283	2302.913	307.942



200226A1

LMX2377U UTCSP OSCin Input Impedance Table

						LMX2377U UTCSP ZOSCin	TCSP ZOSC	Ę				
			V _{cc} = 3.0V	= 3.0V (T _A = 25°C)					V _{cc} = 5.5V	= 5.5V (T _A = 25°C)		
	0 4	OSC _{in} BUFFER POWERED UP	뜺교	Po	OSC _{in} BUFFER POWERED DOWN	W.N.	ÖĞ	OSC _{in} BUFFER POWERED UP	æ a	Po	OSC _{in} BUFFER POWERED DOWN	~ N
F _{osc}	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSCin (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} (Ω)
5.0	5918.57	-9897.80	11532.39	1822.62	-19947.73	20030.82	4982.73	-7668.32	9144.98	2478.02	-19591.11	19747.21
7.5	3097.46	-7441.43	8060.35	2238.93	-12114.22	12319.38	2742.97	-6062.16	6653.85	2483.54	-12531.99	12775.71
10.0	1695.22	-5720.83	5966.72	998.16	-9046.84	9101.74	1582.29	-4875.36	5125.70	1064.38	-9063.97	9126.25
12.5	1241.03	-4759.14	4918.29	660.39	-7338.93	7368.58	1150.39	-4034.66	4195.46	621.48	-7679.86	7704.97
15.0	820.55	-3955.33	4039.55	471.57	-6142.40	6160.48	861.48	-3448.80	3554.76	591.34	-6481.87	6208.79
17.5	646.18	-3417.20	3477.76	317.24	-5165.41	5175.14	599.49	-3009.04	3068.18	154.67	-5518.01	5520.17
20.0	520.20	-3006.22	3050.90	223.35	-4567.95	4573.41	491.78	-2647.38	2692.67	120.99	-4867.07	4868.57
22.5	459.63	-2666.05	2705.38	219.57	-4040.96	4046.92	396.64	-2342.62	2375.96	137.85	-4301.63	4303.84
25.0	391.21	-2398.19	2429.89	172.20	-3664.77	3668.81	323.46	-2108.25	2132.92	89.00	-3864.60	3865.62
27.5	348.79	-2210.66	2238.01	169.02	-3291.50	3295.84	312.14	-1920.70	1945.90	114.48	-3476.68	3478.56
30.0	285.07	-1996.71	2016.96	110.02	-3005.42	3007.43	260.59	-1763.82	1782.97	121.11	-3185.26	3187.56
32.5	267.83	-1847.30	1866.61	117.14	-2725.46	2727.97	239.41	-1612.35	1630.02	111.70	-2876.34	2878.50
35.0	252.27	-1719.32	1737.73	114.38	-2558.44	2561.00	222.16	-1503.76	1520.08	115.42	-2690.37	2692.84
37.5	224.94	-1639.80	1655.15	70.31	-2408.64	2409.67	191.46	-1422.88	1435.71	48.06	-2550.41	2550.86
40.0	208.96	-1512.91	1527.27	76.50	-2242.79	2244.09	180.75	-1329.24	1341.47	72.61	-2353.73	2354.85
												200226A2

Charge Pump Current Specification Definitions

I1 = Charge Pump Sink Current at $VD_0 = V_P - \Delta V$

I2 = Charge Pump Sink Current at $VD_0 = V_P/2$

I3 = Charge Pump Sink Current at $VD_0 = \Delta V$

I4 = Charge Pump Source Current at $VD_0 = V_P - \Delta V$

I5 = Charge Pump Source Current at VD₀ = V_P/2

I6 = Charge Pump Source Current at $VD_0 = \Delta V$

 $\Delta V = Voltage$ offset from the positive and negative rails. Dependent on the VCO tuning range relative to V_{CC} and GND. Typical values are between 0.5V and 1.0V.

 $V_{\mbox{\footnotesize{P}}}$ refers to either $V_{\mbox{\footnotesize{P}}}$ Main or $V_{\mbox{\footnotesize{P}}}$ Aux

VDo refers to either VDo Main or VDo Aux

 ${\rm ID_0}$ refers to either ${\rm ID_0}$ Main or ${\rm ID_0}$ Aux

Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

$$ID_o Vs VD_o = \frac{(|II| - |I3|)}{(|II| + |I3|)} \times 100\%$$

$$= \frac{(|I4| - |I6|)}{(|I4| + |I6|)} \times 100\%$$

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

$$ID_{o}$$
 SINK Vs ID_{o} SOURCE =
$$\frac{|I2| - |I5|}{\frac{1}{2}(|I2| + |I5|)} \times 100\%$$

Charge Pump Output Current Magnitude Variation Vs Temperature

$$ID_{o} \text{ Vs } T_{A} = \frac{|I_{2}||_{T_{A}} - |I_{2}||_{T_{A} = 25^{\circ}C}}{|I_{2}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

$$= \frac{|I_{5}||_{T_{A}} - |I_{5}||_{T_{A} = 25^{\circ}C}}{|I_{5}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

Test Setups

LMX2377U Charge Pump Test Setup DC Power Supply 2.7V - 5.5VLMX2370SLBEB **EVALUATION SEMICONDUCTOR** BOARD = = 100 pF 0.1 μF PARAMETER **ANALYZER** 100 pl V_{CC} V_□ Main D_a Main 100 pF RF2 OUT 100 pF GND LMX2377U fin Au RF1 OUT 3 dB PLL GNE f_{IN} Main PAD f_{IN} Main ٧μ٥ CODE LOADER LE 100 pF GND Data SIGNAL GENERATOR μ WIRE 10 MHz OSC_{in} PC LEVEL SHIE

The block diagram above illustrates the setup required to measure the LMX2377U device's Main charge pump sink current. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. The Aux charge pump measurement setup is similar to the Main charge pump measurement setup. The purpose of this test is to assess the functionality of the Main charge pump.

This setup uses an open loop configuration. A power supply is connected to $V_{\rm cc}$ and swept from 2.7V to 5.5V. The MICROWIRE power supply, $V\mu c$, is tied to $V_{\rm cc}$. By means of a signal generator, a 10 MHz signal is typically applied to the $f_{\rm IN}$ Main pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC in pin is tied to $V_{\rm cc}$. This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_o Main pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the **Phase Detector Polarity** and **Charge Pump State** states in Code

Loader. Similarly, the LOW and HIGH currents can be measured by switching the **Charge Pump Gain's** state between **1X** and **4X** in Code Loader.

Let F_r represent the frequency of the signal applied to the OSC_{in} pin, which is simply zero in this case (DC), and let F_p represent the frequency of the signal applied to the f_{IN} Main pin. The phase detector is sensitive to the rising edges of F_r and F_p . Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_p is detected. Since F_r has no rising edge, the charge pump continues to sink current indefinitely.

Toggling the **Phase Detector Polarity** state to negative VCO characteristics allows the measurement of the Main charge pump source current. Likewise, selecting **TRI-STATE** (TRI-STATE ID_o Main Bit = 1) for **Charge Pump State** in Code Loader facilitates the measurement of the TRI-STATE current.

The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}C$, $+25^{\circ}C$, and $+85^{\circ}C$.

LMX2377U f_{IN} Sensitivity Test Setup DC Power Supply 2.7V - 5.5V LMX2370SLBEB **EVALUATION** 10 MHz REF OUT **BOARD** SIGNAL GENERATOR 100 pF 100 MHz - 2500 MHz D Main 100 pF RF2 OUT GND LMX2377U fin Au 100 pF 3 dB PLL PAD CODE f_{IN} Main LOADER 100 pF LE Data μ WIRE OSC: PC UNIVERSAL COUNTER LEVEL SHIFT 20022640

The block diagram above illustrates the setup required to measure the LMX2377U device's Main input sensitivity level. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. The Aux input sensitivity test setup is similar to the Main input sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the $f_{\rm IN}$ Main input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.

The setup uses an open loop configuration. A power supply is connected to $V_{\rm cc}$ and the bias voltage is swept from 2.7V to 5.5V. The MICROWIRE power supply, Vµc, is tied to $V_{\rm cc}$. The Aux PLL is powered down (PWDN Aux Bit = 1). By means of a signal generator, an RF signal is applied to the $f_{\rm IN}$ Main pin. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC $_{\rm in}$ pin is tied to $V_{\rm cc}$. The N value is typically set to 10000 in Code Loader, i.e. Main N_CNTRB Word = 312 and Main N_CNTRA Word = 16 for PRE Main Bit = 1. The feedback divider output is routed to the $F_{\rm o}$ LD pin by selecting the Main PLL N Divider

Output word (F_oLD Word = 6 or 14) in Code Loader. A Universal Counter is connected to the F_oLD pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to f_{IN} Main/ N.

The $f_{\rm IN}$ Main input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_{\rm A} = -40\,^{\circ}{\rm C}$, $+25\,^{\circ}{\rm C}$, and $+85\,^{\circ}{\rm C}$. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz. The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the $f_{\rm IN}$ Main input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the $f_{\rm IN}$ Main input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the Main PLL loses lock.

LMX2377U OSC_{in} Sensitivity Test Setup DC Power Supply 2.7V - 5.5V LMX2370SLBEB **EVALUATION** BOARD GNI D_o Main RF2 OUT GND LMX2377U fin Au RF1 OUT f_{IN} Main PLL GNE f_{IN} Main ۷μο CODE LOADER 100 pF GND 1.6 Data osc_{in} μWIRE 0Ω SIGNAL GENERATOR OSC PC 2 MHz - 100 MHz 1000 pF 51Ω 0Ω 10 MHz REF OUT UNIVERSAL COUNTER LEVEL SHIFT BUFFER 20022641

The block diagram above illustrates the setup required to measure the LMX2377U device's OSC $_{\rm in}$ buffer sensitivity level. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. This setup is similar to the $f_{\rm IN}$ sensitivity setup except that the signal generator is now connected to the OSC $_{\rm in}$ pin and both $f_{\rm IN}$ pins are tied to V $_{\rm CC}$. The 51 Ω shunt resistor matches the OSC $_{\rm in}$ input to the signal generator. The R counter is typically set to 1000, i.e. Main R_CNTR Word = 1000 or Aux R_CNTR Word = 1000. The reference divider output is routed to the F $_{\rm o}$ LD pin by selecting the Main PLL R Divider Output word (F $_{\rm o}$ LD Word = 2 or 10) or the Aux PLL R Divider Output word (F $_{\rm o}$ LD Word = 1 or 9) in Code Loader. Similarly, a Universal

Counter is connected to the F_oLD pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to OSC_{in}/ Main R_CNTR or OSC_{in}/ Aux R_CNTR.

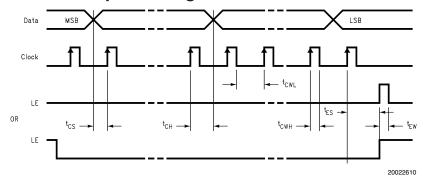
Again, $V_{\rm CC}$ is swept from 2.7V to 5.5V. The MICROWIRE power supply, $V_{\mu c}$, is tied to $V_{\rm cc}$. The OSC_{in} input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_{\rm A} = -40\,^{\circ}{\rm C}$, $+25\,^{\circ}{\rm C}$, and $+85\,^{\circ}{\rm C}$. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz.

LMX2377U f_{IN} Impedance Test Setup DC Power Supply 2.7V - 5.5V LMX2370SLBEB **EVALUATION BOARD** NETWORK ANALYZER 100 pF D_o Main 100 pF RF2 OUT GND LMX2377U fin Au RF1 OUT f_{IN} Main GNE f_{IN} Main ٧μ٥ CODE LOADER 100 pF 1.6 GND osc_{in} Data μ WIRE PC LEVEL SHIFT BUFFFR 20022679

The block diagram above illustrates the setup required to measure the LMX2377U device's Main input impedance. The Aux input impedance and reference oscillator impedance setups are very much similar. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the PLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.

Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an **open**, **short** and a **matched load**. A 1-port calibration is implemented here.

To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF1 OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX2377U device's Main synthesizer is from 100 MHz to 2500 MHz. The standards will be located down the length of the RF1 OUT transmission line. The transmission line adds electrical length and acts as an offset from the reference plane of the Network Analyzer; therefore,


it must be included in the calibration. Although not shown, 0 Ω resistors are used to complete the RF1 OUT transmission line (trace).

To implement an **open** standard, the end of the RF1 OUT trace is simply left open. To implement a **short** standard, a 0 Ω resistor is placed at the end of the RF1 OUT transmission line. Last of all, to implement a **matched load** standard, two 100 Ω resistors in parallel are placed at the end of the RF1 OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured S₁₁ parameters. With this all done, calibration is now complete.

The PLL chip is then placed on the PCB. A power supply is connected to $V_{\rm CC}$ and swept from 2.7V to 5.5V. The MICROWIRE power supply, Vµc, is tied to $V_{\rm cc}.$ The OSC $_{\rm in}$ pin is tied to the ground plane. Alternatively, the OSC $_{\rm in}$ pin can be tied to $V_{\rm CC}.$ In this setup, the complementary input ($f_{\rm IN}$ Main) is AC coupled to ground. With the Network Analyzer still connected to RF1 OUT, the measured $f_{\rm IN}$ Main impedance is displayed.

Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN Main Bit = 0 or PWDN Aux Bit = 0), and when the oscillator buffer is powered down (PWDN Main Bit = 1 and PWDN Aux Bit = 1).

LMX2377U Serial Data Input Timing

Notes

- 1. Data is clocked into the 22-bit shift register on the rising edge of Clock
- 2. The MSB of Data is shifted in first.

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2377U, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, F_r, is then presented to the input of a phase/frequency detector and compared with the feedback signal, F_p , which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/frequency detector measures the phase error between the F_r and F_p signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the Main and Aux PLLs is provided from an external reference via the OSC in pin. The reference buffer circuit supports input frequencies from 2 to 40 MHz with a minimum input sensitivity of 0.5 V $_{\rm PP}$. The reference buffer circuit has an approximate V $_{\rm CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the OSC $_{\rm in}$ pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, OSC_{in}, by a factor of R. The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi Main}$ or $F_{\phi Aux}$) of 10 MHz is not exceeded.

The Main and Aux reference dividers are each comprised of 15-bit CMOS binary counters that support a continuous integer divide ratio from 2 to 32767. The Main and Aux reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The f_{IN} Main and $\overline{f_{IN}}$ Main input pins drive the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type

flip-flops in a dual modulus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The Main PLL complementary inputs can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A 16/17 or a 32/33 prescale ratio can be selected for the LMX2377U Main synthesizer. On the other hand, the Aux PLL is only intended for single ended operation. An 8/9 or a 16/17 prescale ratio can be selected for the LMX2377U Aux synthesizer.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal f_{IN} by a factor of N. The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi Main}$ or $F_{\phi Aux}$) of 10 MHz is not exceeded.

The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The Main N CNTRA and the Aux N_CNTRA counters are both 5-bit CMOS swallow counters, programmable from 0 to 31. The Main N_CNTRB and Aux N_CNTRB counters are both 13-bit CMOS binary counters, programmable from 3 to 8191. A continuous integer divide ratio is achieved if $N \ge P^* (P-1)$, where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB ≥ N_CNTRA). Refer to **Sections** 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value of N:

 $N = (P \times N_CNTRB) + N_CNTRA$

 $f_{IN} = N \times F_{\phi}$

Definitions:

 F_{ϕ} : Main or Aux phase detector comparison

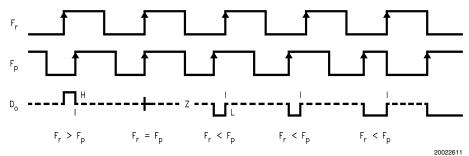
frequency

f_{IN}: Main or Aux input frequencyN_CNTRA: Main or Aux A counter valueN CNTRB: Main or Aux B counter value

P: Preset modulus of the dual modulus

prescaler

Main synthesizer: P = 16 or 32 Aux synthesizer: P = 8 or 16


1.0 Functional Description (Continued)

1.5 PHASE/FREQUENCY DETECTORS

The Main and Aux phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the Main and Aux phase detector inputs is 10 MHz. The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the PD_POL Main or PD_POL Aux control bits, de-

pending on whether the Main or Aux VCO characteristics are positive or negative. Refer to **Sections 2.4.2** and **2.6.2** for more details. The phase/frequency detectors have a detection range of -2π to $+2\pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes:

- 1. The minimum width of the pump-up and pump-down current pulses occur at the Do Main or Do Aux pins when the loop is phase locked.
- 2. The diagram assumes positive VCO characteristics, i.e. PD_POL Main or PD_POL Aux = 1.
- 3. Fr is the phase detector input from the reference divider (R counter).
- 4. F_p is the phase detector input from the programmable feedback divder (N counter).
- 5. Do refers to either the Main or Aux charge pump output.

1.6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter. The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO. The charge pump steers the VCO control voltage towards $V_{\rm P}$ Main or $V_{\rm P}$ Aux during pump-up events and towards GND during pump-down events. When locked, $D_{\rm o}$ Main or $D_{\rm o}$ Aux are primarily in a TRI-STATE mode with small corrections occuring at the phase comparator rate. The charge pump output current magnitude can be selected by toggling the $ID_{\rm o}$ Main or $ID_{\rm o}$ Aux control bits.

1.7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MICROWIRE serial interface. The supply for the MICROWIRE circuitry is separate from the rest of the IC to allow direct connection to 1.8V devices. The interface is comprised of three signal pins: Clock, Data and LE (Latch Enable). Serial data is clocked into the 22-bit shift register on the rising edge of Clock. The last two bits decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of four control registers depending on the state of the address bits. The MSB of Data is loaded in first. The synthesizers can be programmed even in power down mode. A complete programming description is provided in Section 2.0 Programming Description.

1.8 MULTI-FUNCTION OUTPUTS

The LMX2377U device's F_oLD output pin is a multi-function output that can be configured as the Main synthesizer Fast-Lock output, an open drain analog lock detect output, counter reset, or used to monitor the output of the various reference divider (R counter) or feedback divider (N counter) circuits. The F_oLD control word is used to select the desired output function. When the PLL is in powerdown mode, the F_oLD output is pulled to a LOW state. A complete programming description of the multi-function output is provided in **Section 2.8 F_oLD**.

1.8.1 Open Drain Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the F_oLD output pin if selected. The lock detect output goes to a high impedance state when the charge pump is inactive. It goes low when the charge pump is active during a comparison cycle. When viewed with an oscilloscope, and when a pull-up resistor is used, narrow negative pulses are observed when the charge pump turns on. The lock detect output signal is an open drain configuration.

Three separate lock detect signals are routed to the multiplexer. Two of these monitor the 'lock' status of the individual synthesizers. The third detects the condition when both the Main and Aux synthesizers are in a 'locked state'. External circuitry however, is required to provide a steady DC signal to indicate when the PLL is in a locked state. Refer to **Section 2.8 F_oLD** for details on how to program the different lock detect options.

1.0 Functional Description (Continued)

1.8.2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aquisition. The loop response time (lock time) can be approximately halved if the loop bandwidth is doubled. In order to achieve this, the same gain/ phase relationship at twice the loop bandwidth must be maintained. This can be achieved by increasing the charge pump current from 0.95 mA (ID, Main Bit = 0) in the steady state mode, to 3.8 mA (ID, Main Bit = 1) in Fastlock. When the F, LD output is configured as a FastLock output, an open drain device is enabled. The open drain device switches in a parallel resistor R2' to ground, of equal value to resistor R2 of the external loop filter. The loop bandwidth is effectively doubled and stability is maintained. Once locked to the correct frequency, the PLL will return to a steady state condition. Refer to Section 2.8 FoLD for details on how to configure the FoLD output to an open drain Fastlock output.

1.8.3 Counter Reset

Three separate counter reset functions are provided. When the F_oLD is programmed to **Reset Aux PLL Counters**, both the Aux feedback divider and the Aux reference divider are held at their load point. When the **Reset Main PLL Counters** is programmed, both the Main feedback divider and the Main reference divider are held at their load point. When the **Reset All Counters** mode is enabled, all feedback dividers and reference dividers are held at their load point. When the device is programmed to normal operation, both the feedback divider and reference divider are enabled and resume counting in 'close' alignment to each other. Refer to **Section 2.8 F_oLD** for more details.

1.8.4 Reference Divider and Feedback Divider Output

The outputs of the various N and R divders can be monitored by selecting the appropriate F_oLD word. This is essential when performing OSC_{in} or f_{IN} sensitivity measurements. Refer to the **Test Setups** section for more details. Refer to **Section 2.8** F_oLD for details on how to route the appropriate divder output to the F_oLD pin.

1.9 POWER CONTROL

Each synthesizer in the LMX2377U device is individually power controlled by device powerdown bits. The powerdown word is comprised of the PWDN Main (PWDN Aux) bit, in conjuction with the TRI-STATE ID_o Main (TRI-STATE ID_o Aux) bit. The powerdown control word is used to set the operating mode of the device. Refer to Sections 2.4.4, 2.5.4, 2.6.4, and 2.7.4 for details on how to program the Main or Aux powerdown bits.

When either the Main synthesizer or the Aux synthesizer enters the powerdown mode, the respective prescaler, phase detector, and charge pump circuit are disabled. The D_o Main (D_o Aux), f_{IN} Main (f_{IN} Aux), and $\overline{f_{IN}}$ Main pins are all forced to a high impedance state. The reference divider and feedback divider circuits are held at the load point during powerdown. The oscillator buffer is disabled when both the Main and Aux synthesizers are powered down. The OSCin pin is forced to a HIGH state through an approximate 100 $k\Omega$ resistance when this condition exists. When either synthesizer is activated, the respective prescaler, phase detector, charge pump circuit, and the oscillator buffer are all powered up. The feedback divider, and the reference divider are held at load point. This allows the reference oscillator, feedback divider, reference divider and prescaler circuitry to reach proper bias levels. After a finite delay, the feedback and reference dividers are enabled and they resume counting in 'close' alignment (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching data while in the powerdown mode.

Synchronous Powerdown Mode

In this mode, the powerdown function is gated by the charge pump. When the device is configured for synchronous powerdown, the device will enter the powerdown mode upon completion of the next charge pump pulse event.

Asynchronous Powerdown Mode

In this mode, the powerdown function is NOT gated by the completion of a charge pump pulse event. When the device is configured for asynchronous powerdown, the part will go into powerdown mode immediately.

TRI-STATE ID _o	PWDN	Operating Mode
0	0	PLL Active, Normal Operation
1	0	PLL Active, Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes:

- 1. TRI-STATE ${\rm ID_o}$ refers to either the TRI-STATE ${\rm ID_o}$ Main or TRI-STATE ${\rm ID_o}$ Aux bit .
- 2. PWDN refers to either the PWDN Main or PWDN Aux bit.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit Data[19:0] Field and a 2-bit Address[1:0] Field as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data field assignments are shown in **Section 2.3 CONTROL REGISTER CONTENT MAP**.

MSB		LSB
Data[19:0]		Address[1:0]
21	2	1 0

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

Addre	ss[1:0]	Target
Fie	eld	Register
0	0	Aux R
0	1	Aux N
1	0	Main R
1	1	Main N

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.

(Continued)
Description
Programming
2.0

									Con	rol Reg	jister Co	Control Register Content Map	lap									
Reg	Reg. Most Significant Bit	Significa	nt Bit							SHIFT	REGIS	SHIFT REGISTER BIT LOCATION	LOCA	TION					Lea	Least Significant Bit	ant Bit	
	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3 2	1	0	
										Data Field	Field									Ade	Address	
																				L.	Field	
Aux		F _o LD0 F _o LD2	TRI-	ΙD°	PD_																	
c			STATE ID.		POL							Aux R	Aux R_CNTR[14:0]	[14:0]						0	0	
λIIV	NCIVIA	PBE	Aux																			
2								4	Ę	3								1		_	,	
z	Aux	Aux						Aux N	Aux N_CN1 RB[12:0]	[0:21]							Aux	Aux N_CN KA[4:0]	4:0]	o 	-	
Mair	Main F _o LD1 F _o LD3 TRI-	F _o LD3	TRI-	°OI	_																	
c			STATE ID _o Main		POL Main							Main B	Main R_CNTR[14:0]	[14:0]						-	0	
Mair	Main PWDN	PRE																				
z	Main	Main						Main N	Main N_CNTRB[12:0]	3[12:0]							Main N	Main N_CNTRA[4:0]	[4:0]	-	-	

2.4 AUXILIARY R REGISTER

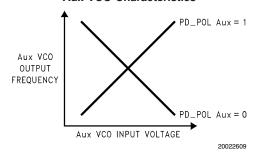
The Aux R register contains the Aux R_CNTR, PD_POL Aux, ID_o Aux, and TRI-STATE ID_o Aux control words, in addition to two bits that compose the F_o LD control word. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most	Sign	ifican	t Bit					SH	IIFT R	EGIS ⁷	ΓER E	BIT LC	CAT	ON				Leas	t Sigr	nificar	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								•	•	Doto	Field			•	•	•	•	•	•	•	Add	ress
										Dala	rieia										Fie	eld
Aux	F _o LD0	F ₀ LD2	TRI-	IDo	PD_																	
R			STATE	Aux	POL							ux R	CNT	R[1 <i>∆</i> ·(1						0	0
			ID ₀		Aux						,	·ux ii_	_01111	i iį i + . v	رر							O
			Aux																			

2.4.1 Aux R_CNTR[14:0] AUXILIARY SYNTHESIZER PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) Aux R[2:16]

The Aux reference divider (Aux R_CNTR) can be programmed to support divide ratios from 2 to 32767. Divide ratios less than 2 are prohibited.

Divide Ratio							Aux F	CNTF	R[14:0]						
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


2.4.2 PD_POL Aux AUXILIARY SYNTHESIZER PHASE DETECTOR POLARITY

Aux R[17]

The PD_POL Aux bit is used to control the Aux synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Fund	ction
			0	1
PD_POL Aux	Aux R[17]	Aux Phase Detector Polarity	Aux VCO Negative Tuning Characteristics	Aux VCO Positive Tuning Characteristics

2.4.3 ID_o Aux AUXILIARY SYNTHESIZER CHARGE PUMP CURRENT GAIN

Aux R[18]

The ${\rm ID_o}$ Aux bit controls the Aux synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description	Fund	ction
			0	1
ID _o Aux	Aux R[18]	Aux Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2.4.4 TRI-STATE ID. Aux AUXILIARY SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT

Aux R[19]

The TRI-STATE ID_o Aux bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID_o Aux bit.

Furthermore, the TRI-STATE ${\rm ID_o}$ Aux bit operates in conjuction with the PWDN Aux bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fun	ction
			0	1
TRI-STATE ID _o Aux	Aux R[19]	Aux Charge Pump TRI-STATE Current	Aux Charge Pump Normal Operation	Aux Charge Pump Output in High Impedance State

2.5 AUXILIARY N REGISTER

The Aux N register contains the Aux N_CNTRA, Aux N_CNTRB, PRE Aux, and PWDN Aux control words. The Aux N_CNTRA and Aux N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most	Sign	ifican	t Bit					SH	IFT R	EGIS	ΓER E	BIT LC	CATI	ON				Leas	t Sigr	nificar	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										Data	Field					•						ress eld
Aux N	PWDN Aux	PRE Aux					A	ux N_	CNTF	RB[12:	0]					A	ux N_	CNT	RA[4:0	0]	0	1

2.5.1 Aux N_CNTRA[4:0] AUXILIARY SYNTHESIZER SWALLOW COUNTER (A COUNTER)

Aux N[2:6]

The Aux N_CNTRA control word is used to setup the Aux synthesizer's A counter. The A counter is a 5-bit swallow counter used in the programmable feedback divider. The Aux N_CNTRA control word can be programmed to values ranging from 0 to 31.

Divide Ratio			Aux N_CNTRA[4:0]		
	4	3	2	1	0
0	0	0	0	0	0
1	0	0	0	0	1
•	•	•	•	•	•
31	1	1	1	1	1

2.5.2 Aux N_CNTRB[12:0] AUXILIARY SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) Aux N[7:19]

The Aux N_CNTRB control word is used to setup the Aux synthesizer's B counter. The B counter is a 13-bit programmable binary counter used in the programmable feedback divider. The Aux N_CNTRB control word can be programmed to values ranging from 3 to 8191.

Divide						Aux	N_CNTRI	3[12:0]					
Ratio	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

2.5.3 PRE Aux AUXILIARY SYNTHESIZER PRESCALER SELECT

Aux N[20]

The Aux synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Fun	ction
			0	1
PRE Aux	Aux N[20]	Aux Prescaler Select	8/9 Prescaler Selected	16/17 Prescaler Selected

2.5.4 PWDN Aux AUXILIARY SYNTHESIZER POWERDOWN

Aux N[21]

The PWDN Aux bit is used to switch the Aux PLL between a powered up and powered down mode.

Furthermore, the PWDN Aux bit operates in conjuction with the TRI-STATE ID_o Aux bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
PWDN Aux	Aux N[21]	Aux Powerdown	Aux PLL Active	Aux PLL Powerdown

2.6 MAIN R REGISTER

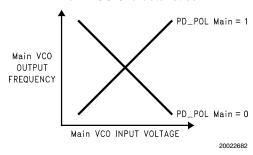
The Main R register contains the Main R_CNTR, PD_POL Main, ID_o Main, and TRI-STATE ID_o Main control words, in addition to two bits that compose the F_oLD control word. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most	Sign	ifican	t Bit					SH	IFT R	EGIS	TER E	BIT LO	CATI	ON				Leas	t Sigr	nificar	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•							,	Doto	Eiold										Add	ress
														eld								
Main	F _o LD1	F _o LD3	TRI-	IDo	PD_																	
R		l	STATE	Main	POL						N	lain R	CNIT	B[1/-	0 1						1	0
			ID ₀		Main		Main R_CNTR[14:0]											'				
			Main																			

2.6.1 Main R_CNTR[14:0] MAIN SYNTHESIZER PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) Main R[2:16]

The Main reference divider (Main R_CNTR) can be programmed to support divide ratios from 2 to 32767. Divide ratios less than 2 are prohibited.

Divide Ratio							Main F	R_CNTI	R[14:0]						
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


2.6.2 PD_POL Main MAIN SYNTHESIZER PHASE DETECTOR POLARITY

Main R[17]

The PD_POL Main bit is used to control the Main synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Fund	ction
			0	1
PD_POL Main	Main R[17]	Main Phase Detector	Main VCO Negative	Main VCO Positive
		Polarity	Tuning	Tuning
			Characteristics	Characteristics

Main VCO Characteristics

2.6.3 ID_o Main MAIN SYNTHESIZER CHARGE PUMP CURRENT GAIN

Main R[18]

The IDo Main bit controls the Main synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description	Fund	ction
			0	1
ID _o Main	Main R[18]	Main Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2.6.4 TRI-STATE ID Main MAIN SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT

Main R[19]

The TRI-STATE ${\rm ID_o}$ Main bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ${\rm ID_o}$ Main bit.

Furthermore, the TRI-STATE ${\rm ID_o}$ Main bit operates in conjuction with the PWDN Main bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function		
			0	1	
TRI-STATE ID _o Main	Main R[19]	Main Charge Pump TRI-STATE Current	Main Charge Pump Normal Operation	Main Charge Pump Output in High	
				Impedance State	

2.7 MAIN N REGISTER

The Main N register contains the Main N_CNTRA, Main N_CNTRB, PRE Main, and PWDN Main control words. The Main N_CNTRA and Main N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most Significant Bit SHIFT REGISTER BIT LOCATION Least Signific													nifica	nt Bit
	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2												1 0		
	Data Field													ress eld	
Main N	PWDN PRE Main N_CNTRB[12:0] Main N_CNTRA[4:0]												1	1	

2.7.1 Main N_CNTRA[4:0] MAIN SYNTHESIZER SWALLOW COUNTER (A COUNTER)

Main N[2:6]

The Main N_CNTRA control word is used to setup the Main synthesizer's A counter. The A counter is a 5-bit swallow counter used in the programmable feedback divider. The Main N_CNTRA control word can be programmed to values ranging from 0 to 31.

Divide Ratio			Main N_CNTRA[4:0]		
	4	3	2	1	0
0	0	0	0	0	0
1	0	0	0	0	1
•	•	•	•	•	•
31	1	1	1	1	1

2.7.2 Main N_CNTRB[12:0] MAIN SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) Main N[7:19]

The Main N_CNTRB control word is used to setup the Main synthesizer's B counter. The B counter is a 13-bit programmable binary counter used in the programmable feedback divider. The Main N_CNTRB control word can be programmed to values ranging from 3 to 8191.

Divide						Main	N_CNTR	B[12:0]					
Ratio	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

2.7.3 PRE Main

MAIN SYNTHESIZER PRESCALER SELECT

Main N[20]

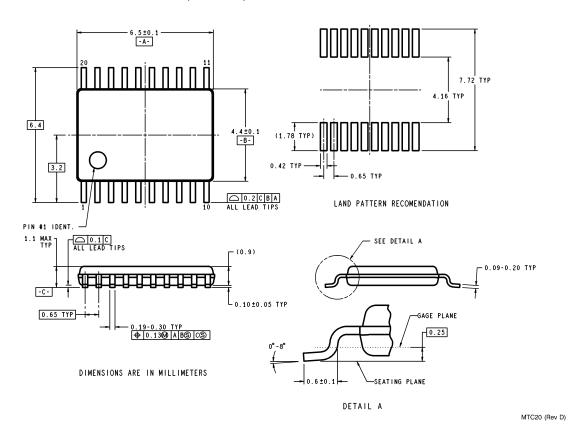
The Main synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Fund	ction
			0	1
PRE Main	Main N[20]	Main Prescaler Select	16/17 Prescaler Selected	32/33 Prescaler Selected

2.7.4 PWDN Main MAIN SYNTHESIZER POWERDOWN

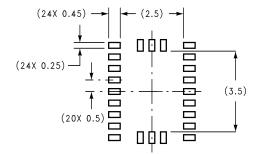
Main N[21]

The PWDN Main bit is used to switch the Main PLL between a powered up and powered down mode.


Furthermore, the PWDN Main bit operates in conjuction with the TRI-STATE ${\rm ID_o}$ Main bit to set a synchronous or an asynchronous powerdown mode.

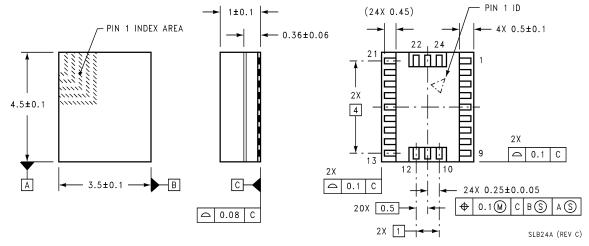
Control Bit	Register Location	Description	Function	
			0	1
PWDN Main	Main N[21]	Main Powerdown	Main PLL Active	Main PLL
				Powerdown

2.8 $F_oLD[3:0]$ MULTI-FUNCTION OUTPUT SELECT [Main R[20], Aux R[20], Main R [21], Aux R[21]] The F_oLD control word is used to select which signal is routed to the F_oLD pin.

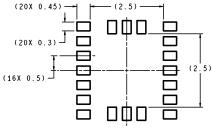

F _o LD3	F _o LD2	F _o LD1	F _o LD0	F _o LD Output State	
0	0	0	0	LOW Logic State Output	
0	0	0	1	Aux PLL R Divider Output, Push-Pull Output	
0	0	1	0	Main PLL R Divider Output, Push-Pull Output	
0	0	1	1	Open Drain Fastlock Output	
0	1	0	0	Aux PLL Analog Lock Detect, Open Drain Output	
0	1	0	1	Aux PLL N Divider Output, Push-Pull Output	
0	1	1	0	Main PLL N Divider Output, Push-Pull Output	
0	1	1	1	Reset Aux PLL Counters, LOW Logic State Output	
1	0	0	0	Main PLL Analog Lock Detect, Open Drain Output	
1	0	0	1	Aux PLL R Divider Output, Push-Pull Output	
1	0	1	0	Main PLL R Divider Output, Push-Pull Output	
1	0	1	1	Reset Main PLL Counters, LOW Logic State Output	
1	1	0	0	Main and Aux Analog Lock Detect, Open Drain Output	
1	1	0	1	Aux PLL N Divider Output, Push-Pull Output	
1	1	1	0	Main PLL N Divider Output, Push-Pull Output	
1	1	1	1	Reset All Counters, LOW Logic State Output	

Physical Dimensions inches (millimeters) unless otherwise noted

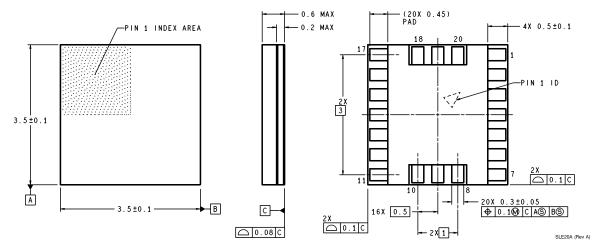
20-Pin Thin Shrink Small Outline Package (TM) NS Package Number MTC20


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS


RECOMMENDED LAND PATTERN

1:1 RATIO WITH PACKAGE SOLDER PADS


24-Pin Chip Scale Package (SLB) NS Package Number SLB24A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

RECOMMENDED LAND PATTERN
1:1 RATIO WITH PACKAGE SOLDER PADS

DIMENSIONS ARE IN MILLIMETERS

20-Pin Ultra Thin Chip Scale Package (SLE) **NS Package Number SLE20A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560

Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.