

3.3V 28Mbps to 1.3Gbps AnyRate[®] Clock and Data Recovery

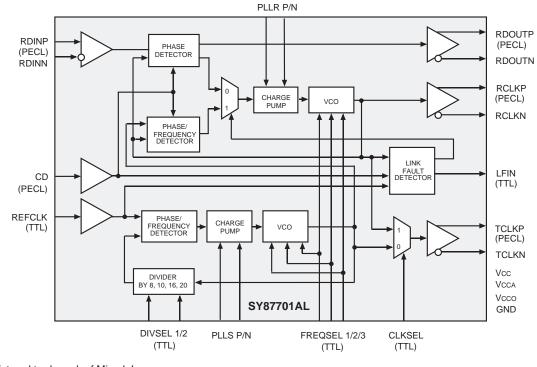
SY87701AL

FEATURES

- Industrial temperature range (-40°C to +85°C)
- 3.3V power supply
- Clock and data recovery from 28Mbps up to 1.3Gbps NRZ data stream, clock generation from 28Mbps to 1.3Gbps
- Complies with Bellcore, ITU/CCITT and ANSI specifications for applications such as OC-1, OC-3, OC-12, ATM, FDDI, Fibre Channel and Gigabit Ethernet as well as proprietary applications
- Two on-chip PLLs: one for clock generation and another for clock recovery
- Selectable reference frequencies
- Differential PECL high-speed serial I/O
- Line receiver input: no external buffering needed
- Link fault indication
- 100k ECL compatible I/O
- Lower power: fully compatible with Micrel's SY87701V, but with 30% less power
- Available in 32-pin EPAD-TQFP and 28-pin SOIC packages (28-pin SOIC is available, but NOT recommended for new designs.)

DESCRIPTION

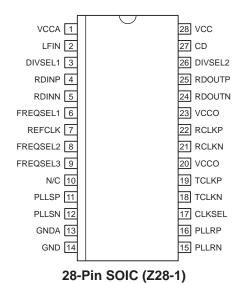
The SY87701AL is a complete Clock Recovery and Data Retiming integrated circuit for data rates from 28Mbps up to 1.3Gbps NRZ. The device is ideally suited for SONET/SDH/ATM and Fibre Channel applications and other high-speed data transmission systems.


Clock recovery and data retiming is performed by synchronizing the on-chip VCO directly to the incoming data stream. The VCO center frequency is controlled by the reference clock frequency and the selected divide ratio. On-chip clock generation is performed through the use of a frequency multiplier PLL with a byte rate source as reference.

The SY87701AL also includes a link fault detection circuit.

All support documentation can be found on Micrel's web site at: www.micrel.com.

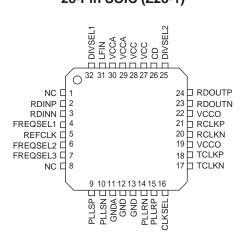
APPLICATIONS


- SONET/SDH/ATM OC-1, OC-3, OC-12, OC-24
- Fibre Channel, Escon, SMPTE 259
- Gigabit Ethernet/Fast Ethernet
- Proprietary architecture up to 1.3Gbps

BLOCK DIAGRAM

AnyRate is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION



Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY87701ALZI	Z28-1	Industrial	SY87701ALZI	Sn-Pb
SY87701ALHI	H32-1	Industrial	SY87701ALHI	Sn-Pb
SY87701ALZG	Z28-1	Industrial	SY87701ALZG with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY87701ALHG ⁽¹⁾	H32-1	Industrial	SY87701ALHG with Pb-Free bar-line indicator	Pb-Free NiPdAu

Note:

1. Pb-Free package recommended for new designs.

32-Pin EPAD TQFP (H32-1)

PIN DESCRIPTIONS

Pin Number SOIC	Pin Number TQFP	Pin Name	Pin Function
4 5	2 3	RDINP RDINN	Serial Data Input (Differential PECL): These built-in line receiver inputs are connected to the differential receive serial data stream. An internal receive PLL recovers the embedded clock (RCLK) and data (RDOUT) information. The incoming data rate can be within one of eight frequency ranges depending on the state of the FREQSEL pins. See "Frequency Selection" table.
7	5	REFCLK	Reference Clock (TTL Inputs): This input is used as the reference for the internal frequency synthesizer and the "training" frequency for the receiver PLL to keep it centered in the absence of data coming in on the RDIN inputs.
27	26	CD	Carrier Detect (PECL Input): This input controls the recovery function of the Receive PLL and can be driven by the carrier detect output of optical modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internally forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL forced to look onto the clock frequency generated from REFCLK.
6 8 9	4 6 7	FREQSEL1 FREQSEL2 FREQSEL3	Frequency Select (TTL Inputs): These inputs select the output clock frequency range as shown in the "Frequency Selection" table.
3 26	32 25	DIVSEL1 DIVSEL2	Divider Select (TTL Inputs): These inputs select the ratio between the output clock frequency (RCLK/TCLK) and the REFCLK input frequency as shown in the "Reference Frequency Selection" table.
17	16	CLKSEL	Clock Select (TTL Inputs): This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs.
2	31	LFIN	Link Fault Indicator (TTL Output): This output indicates the status of the input data stream RDIN. Active HIGH signal is indicating when the internal clock recovery PLL has locked onto the incoming data stream. LFIN will go HIGH if CD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm).
25 24	24 23	RDOUTP RDOUTN	Receive Data Output (Differential PECL): These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data is specified against the rising edge of RCLK. These outputs must be terminated with 50 Ω to V _{CC} -2 or equivalent. Thhis applies even if these outputs are not used.
22 21	21 20	RCLKP RCLKN	Clock Output (Differential PECL): These ECL 100k outputs represent the recovered clock used to sample the recovered data (RDOUT).
19 18	18 17	TCLKP TCLKN	Clock Output (Differential PECL): These ECL 100k outputs represent either the recovered clock (CLKSEL = HIGH) used to sample the recovered data (RDOUT) or the transmit clock of the frequency synthesizer (CLKSEL = LOW). These outputs must be terminated with 50 Ω to V _{CC} -2 or equivalent. This applies even if these outputs are not used.
11 12	9 10	PLLSP PLLSN	Clock Synthesis PLL Loop Filter. External loop filter pins for the clock synthesis PLL.
16 15	15 14	PLLRP PLLRN	Clock Recovery PLL Loop Filter. External loop filter pins for the receiver PLL.
28	27, 28,	V _{CC}	Supply Voltage ⁽¹⁾
1	29, 30	V _{CCA}	Analog Supply Voltage ⁽¹⁾
20, 23	19, 22	V _{CCO}	Output Supply Voltage ⁽¹⁾
13, 14	12, 13	GND	Ground
10	1, 8	NC	No Connect
13	11	GNDA	Analog Ground

Note:

1. $V_{CC},\,V_{CCA}^{},\,V_{CCO}^{}$ must be the same value.

FUNCTIONAL DESCRIPTION

Clock Recovery

Clock Recovery, as shown in the block diagram, generates a clock that is at the same frequency as the incoming data bit rate at the Serial Data input. The clock is phase aligned by a PLL so that it samples the data in the center of the data eye pattern.

The phase relationship between the edge transitions of the data and those of the generated clock are compared by a phase/frequency detector. Output pulses from the detector indicate the required direction of phase correction. These pulses are smoothed by an integral loop filter. The output of the loop filter controls the frequency of the Voltage Controlled Oscillator (VCO), which generates the recovered clock.

Frequency stability without incoming data is guaranteed by an alternate reference input (REFCLK) that the PLL locks onto when data is lost. If the Frequency of the incoming signal varies by greater than approximately 1000ppm with respect to the synthesizer frequency, then PLL will be declared out of lock, and the PLL will lock to the reference clock.

The loop filter transfer function is optimized to enable the PLL to track the jitter, yet tolerate the minimum transition density expected in a received SONET data signal. This transfer function yields a $30\mu s$ data stream of continuous 1's or 0's for random incoming NRZ data.

The total loop dynamics of the clock recovery PLL provides jitter tolerance which is better than the specified tolerance in GR-253-CORE.

Lock Detect

The SY87701AL contains a link fault indication circuit that monitors the integrity of the serial data input. If the recovered serial data from RDIN is at the correct data rate (within 1000ppm of the synthesizer frequency), the Link Fault Indicator (LFIN) output will be asserted HIGH indicating an in-lock condition and will remain HIGH as long as this condition is met.

In the event that the recovered serial data is not at the correct data rate (greater than 1000ppm difference from the synthesizer frequency), then LFIN output will go LOW indicating an out-of-lock condition. This condition will force the Clock and Data Recovery PLL (CDR) to lock onto the synthesizer frequency until it is within the correct frequency range (less than 1000ppm difference from the synthesizer frequency). Once the CDR is within the correct frequency range it will again lock onto the RDIN input.

During the interval when the CDR is not locked onto the RDIN input, the LFIN output will not be a static LOW, but will be changing.

CHARACTERISTICS

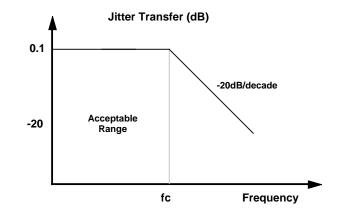
Performance

The SY87701AL PLL complies with the jitter specifications proposed for SONET/SDH equipment defined by the Bellcore Specifications: GR-253-CORE, Issue 2, December 1995 and ITU-T Recommendations: G.958 document, when used with differential inputs and outputs.

Input Jitter Tolerance

Input jitter tolerance is defined as the peak-to-peak amplitude of sinusoidal jitter applied on the input signal that causes an equivalent 1dB optical/electrical power penalty. SONET input jitter tolerance requirement condition is the input jitter amplitude which causes an equivalent of 1dB power penalty.

OC/STS-N Level	f0 (Hz)	f1 (Hz)	f2 (Hz)	f3 (kHz)	ft (kHz)
3	10	30	300	6.5	65
12	10	30	300	25	250


Figure 1. Input Jitter Tolerance

Jitter Transfer

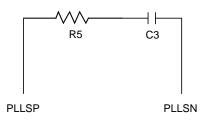
Jitter transfer function is defined as the ratio of jitter on the output OC-N/STS-N signal to the jitter applied on the input OC-N/STS-N signal versus frequency. Jitter transfer requirements are shown in Figure 2.

Jitter Generation

The jitter of the serial clock and serial data outputs shall not exceed .01 U.I. rms when a serial data input with no jitter is presented to the serial data inputs.

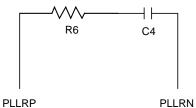
OC/STS-N Level	fc (kHz)	P (dB)
3	130	0.1
12	225	0.1

Figure 2. Jitter Transfer


FREQUENCY SELECTION TABLE

FREQSEL1	FREQSEL2	FREQSEL3	f _{VCO} /f _{RCLK}	f _{RCLK} Data Rates (Mbps)
0	0	0	1	650 - 1300
0	0	1	2	325 - 650
0	1	0	4	163 - 325
0	1	1	6	109 - 216
1	0	0	8	82 - 162
1	0	1	12	55 - 108
1	1	0	16	41 - 81
1	1	1	24	28 - 54

REFERENCE FREQUENCY SELECTION


DIVSEL1	DIVSEL2	f _{RCLK} /f _{REFCLK}
0	0	8
0	1	10
1	0	16
1	1	20

LOOP FILTER COMPONENTS⁽¹⁾

Wide Range

 $R5 = 350\Omega$ C3 = 1.0µF (X7R Dielectric)

.

.

Wide Range

 $\begin{array}{l} \mathsf{R6}=680\Omega\\ \mathsf{C4}=1.0\mu\mathsf{F} \;(\mathsf{X7R}\;\mathsf{Dielectric}) \end{array}$

Note:

1. Suggested Values. Values may vary for different applications.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{CC})	–0.5V to +4.0V
Input Voltage (V _{IN})	–0.5V to V_{CC}
Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Lead Temperature (soldering, 20 sec.)	260°C
Storage Temperature (T _S)	–65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	. +3.15V to +3.45V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance ⁽³⁾	
SOIC $(\theta_{JA})^{(4)}$	
EPAD TQFP $(\theta_{JA})^{(5)}$	
Olfpm airflow	27.6°C/W
200lfpm airflow	22.6°C/W
500lfpm airflow	20.7°C/W

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Мах	Units
V _{CC}	Power Supply Voltage		3.15	3.3	3.45	V
I _{CC}	Power Supply Current			120	160	mA

PECL 100K DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_{A} = -40^{\circ}C$ to +85°C; unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		V _{CC} –1.165		V _{CC} –0.880	V
V _{IL}	Input LOW Voltage		V _{CC} –1.810		V _{CC} -1.475	V
V _{OH}	Output HIGH Voltage	50Ω to V _{CC} –2V	V _{CC} –1.075		V _{CC} –0.830	V
V _{OL}	Output LOW Voltage	50 Ω to V _{CC} –2V	V _{CC} –1.860		V _{CC} –1.570	V
I _{IL}	Input LOW Current	V _{IN} = V _{IL} (min)	0.5			μA

TTL DC ELECTRICAL CHARACTERISTICS

$V_{CC} = V_{CCO} = V_{CCA}$	= 3.3V ±5%: T ₄	$= -40^{\circ}$ C to $+85^{\circ}$ C	unless noted.
	= 0.0 ° = 070, ° A	- 10 0 10 100 0	annood notoa.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage				0.8	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.4 \text{mA}$	2.0			V
V _{OL}	Output LOW Voltage	I _{OL} = 4mA			0.5	V
I _{IH}	Input HIGH Current	$V_{IN} = 2.7V, V_{CC} = max.$ $V_{IN} = V_{CC}, V_{CC} = max.$	-175		+100	μΑ μΑ
I _{IL}	Input LOW Current	$V_{IN} = 0.5V, V_{CC} = max.$	-300			μΑ
I _{OS}	Output Short Circuit Current	V _{OUT} = 0V (maximum 1 sec)	-15		-100	mA

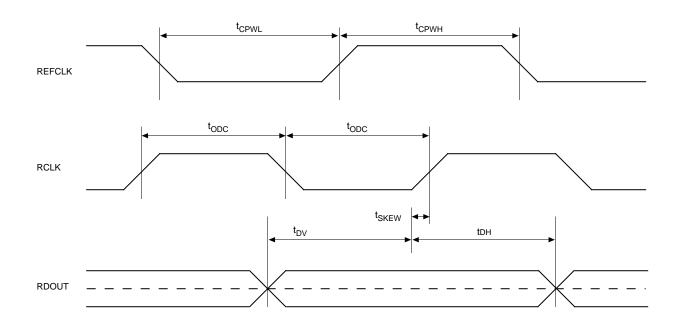
Notes:

1. Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability.

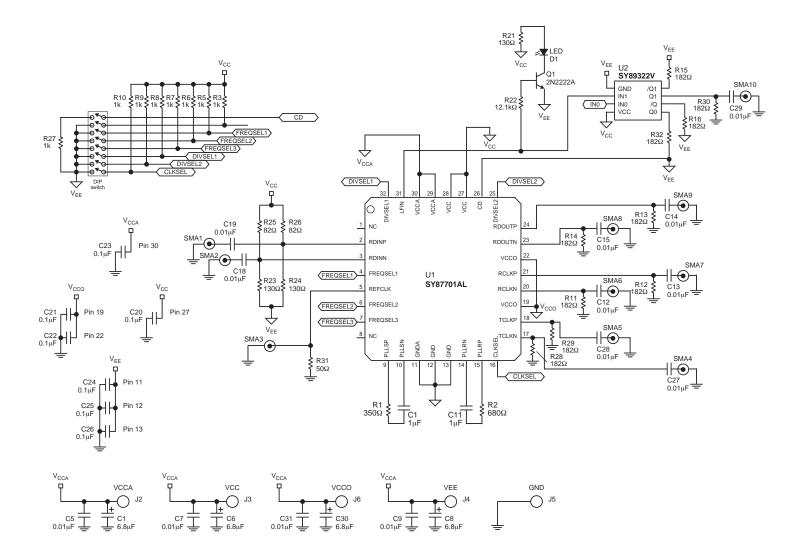
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

3. Airflow of 500lfpm recommended for 28-pin SOIC.

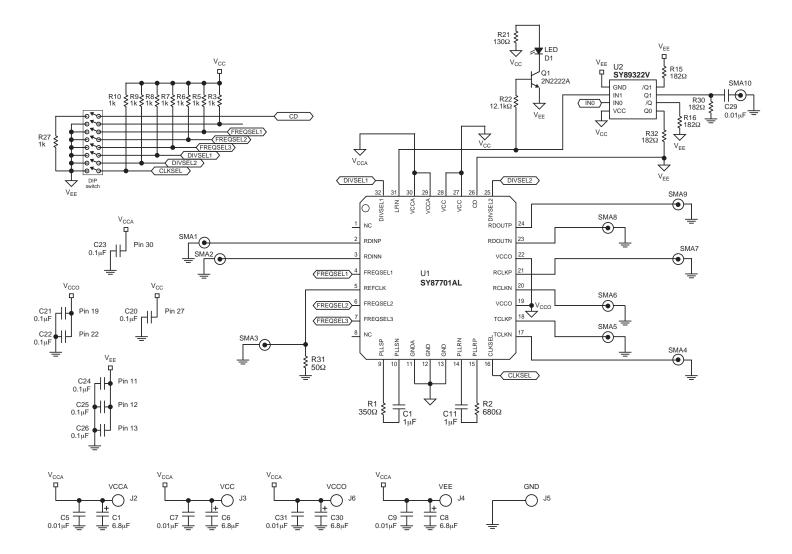
4. 28-pin SOIC package is NOT recommended for new designs.


5. Using JEDEC standard test boards with die attach pad soldered to PCB. See www.amkor.com for additional package details.

AC ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{VCO}	VCO Center Frequency	f _{REFCLK} × Byte Rate	625		1300	MHz
Δf_{VCO}	VCO Center Frequency Tolerance	Nominal		5		%
t _{ACQ}	Acquisition Lock Time				15	μs
t _{CPWH}	REFCLK Pulse Width HIGH		3			ns
t _{CPWL}	REFCLK Pulse Width LOW		3			ns
t _{ir}	REFCLK Input Rise Time			0.5	2	ns
t _{ODC}	Output Duty Cycle (RCLK/TCLK)		45		55	% of UI
t _r , t _f	ECL Output Rise/Fall Time (20% to 80%)	50 Ω to V _{CC} –2V	100		500	ps
t _{SKEW}	Recovered Clock Skew		-200		+200	ps
t _{DV}	Data Valid		1/(2 × f _{RCLK}) – 200			ps
t _{DH}	Data Hold		1/(2 × f _{RCLK}) – 200			ps

 V_{CC} = V_{CCO} = V_{CCA} = 3.3V ±5%; T_A = –40°C to +85°C; unless noted.


TIMING WAVEFORMS

APPLICATION EXAMPLE AC-COUPLED I/O

APPLICATION EXAMPLE DC-COUPLED I/O

BILL OF MATERIALS (AC-COUPLED)

ltem	Part Number Manufacturer Description		Description	Qty	
C6	293D685X0025B2T	Vishay ⁽¹⁾	6.8μF, 25V, Tantalum Capacitor, Size B	1	
C7	VJ1206Y103JXJAT	Vishay ⁽¹⁾	0.01µF, X7R, Ceramic Capacitor, Size 1206	1	
C10, C11	VJ0603Y105JXJAT	Vishay ⁽¹⁾	1.0μF, X7R, Ceramic Capacitor, Size 0603	2	
C12, C13, C14, C15, C18, C19, C27, C28	VJ0402Y104JXJAT	Vishay ⁽¹⁾	0.1µF, X7R, Ceramic Capacitor, Size 0402	8	
C20, C21, C22, C23, C24, C25, C26	VJ0402Y104JXJAT	Vishay ⁽¹⁾	0.01µF, X7R, Ceramic Capacitor, Size 0603	7	
D1	P301-ND	Panasonic ⁽²⁾	LED, T-1 3/4, Red Clear	1	
D2	P300-ND/P301-ND	Vishay ⁽¹⁾	T-1 3/4 Red LED	1	
J2, J3, J4, J6	111-0702-001	Johnson Components ⁽³⁾	Red, Insulated Thumb Nut Binding Post (Jumped together)	4	
J5	111-0703-001	Johnson Components ⁽³⁾	Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE})	1	
Q1	459-2598-5-ND		2N2222A Transistor	1	
R1	CRCW04023500F	Vishay ⁽¹⁾	350Ω Resistor, 2%, Size 0402	1	
R2	CRCW04026800F	Vishay ⁽¹⁾	680Ω Resistor, 2%, Size 0402	1	
R3, R4, R5, R6, R7, R8, R9, R10	CRCW04021001F	Vishay ⁽¹⁾	1k Ω Pull-up Resistors, 2%, Size 1206	8	
R11, R12, R13, R14, R15, R16, R28, R29, R30, R32	CRCW04021820F	Vishay ⁽¹⁾	182Ω Resistor, 2%, Size 0402	10	
R21	CRCW06031300F	Vishay ⁽¹⁾	130Ω Resistor, 2%, Size 0603	1	
R22	CRCW04021820F	Vishay ⁽¹⁾	12.1kΩ Resistor, 2%, Size 1206	1	
R23, R24	CRCW04022825F	Vishay ⁽¹⁾	82Ω Resistor, 2%, Size 0402	2	
R25, 26	CRCW04021300F	Vishay ⁽¹⁾	130Ω Resistor, 2%, Size 0402	2	
R27	CRCW040200R0F	Vishay ⁽¹⁾	0Ω Resistor, 2%, Size 0402	1	
R31	CRCW04025000F	Vishay ⁽¹⁾	50Ω Resistor, 2%, Size 0402	1	
SMA1-SMA10	142-0701-851	Johnson Components ⁽¹⁾	End Launch SMA Jack		
SP1-SP6			Solder Jumper Option	6	
SW1	CT2068-ND		8-Position, Top Actuated Slide Dip Switch		
U1	SY87700/01	Micrel ⁽⁴⁾	3.3V 28Mbps to 1.3Gbps AnyRate [®] Clock and Data Recovery		
U2	SY89322V	Micrel ⁽⁴⁾	3.3/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator	1	

Notes:

1. Vishay: www.vishay.com.

2. Panasonic: www.panasonic.com.

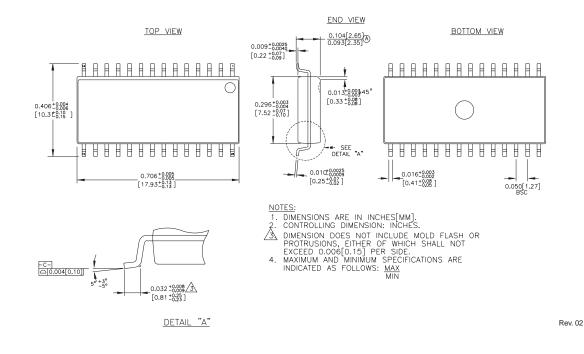
3. Johnson Components: www.johnson-components.com.

4. Micrel, Inc. www.micrel.com.

BILL OF MATERIALS (DC-COUPLED)

Item	Part Number	Manufacturer	Description	Qty	
C6	293D685X0025B2T	Vishay ⁽¹⁾	6.8μF, 25V, Tantalum Capacitor, Size B	1	
C7	VJ1206Y103JXJAT	Vishay ⁽¹⁾	0.01µF, X7R, Ceramic Capacitor, Size 1206	1	
C10, C11	VJ0603Y105JXJAT	Vishay ⁽¹⁾	1.0μF, X7R, Ceramic Capacitor, Size 0603	2	
C12, C13, C14, C15, C18, C19, C27, C28	VJ0402Y104JXJAT	Vishay ⁽¹⁾	0.1µF, X7R, Ceramic Capacitor, Size 0402	8	
C20, C21, C22, C23, C24, C25, C26	VJ0402Y104JXJAT	Vishay ⁽¹⁾	0.01µF, X7R, Ceramic Capacitor, Size 0603	7	
D1	P301-ND	Panasonic ⁽²⁾	LED, T-1 3/4, Red Clear	1	
D2	P300-ND/P301-ND	Vishay ⁽¹⁾	T-1 3/4 Red LED	1	
J2, J3, J4, J6	111-0702-001	Johnson Components ⁽³⁾	Red, Insulated Thumb Nut Binding Post (Jumped together)	4	
J5	111-0703-001	Johnson Components ⁽³⁾	Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE})	1	
Q1	459-2598-5-ND		2N2222A Transistor	1	
R1	CRCW04023500F	Vishay ⁽¹⁾	350Ω Resistor, 2%, Size 0402	1	
R2	CRCW04026800F	Vishay ⁽¹⁾	680Ω Resistor, 2%, Size 0402	1	
R3, R4, R5, R6, R7, R8, R9, R10	CRCW04021001F	Vishay ⁽¹⁾	1kΩ Pull-up Resistors, 2%, Size 1206	8	
R15, R16, R30, R32	CRCW04021820F	Vishay ⁽¹⁾	182Ω Resistor, 2%, Size 0402	4	
R21	CRCW06031300F	Vishay ⁽¹⁾	130Ω Resistor, 2%, Size 0603	1	
R22	CRCW04021820F	Vishay ⁽¹⁾	12.1kΩ Resistor, 2%, Size 1206	1	
R27	CRCW040200R0F	Vishay ⁽¹⁾	0Ω Resistor, 2%, Size 0402	1	
R31	CRCW04025000F	Vishay ⁽¹⁾	50Ω Resistor, 2%, Size 0402	1	
SMA1-SMA10	142-0701-851	Johnson Components ⁽¹⁾	End Launch SMA Jack	10	
SP1-SP6			Solder Jumper Option	6	
SW1	CT2068-ND		8-Position, Top Actuated Slide Dip Switch	1	
U1	SY87700/01	Micrel ⁽⁴⁾	3.3V 28Mbps to 1.3Gbps AnyRate [®] Clock and Data Recovery		
U2	SY89322V	Micrel ⁽⁴⁾	3.3/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator	1	

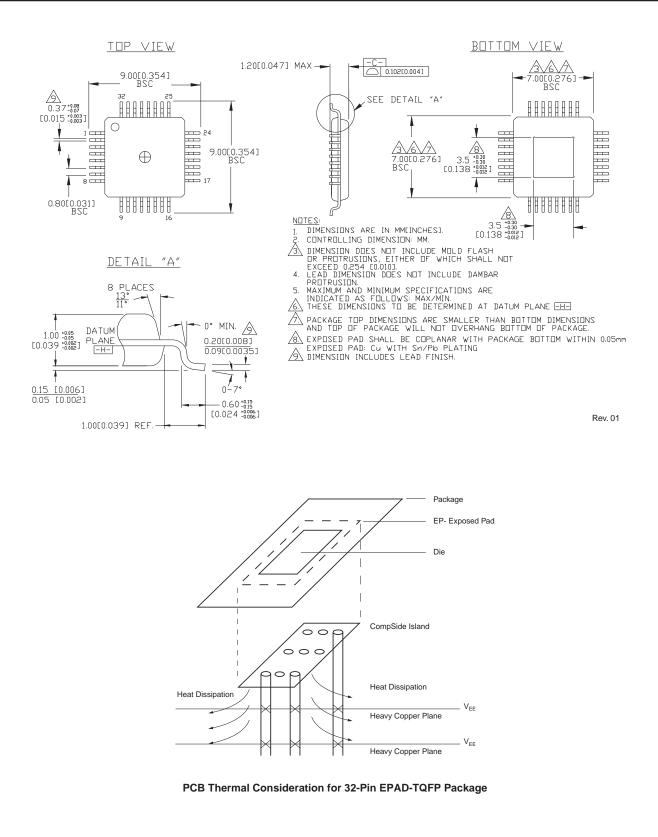
Notes:


1. Vishay: www.vishay.com.

2. Panasonic: www.panasonic.com.

3. Johnson Components: www.johnson-components.com.

4. Micrel, Inc. www.micrel.com.


28-PIN SOIC .300" WIDE (Z28-1)

Note:

The 28-pin SOIC package is NOT recommended for new designs.

32-PIN EPAD TQFP (DIE UP) (H32-1)

APPENDIX A

Layout and General Suggestions

- 1. Establish controlled impedance stripline, microstrip, or co-planar construction techniques.
- 2. Signal paths should have, approximately, the same width as the device pads.
- 3. All differential paths are critical timing paths, where skew should be matched to within ±10ps.
- 4. Signal trace impedance should not vary more than ±5%. If in doubt, perform TDR analysis of all high-speed signal traces.
- 5. Maintain compact filter networks as close to filter pins as possible. Provide ground plane relief under filter path to reduce stray capacitance. Be careful of crosstalk coupling into the filter network.
- 6. Maintain low jitter on the REFCLK input. Isolate the XTAL oscillator from power supply noise by adequately decoupling. Keep XTAL oscillator close to device, and minimize capacitive coupling from adjacent signals.
- 7. Higher speed operation may require use of fundamental-tone (third-overtone typically have more jitter) crystal based oscillator for optimum performance. Evaluate and compare candidates by measuring TXCLK jitter.
- 8. All unused outputs must be terminated. To conserve power, unused PECL outputs can be terminated with a $1k\Omega$ resistor to V_{EE}.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.