SY89856U

2GHz, Low-Power, 1:6 LVPECL Fanout Buffer with 2:1 Input MUX and Internal Termination

General Description

The SY89856U is a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ precision, highspeed, $1: 6$ fanout capable of handling clocks up to 2.0 GHz . A differential 2:1 MUX input is included for redundant clock switchover applications.
The differential input includes Micrel's unique, 3-pin input termination architecture that allows the device to interface to any differential signal (AC- or DCcoupled) as small as $100 \mathrm{mV}\left(200 \mathrm{mV} \mathrm{V}_{\mathrm{pp}}\right)$ without any level shifting or termination resistor networks in the signal path. The outputs are LVPECL (100k, temperature compensated), with extremely fast rise/fall times guaranteed to be less than 200ps.
The SY89856U operates from a $2.5 \mathrm{~V} \pm 5 \%$ supply or a $3.3 \mathrm{~V} \pm 10 \%$ supply and is guaranteed over the full industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The SY89856U is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.
All support documentation can be found on Micrel's web site at: www.micrel.com.

Functional Block Diagram

Precision Edge ${ }^{\circledR}$

Features

- 6 ultra-low skew copies of the selected input
- 2:1 MUX input included for clock switchover applications
- Low power: 225 mW typical (2.5V)
- 2.5 V to 3.3 V supply voltage
- Unique input isolation design minimizes crosstalk
- Guaranteed AC performance over temperature and voltage:
- Clock frequency range: DC to $>2.0 \mathrm{GHz}$
- $<400 \mathrm{ps}$ IN-to-OUT t_{pd}
- <200ps t_{r} / t_{f} times
- <30ps skew (output-to-output)
- Ultra-low jitter design:
$-<1 \mathrm{ps}_{\mathrm{RMS}}$ random jitter
- $<10 \mathrm{ps}$ pp total jitter (clock)
- $<1 \mathrm{ps}_{\text {RMS }}$ cycle-to-cycle jitter
- $<0.7 \mathrm{ps}_{\text {RMS }}$ crosstalk-induced jitter
- Unique input termination and VT pin accepts DCand AC-coupled inputs (CML, PECL, LVDS)
- 100k LVPECL compatible output swing
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range
- Available in 32 -pin ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) MLF^{\oplus} package

Applications

- Redundant clock distribution
- All SONET/SDH clock/data distribution
- All Fibre Channel distribution
- All Gigabit Ethernet clock distribution

Markets

- LAN/WAN
- Enterprise servers
- ATE
- Test and measurement

Precision Edge is a registered trademark of Micrel, Inc.
MLF and MicroLeadFrame registered are trademarks of Amkor Technology.
Micrel Inc. $\cdot 2180$ Fortune Drive • San Jose, CA $95131 \cdot$ USA • tel +1 (408) 944-0800 • fax +1 (408) 474-1000 • http://www.micrel.com

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89856UMG	MLF-32	Industrial	SY89856U with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY89856UMGTR ${ }^{(2)}$	MLF-32	Industrial	SY89856U with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.

Pin Configuration

32-Pin MLF ${ }^{\circledR}$ (MLF-32)

Pin Description

Pin Number	Pin Name	Pin Function
$\begin{aligned} & 1,4 \\ & 5,8 \end{aligned}$	$\begin{aligned} & \text { IN0, /INO } \\ & \text { IN1, /IN1 } \end{aligned}$	Differential Input: These input pairs are the differential signal inputs to the device. These inputs accept AC- or DC-coupled signals as small as 100 mV $\left(200 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}\right)$. Each pin of a pair internally terminates to a VT pin through 50Ω. Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.
2, 6	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VTI pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.
31	SEL	This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open. The MUX select switchover function is asynchronous.
10	NC	No connect.
$\begin{aligned} & 11,16,18 \\ & 23,25,30 \end{aligned}$	VCC	Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitors as close to VCC pins as possible.
$\begin{aligned} & 29,28 \\ & 27,26 \\ & 22,21 \\ & 20,19 \\ & 15,14 \\ & 13,12 \end{aligned}$	$\begin{aligned} & \text { Q0, /Q0, } \\ & \text { Q1, /Q1, } \\ & \text { Q2, /Q2, } \\ & \text { Q3, /Q3, } \\ & \text { Q4, /Q4, } \\ & \text { Q5, /Q5 } \end{aligned}$	Differential Outputs: These 100k (temperature compensated) LVPECL output pairs are low skew copies of the selected input. Unused output pins may be left floating. Please refer to the "LVPECL Output Interface Applications" for details.
9, 17, 24, 32	GND, Exposed Pad	Ground: Ground pins and exposed pad must be connected to the same ground plane.
3, 7	VREF-AC0 VREF-AC1	Reference Voltage: This output biases to $\mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}$. It is used for AC-coupling inputs (IN, /IN). Connect VREF_AC directly to the VT pin. Bypass with $0.01 \mu \mathrm{~F}$ low ESR capacitor to $\mathrm{V}_{\text {cc }}$. See "Input Interface Applications" section. Maximum sink/source current is $\pm 1.5 \mathrm{~mA}$. Due to the limited drive capability use for input at the same package only.

LVPECL Output Interface Applications

SEL	Output
0	IN0 Input Selected
1	IN1 Input Selected

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage (V_{CC}) -0.5 V to +4.0 V Input Voltage ($\mathrm{V}_{\text {IN }}$) .-0.5 V to V_{cc}
LVPECL Output Current (lout)
Continuous ...50mA
Surge 100 mA
Termination Current
Source or sink current on $\mathrm{V}_{\mathrm{T}} \ldots \pm 100 \mathrm{~mA}$
$\mathrm{V}_{\text {REF-AC }}$ Source or sink current...................... $\pm 2.0 \mathrm{~mA}$
Lead Temperature (soldering, 20 sec.)............ $+260^{\circ} \mathrm{C}$
Storage Temperature $\left(T_{s}\right)$................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
Vcc	Power Supply Voltage		2.375	2.5	2.625	V
			3.0	3.3	3.6	V
ICC	Power Supply Current	No load, max $\mathrm{V}_{\text {cc }}$.		90	140	mA
RIN	Input Resistance (IN-to-V V_{T})		45	50	55	Ω
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V_{IH}	Input High Voltage (IN, /IN)	Note 5	$\mathrm{V}_{\mathrm{H}-1.6}$		$\mathrm{V}_{\text {cc }}$	V
VIL	Input Low Voltage (IN, /IN)		0		$\mathrm{V}_{\mathrm{H}}-0.1$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing $(\mathrm{IN}, / \mathrm{IN})$	See Figure 1a.	0.1		1.7	V
$\mathrm{V}_{\text {DIFF_IN }}$	Differential Input Voltage Swing \| $\mathrm{IN}-/ \mathrm{IN} \mid$	See Figure 1b.	0.2			V
$\mathrm{V}_{\text {T_IN }}$	IN -to- V_{T} (IN, /IN)				1.28	V
$\mathrm{V}_{\text {REF-AC }}$	Output Reference Voltage		$\mathrm{V}_{\mathrm{CC}}-1.3$	$\mathrm{V}_{\mathrm{CC}}-1.2$	$\mathrm{V}_{\mathrm{CC}}-1.1$	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to an absolute maximum ratings for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and $\psi_{\text {Јв }}$ values are determined for a 4-layer board in still air, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. $\mathrm{V}_{\mathrm{IH}}(\min)$ not lower than 1.2 V .

LVPECL Outputs DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}-1.145$		$\mathrm{~V}_{\mathrm{CC}}-0.895$	V
$\mathrm{~V}_{\text {OL }}$	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}-1.945$		$\mathrm{~V}_{\mathrm{CC}}-1.695$	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Swing	See Figure 1a.	550	800		mV
$\mathrm{V}_{\text {DIFF-OUT }}$	Differential Output Voltage Swing	See Figure 1b.	1.1	1.6		V

LVTTL/CMOS DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input HIGH Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage				0.8	V
I_{H}	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300			$\mu \mathrm{~A}$

Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$V_{\text {OUT }} \geq 400 \mathrm{mV}$	2.0	3.0		GHz
t_{pd}	Differential Propagation Delay (INO or IN1-to-Q) (SEL-to-Q)		200	280	400	ps
			140		460	ps
$\Delta \mathrm{t}_{\mathrm{pd}}$ Tempco	Differential Propagation Delay Temperature Coefficient			65		fs $/{ }^{\circ} \mathrm{C}$
tskew	Output-to-Output Part-to-Part	Note 8		10	30	ps
		Note 9			150	ps
$\mathrm{t}_{\text {JItter }}$	$\begin{array}{rr} \hline \text { Clock } & \text { Cycle-to-Cycle Jitter } \\ & \text { Deterministic Jitter (DJ) } \\ & \text { Random Jitter (RJ) } \\ & \text { Total Jitter (TJ) } \\ \hline \end{array}$	Note 10			1	$\mathrm{ps}(\mathrm{rms})$
		Note 11			10	pS (rms)
		Note 12			1	$\mathrm{ps}(\mathrm{pp})$
		Note 13			10	$\mathrm{ps}(\mathrm{pp})$
	Adjacent Channel Crosstalk-Induced Jitter	Note 14			0.7	pS (rms)
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time	Full swing, 20% to 80%.	75	130	200	ps

Notes:

7. High-frequency AC-parameters are guaranteed by design and characterization.
8. Output-to-output skew is measured between outputs under identical input conditions.
9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
10. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.
11. Deterministic Jitter is measured at $2.5 \mathrm{Gbps} / 3.2 \mathrm{Gbps}$, with both K 28.5 and $2^{23}-1$ PRBS pattern.
12. Random Jitter is measured with a K28.7 character pattern, measured at 2.5Gbps.
13. Total Jitter definition: with an ideal clock input of frequency $<f_{\text {MAX }}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
14. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs.

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq 400 \mathrm{mV}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq 400 \mathrm{mV}, \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

TIME (750ps/div.)

TIME (100ps/div.)

TIME (250ps/div.)

Singled-Ended and Differential Swings

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

Timing Diagrams

Input and Output Stages

Figure 2a. Simplified Differential Input Stage

Figure 2b. Simplified LVPECL Output Stage

Input Interface Applications

Figure 3a. LVPECL Interface (DC-Coupled)

Figure 3d. CML Interface (AC-Coupled)

Figure 3b. LVPECL Interface (AC-Coupled)

Figure 3e. LVDS Interface (DC-Coupled)

LVPECL Output Interface Applications

LVPECL has a high input impedance and a very low output impedance (open emitter), and a small signal swing which results in low EMI. LVPECL is ideal for driving 50Ω and 100Ω-controlled impedance transmission lines. There are several techniques for
terminating the LVPECL output: Parallel Termination-Thevenin Equivalent, Parallel Termination (3-resistor), and AC-coupled Termination. Unused output pairs may be left floating. However, single-ended outputs must be terminated, or balanced.

Notes:

2. Power-saving alternative to Thevenin termination.
3. Place termination resistors as close to destination inputs as possible.
4. R_{b} resistor sets the $D C$ bias voltage, equal to V_{T}.
5. For 2.5 V systems, $\mathrm{R}_{\mathrm{b}}=19 \Omega$.

Figure 4b. Parallel Termination (3-Resistors)

Related Documentation

Part Number	Function	Data Sheet Link
SY58035U	$4.5 G H z, ~ 1: 6 ~ L V P E C L ~ F a n o u t ~ B u f f e r ~ w i t h ~$ $2: 1 ~ M U X ~ I n p u t ~ a n d ~ I n t e r n a l ~ T e r m i n a t i o n ~$	www.micrel.com/product-info/products/sy58035u.html
	MLF $^{\circledR}$ Application Note	www.amkor.com/products/notes_papers/MLFappnote.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

32-Pin MicroLeadFrame ${ }^{\circledR}$ (MLF-32)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) $944-0800$ FAX +1 (408) 474-1000 WEB http:/www.micrel.com
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.
August 2007
M9999-082907-C
hbwhelp@micrel.com or (408) 955-1690

