

# 3.3V 1GHz PRECISION 1:22 LVDS FANOUT BUFFER/TRANSLATOR WITH 2:1 INPUT MUX

# Precision Edge<sup>®</sup> SY89826L

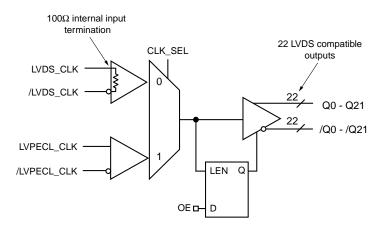
#### **FEATURES**

- High-performance, 1GHz LVDS fanout buffer/ translator
- 22 differential LVDS output pairs
- Guaranteed AC parameters over temperature and voltage:
  - > 1GHz f<sub>MAX</sub>
  - < 50ps within device skew</li>
  - < 400ps t<sub>r</sub> / t<sub>f</sub> time
- Low jitter performance
  - < 1ps (rms) cycle-to-cycle jitter
  - < 1ps (pk-pk) total jitter</li>
- 2:1 mux input accepts LVDS and LVPECL
- 3.3V supply voltage
- LVDS input includes internal 100 $\Omega$  termination
- Output enable function
- Available in a 64-Pin EPAD-TQFP

## **APPLICATIONS**

- Enterprise networking
- **■** High-end servers
- Communications




Precision Edge®

## **DESCRIPTION**

The SY89826L is a precision fanout buffer with 22 differential LVDS (Low Voltage Differential Swing) output pairs. The part is designed for use in low voltage 3.3V applications that require a large number of outputs to drive precisely aligned, ultra low-skew signals to their destination. The input is multiplexed from either LVDS or LVPECL (Low Voltage Positive Emitter Coupled Logic) by the CLK\_SEL pin. The OE (Output Enable) is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control.

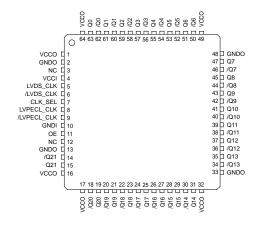
The SY89826L features a low pin-to-pin skew of less than 50ps—performance previously unachievable in a standard product having such a high number of outputs. The SY89826L is available in a single space saving package, enabling a lower overall cost solution.

## **FUNCTIONAL BLOCK DIAGRAM**



#### **TRUTH TABLE**

| OE <sup>(1)</sup> | CLK_SEL | Q0 – Q21   | /Q0 – /Q21  |
|-------------------|---------|------------|-------------|
| 0                 | 0       | LOW        | HIGH        |
| 0                 | 1       | LOW        | HIGH        |
| 1                 | 0       | LVDS_CLK   | /LVDS_CLK   |
| 1                 | 1       | LVPECL_CLK | /LVPECL_CLK |


#### NOTE:

 The OE (output enable) signal is synchronized with the low level of the LVDS\_CLK and LVPECL\_CLK signal.

Precision Edge is a registered trademark of Micrel, Inc.

Rev.: D Amendment: /0 Issue Date: January 2007

# **PACKAGE/ORDERING INFORMATION**



# Ordering Information<sup>(1)</sup>

| Part Number                    | Package<br>Type | Operating<br>Range | Package<br>Marking                         | Lead<br>Finish      |
|--------------------------------|-----------------|--------------------|--------------------------------------------|---------------------|
| SY89826LHI                     | H64-1           | Industrial         | SY89826LHI                                 | Sn-Pb               |
| SY89826LHITR <sup>(2)</sup>    | H64-1           | Industrial         | SY89826LHI                                 | Sn-Pb               |
| SY89826LHY <sup>(3)</sup>      | H64-1           | Industrial         | SY89826LHY with Pb-Free bar-line indicator | Pb-Free<br>Matte-Sn |
| SY89826LHYTR <sup>(2, 3)</sup> | H64-1           | Industrial         | SY89826LHY with Pb-Free bar-line indicator | Pb-Free<br>Matte-Sn |

#### Notes:

- 1. Contact factory for die availability. Dice are guaranteed at  $T_A = 25$ °C, DC electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package recommended for new designs.

# 64-Pin TQFP (H64-1)

**PIN DESCRIPTIONS** 

| Pin Number                                                                                      | Pin Name                  | I/O    | Tuna                                  | Internal<br>Pull-up/<br>Pull-down | Pin Function                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------|---------------------------|--------|---------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5, 6                                                                                            | LVDS_CLK<br>/LVDS_CLK     | Input  | Type  LVDS w/100Ω internal terminator | 3.3kΩ<br>pull-up<br>(Figure 2)    | Differential LVDS clock input. Selected when CLKSEL = LOW (Can be left floating if CLKSEL = HIGH). This input pair includes internal termination, and is intended to interface directly to LVDS. Leave floating if not used. |
| 8, 9                                                                                            | LVPECL_CLK<br>/LVPECL_CLK | Input  | LVPECL                                | 75kΩ<br>pull-down<br>(Figure 1)   | Differential LVPECL clock input. Selected when CLKSEL = HIGH (Can be left floating if CLKSEL = LOW). Requires external termination. Leave floating if not used.                                                              |
| 7                                                                                               | CLK_SEL                   | Input  | LVTTL/<br>CMOS                        | 11kΩ to<br>VCCI                   | Selects LVDS_CLK when LOW and LVPECL_CLK when HIGH. Default condition is HIGH if left floating.                                                                                                                              |
| 11                                                                                              | OE                        | Input  | LVTTL/                                |                                   | Output enable/disable function. When LOW, Q outputs go LOW, /Q outputs go HIGH. Asynchronous input that is synchronized internally to prevent output glitches or runt pulses.                                                |
| 63, 61, 59, 57, 55, 53, 51, 47, 45, 43, 41, 39, 37, 35, 31, 29, 27, 25, 23, 21, 19, 15          | Q0 – Q21                  | Output | LVDS                                  |                                   | Differential LVDS clock outputs when OE = HIGH and static LOW when OE = LOW. Unused output pairs must be terminated with $100\Omega$ across the differential pair to maintain low skew and jitter.                           |
| 62, 60, 58, 56, 54, 52,<br>50, 46, 44, 42, 40, 38,<br>36, 34, 30, 28, 26, 24,<br>22, 20, 18, 14 | /Q0 – /Q21                | Output | LVDS                                  |                                   | Differential clock outputs (complement) when OE = HIGH and static HIGH when OE = LOW. Unused output pairs must be terminated with $100\Omega$ across the differential pair to maintain low skew and jitter.                  |
| 4                                                                                               | VCCI                      | Power  |                                       |                                   | Core VCC connect to 3.3V supply. Not connected to VCCO internally. Connect to VCCO on PCB. Bypass with $0.1\mu F$ in parallel with $0.01\mu F$ low ESR capacitors as close to VCC pins as possible.                          |
| 1, 16, 17,<br>32, 49, 64                                                                        | VCCO                      | Power  |                                       |                                   | Output buffer VCC connects to 3.3V supply. Not connected to VCCI internally. Connect to VCCI on PCB. Bypass with $0.1\mu F$ in parallel with $0.01\mu F$ low ESR capacitors as close to VCC pins as possible.                |
| 10                                                                                              | GNDI                      | Power  |                                       |                                   | Core ground not connected to GNDO internally. Connect to GNDO on PCB.                                                                                                                                                        |
| 2, 13, 33, 48                                                                                   | GNDO                      | Power  |                                       |                                   | Output buffer ground not connected to GNDI internally. Connect to GNDI on PCB.                                                                                                                                               |
| 3, 12                                                                                           | NC                        |        |                                       |                                   | No connect pins to be left open.                                                                                                                                                                                             |

# Absolute Maximum Ratings(Note 1)

| Power Supply Voltage (V <sub>CCI</sub> , V <sub>CCO</sub> )0.5 to +4.0 |
|------------------------------------------------------------------------|
| Input Voltage (V <sub>IN</sub> )0.5 to V <sub>CC</sub>                 |
| Output Current (I <sub>OUT</sub> )±10m                                 |
| Lead Temperature (T <sub>LEAD</sub> , Soldering, 20sec.) 260°C         |
| Storage Temperature (T <sub>S</sub> )–65 to +150 $^{\circ}$ C          |
| ESD Rating, Note 3>1k                                                  |

# Operating Ratings(Note 2)

| Supply Voltage (V <sub>CC</sub> to GND)           | +3.0V to +3.6V  |
|---------------------------------------------------|-----------------|
| Ambient Temperature (T <sub>A</sub> )             | –40°C to +85°C  |
| Package Thermal Resistance TQFP ( $\theta_{JA}$ ) |                 |
| Exposed pad soldered to GND                       |                 |
| Still-Air(multi-layer PCB)                        | 23°C/W          |
| -200lfpm (multi-layer PCB)                        | 18°C/W          |
| -500lfpm (multi-layer PCB)                        |                 |
| Exposed pad NOT soldered to GND (r                | not recommened) |
| Still-Air(multi-layer PCB)                        | 44°C/W          |
| -200lfpm (multi-layer PCB)                        | 36°C/W          |
| -500lfpm (multi-layer PCB)                        | 30°C/W          |
| TOFP (A <sub>10</sub> )                           | 4 4°C/W         |

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Devices are ESD sensitive. Handling precautions recommended.

# DC ELECTRICAL CHARACTERISTICS

**Power Supply:**  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ 

| Symbol             | Parameter                                    | Condition                     | Min | Тур | Max | Units |
|--------------------|----------------------------------------------|-------------------------------|-----|-----|-----|-------|
| $V_{CCI}, V_{CCO}$ | V <sub>CC</sub> Core, V <sub>CC</sub> Output | Note 4                        | 3.0 | 3.3 | 3.6 | V     |
| I <sub>CCI</sub>   | I <sub>CC</sub> Core                         | Max. V <sub>CC</sub>          |     | 46  | 70  | mA    |
| I <sub>cco</sub>   | I <sub>CC</sub> Output                       | No Load, Max. V <sub>CC</sub> |     | 175 | 260 | mA    |

Note 4. V<sub>CCI</sub> and V<sub>CCO</sub> must be connected together on the PCB such that they remain at the same potential. V<sub>CCI</sub> and V<sub>CCO</sub> are not internally connected on the die.

**LVDS Input:**  $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ 

| Symbol          | Parameter                                                  | Condition | Min   | Тур | Max | Units |
|-----------------|------------------------------------------------------------|-----------|-------|-----|-----|-------|
| $V_{IN}$        | Input Voltage Range                                        |           | 0     |     | 2.4 | V     |
| $V_{ID}$        | Differential Input Swing                                   |           | 100   |     |     | mV    |
| I <sub>IL</sub> | Input LOW Current                                          |           | -1.25 |     |     | mA    |
| R <sub>IN</sub> | LVDS Differential Input Resistance (LVDS_CLK to /LVDS_CLK) |           | 80    | 100 | 120 | Ω     |

# DC ELECTRICAL CHARACTERISTICS

**LVPECL Input:**  $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40^{\circ}C$  to +85°C

| Symbol          | Parameter                         | Condition | Min                    | Тур | Max                    | Units |
|-----------------|-----------------------------------|-----------|------------------------|-----|------------------------|-------|
| $V_{IH}$        | Input HIGH Voltage (Single-Ended) |           | V <sub>CC</sub> -1.165 |     | V <sub>CC</sub> -0.880 | V     |
| V <sub>IL</sub> | Input LOW Voltage                 |           | V <sub>CC</sub> -1.945 |     | V <sub>CC</sub> –1.625 | V     |
| V <sub>PP</sub> | Minimum Input Swing (LVPECL_CLK)  | Note 6    | 300                    |     |                        | mV    |
| $V_{CMR}$       | Common Mode Range (LVPECL_CLK)    | Note 7    | GNDI +1.8              |     | V <sub>CCI</sub> -0.4  | V     |
| I <sub>IH</sub> | Input HIGH Current                |           |                        |     | 150                    | μΑ    |
| I <sub>IL</sub> | Input LOW Current                 |           | 0.5                    |     |                        | μΑ    |

Note 6. The V<sub>PP</sub> (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay.

Note 7. V<sub>CMR</sub> is defined as the range within which the V<sub>IH</sub> level may vary, with the device still meeting the propagation delay specification. The numbers in the table are referenced to V<sub>CCI</sub>. The V<sub>IL</sub> level must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to V<sub>PP</sub> (min.). V<sub>CMR</sub> range varies 1:1 with V<sub>CCI</sub>. V<sub>CMR</sub> (min) is fixed at GNDI +1.8V.

**CMOS/LVTTL Inputs:**  $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40$ °C to +85°C

| Symbol          | Parameter          | Condition              | Min  | Тур | Max | Units |
|-----------------|--------------------|------------------------|------|-----|-----|-------|
| V <sub>IH</sub> | Input HIGH Voltage |                        | 2.0  |     |     | V     |
| $V_{\rm IL}$    | Input LOW Voltage  |                        |      |     | 0.8 | V     |
| I <sub>IH</sub> | Input HIGH Current | $V_{IN} = V_{CC}$      |      |     | 150 | μА    |
| I <sub>IL</sub> | Input LOW Current  | V <sub>IN</sub> = 0.5V | -600 |     |     | μΑ    |

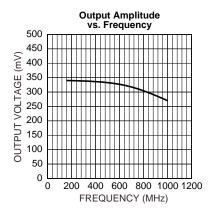
**LVDS Output**:  $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ 

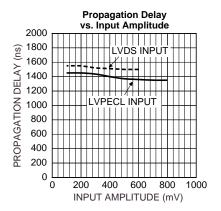
| Symbol           | Parameter                     | Condition | Min             | Тур | Max   | Units |
|------------------|-------------------------------|-----------|-----------------|-----|-------|-------|
| $V_{OD}$         | Differential Output Voltage   | Note 8, 9 | 250             | 350 | 400   | mV    |
| V <sub>OH</sub>  | Output HIGH Voltage           | Note 8    |                 |     | 1.474 | V     |
| $V_{OL}$         | Output LOW Voltage            | Note 8    | 0.925           |     |       | V     |
| V <sub>OCM</sub> | Output Common Mode Voltage    | Note 9    | 1.125           |     | 1.375 | V     |
| $\Delta V_{OCM}$ | Change in Common Mode Voltage |           | <del>-</del> 50 |     | 50    | mV    |

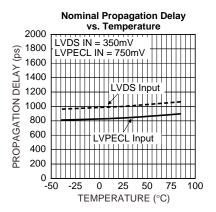
**Note 8.** Measured as per Figure 3,  $100\Omega$  across Q and /Q outputs.

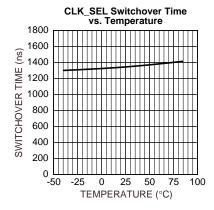
Note 9. Measured as per Figure 4.

# AC ELECTRICAL CHARACTERISTICS(1)

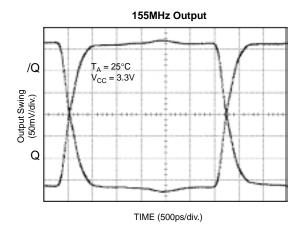

 $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40^{\circ}C$  to +85°C, unless noted.

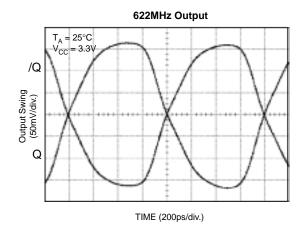

| Symbol                               | Parameter                              | Condition                                  |                       | Min            | Тур          | Max           | Units                                 |
|--------------------------------------|----------------------------------------|--------------------------------------------|-----------------------|----------------|--------------|---------------|---------------------------------------|
| f <sub>MAX</sub>                     | Maximum Toggle Frequency               | Note 2                                     |                       | 1.0            |              |               | GHz                                   |
| t <sub>PHL</sub><br>t <sub>PLH</sub> | Differential Propagation Delay, Note 3 | LVPECL Input: 150mV<br>LVPECL Input: 800mV |                       | 0.750<br>0.6   | 1.0<br>0.850 | 1.250<br>1.10 | ns<br>ns                              |
|                                      |                                        | LVDS Input: 100mV<br>LVDS Input: 400mV     |                       | 0.950<br>0.800 | 1.2<br>1.0   | 1.450<br>1.30 | ns<br>ns                              |
| t <sub>SWITCHOVER</sub>              | Clock Input Switchover                 | CLK_SEL-to-Valid Output                    |                       |                | 1.4          | 1.7           | ns                                    |
| t <sub>S(OE)</sub>                   | Output Enable Set-Up Time              | Note 4                                     |                       | 1.0            |              |               | ns                                    |
| t <sub>H(OE)</sub>                   | Output Enable Hold Time                | Note 4                                     |                       | 0.5            |              |               | ns                                    |
| t <sub>skew</sub>                    | Within Device Skew                     | Note 5                                     | 0°C to +85°C<br>-40°C |                | 25           | 50<br>75      | ps<br>ps                              |
|                                      | Part-to-Part Skew                      | Note 6                                     |                       |                |              | 400           | ps                                    |
| t <sub>JITTER</sub>                  | Cycle-to-Cycle<br>Total Jitter         | Note 7<br>Note 8                           |                       |                | <1           | 1<br>2        | ps <sub>RMS</sub><br>ps <sub>PP</sub> |
| t <sub>r</sub> , t <sub>f</sub>      | Output Rise/Fall Times<br>(20% to 80%) |                                            |                       | 200            | 290          | 400           | ps                                    |

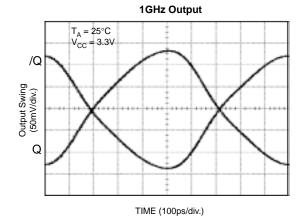

- Note 1.  $100\Omega$  termination between Q and /Q outputs. Airflow  $\geq 300$ lfpm, or exposed pad soldered to ground plane. Typicals are at nominal supply,  $T_A = 25$ °C.
- Note 2. f<sub>MAX</sub> is defined as the maximum toggle frequency, measured with a 750mV LVPECL input or 350mV LVDS input. Output swing is ≥ 200mV.
- **Note 3.** Differential propagation delay is defined as the delay from the crossing point of the differential input signals to the crossing point of the differential output signals.
- Note 4. Set-up and hold time applies to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold time does not apply. OE set-up time is defined with respect to the rising edge of the clock. OE HIGH to LOW transition ensures outputs remain disabled during the next clock cycle. OE LOW to HIGH transition enables normal operation of the next input clock.
- **Note 5.** The within-device skew is defined as the worst case difference between any two similar delay paths within a single device with identical input transition, operating at the same voltage and temperature.
- **Note 6.** The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same voltage and temperature. Part-to-part skew is the total skew difference; pin-to-pin skew + part-to-part skew.
- Note 7. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. T<sub>JITTER\_CC</sub>=T<sub>n</sub>-T<sub>n+1</sub> where T is the time between rising edges of the output signal.
- Note 8. Total jitter definition: with an ideal clock input, no more than one output edge in 10<sup>12</sup> output edges will deviate by more than the specified peak-to-peak jitter value.


# TYPICAL OPERATING CHARACTERISTICS

 $V_{CC}$  = 3.3V,  $V_{EE}$  = GND,  $T_A$  = 25°C, unless otherwise stated






# **FUNCTIONAL CHARACTERISTICS**







## LVPECL/LVDS INPUTS

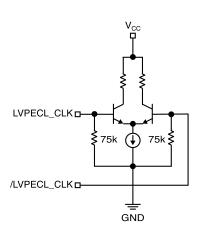



Figure 1. Simplified LVPECL Input Stage

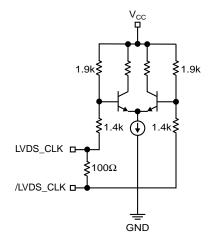



Figure 2. Simplified LVDS Input Stage

# LVDS OUTPUTS

LVDS specifies a small swing of 350mV typical, on a nominal 1.25V common mode above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and receiver. Also, change

in common mode voltage, as a function of data input, is also kept tight, to keep EMI low.

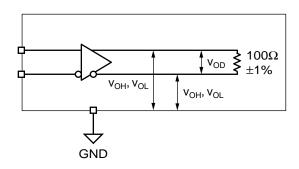



Figure 3. LVDS Differential Measurement

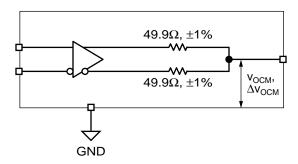



Figure 4. LVDS Common Mode Measurement

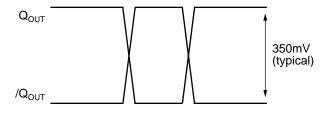



Figure 5. Output Driver Signal Levels (Single-Ended)

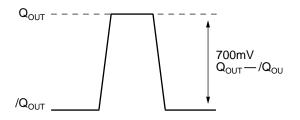



Figure 6. Output Driver Signal Levels (Differential)

#### **DETAILED DESCRIPTION**

The SY89826L is a precision 1:22 fanout buffer. It accepts either an LVPECL or LVDS input, selectable by an input mux, and outputs 22 LVDS output pairs. The device features a synchronous output enable. The SY89826L provides extremely low skew across its outputs.

#### LVPECL\_CLK

The SY89826L allows one input with standard LVPECL voltage swing. This input may be adjusted per the data sheet characteristics regarding the CMR and minimum input swing. As the SY89826L contains no appropriate internal termination, upstream devices need to be properly terminated to provide the proper LVPECL input swing. If not being used (CLK\_SEL is LOW), this input pair may be left floating, as it is internally terminated to ground via a  $75k\Omega$  pull-down resistor.

#### LVDS CLK

The SY89826L allows one input with standard LVDS voltage swing. The SY89826L provides an appropriate internal 100 $\Omega$  termination resistor. Hence, upstream LVDS devices do not require external termination to drive the SY89826L. If not being used (CLK\_SEL is HIGH), this input pair may be left floating.

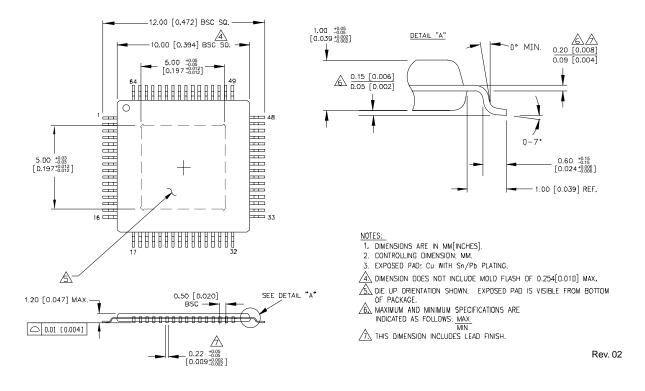
#### **CLK SEL Input**

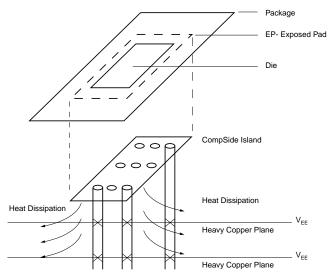
The CLK\_SEL TTL Input is used to select either LVDS\_CLK (CLK\_SEL is LOW) or LVPECL\_CLK (CLK\_SEL is LOW),..

#### OE

The SY89826L's output enable function is designed to disable the outputs only when the outputs are LOW. This avoids the possibility of generating runt pulses. The OE input is an asynchronous input, but operates as a synchronous enable. For synchronous operation, please adhere to the specific setup and hold times. When disabled, the Q outputs are LOW and the /Q outputs are HIGH.

#### **LVDS Outputs**


The SY89826L's LVDS outputs swing typically 350mV around a 1.25V common mode voltage above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and receiver. Also, change in common mode voltage, as a function of data input is kept tight to keep EMI low.


Each of the SY89826L's LVDS outputs should be terminated with a  $100\Omega$  termination resistor including any unused output pairs. This ensures the best jitter and skew performance of the device.

## RELATED PRODUCT AND SUPPORT DOCUMENTATION

| Part Number | Function                                                                                                      | Data Sheet Link                                     |
|-------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| SY55855V    | Dual CML/PECL/LVPECL-to-LVDS<br>Translator                                                                    | www.micrel.com/product-info/products/sy55855v.shtml |
| SY89825U    | 2.5/3.3V 1:22 High-performance,<br>Low-voltage PECL Bus Clock Driver<br>& Translator w/ Internal Termination  | www.micrel.com/product-info/products/sy89825u.shtml |
| SY89828L    | 3.3V 1GHz Dual 1:10 Precision<br>LVDS Fanout Buffer with 2:1 Input Mux                                        | www.micrel.com/product-info/products/sy89828l.shtml |
| SY89829U    | 2.5/3.3V High-performance, Dual 1:10<br>LVPECL Clock Driver w/ Internal Termination &<br>Redundant Switchover | www.micrel.com/product-info/products/sy89829u.shtml |
| M-0317      | HBW Solutions                                                                                                 | www.micrel.com/product-info/as/solutions.shtml      |
| Exposed Pad | Amkor Exposed Pad Application Note                                                                            | www.amkor.com/products/notes_papers/epad.pdf        |

# 64-PIN EPAD-TQFP (DIE UP) (H64-1)





PCB Thermal Consideration for 64-Pin EPAD-TQFP Package

#### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.