# 

## SPREAD SPECTRUM CLOCK GENERATOR

## MK1493-14

DATASHEET

#### Description

The MK1493-14 is a spread spectrum clock designed for embedded applications. The device takes a reference clock or crystal input of 27 MHz and provides four differential HCSL outputs at 100 MHz for Serial ATA and PCI-Express. The current mode differential outputs comply directly with HCSL (0.7 V) norms. In addition, a 27 MHz video reference clock, two 25 MHz Ethernet clocks and one 48 MHz USB clock are generated at single-ended CMOS levels.

The MK1493-14 includes an SMBus interface to control the spread and drive strength of the 100 MHz HCSL outputs. The reference current, IREF, is set by a 475 ohm resistor on the RSET pin, and the drive strength of each 100 MHz output can be programmed as 4X, 5X, 6X or 7X IREF.

#### **Features**

- Single-ended clock or crystal input of 27 MHz
- Four pairs of 100 MHz outputs, (HCSL, 0.7 V current mode differential pair) with selectable spread
- Two 25 MHz Ethternet clock outputs (LVCMOS)
- One 48 MHz USB clock output (LVCMOS)
- One 27 MHz video reference output (LVCMOS)
- ±125 ps peak-to-peak max jitter on 100 MHz clocks
- ±200 ps peak-to-peak max jitter on 27 MHz reference and 25 MHz clocks
- · Packaged in 28-pin TSSOP Pb (lead) free package
- Operating voltage of 3.3 V
- Low power consumption



#### **Block Diagram**

#### **Pin Assignment**



#### **Pin Descriptions**

| Pin<br>Number | Pin<br>Name | Pin<br>Type | Pin Description                                                                                                             |  |  |
|---------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| 1             | VDD         | Power       | Connect to voltage supply +3.3 V.                                                                                           |  |  |
| 2             | X1/ICLK     | Input       | Crystal or clock input. Connect to a 27 MHz crystal or single ended clock.                                                  |  |  |
| 3             | X2          | Output      | Crystal connection. Leave unconnected for clock input.                                                                      |  |  |
| 4             | GND         | Power       | Connect to ground.                                                                                                          |  |  |
| 5             | VDD         | Power       | Connect to voltage supply +3.3 V.                                                                                           |  |  |
| 6             | F25MA       | Output      | 25 MHz Ethernet clock output. Internal pull-down resistor.                                                                  |  |  |
| 7             | F25MB       | Output      | 25 MHz Ethernet clock output. Internal pull-down resistor.                                                                  |  |  |
| 8             | OE100M/25M  | Input       | Output Enable for F100Mx and F25Mx clocks. Internal pull-down resistor.<br>OE100M/25M = 1 enables all outputs. See Table 1. |  |  |
| 9             | GND         | Power       | r Connect to ground.                                                                                                        |  |  |
| 10            | F100MC_DP   | Output      | 100 MHz differential clock (+), small spread.                                                                               |  |  |
| 11            | F100MC_DN   | Output      | 100 MHz differential clock (-), small spread.                                                                               |  |  |
| 12            | GND100M     | Power       | Connect to ground.                                                                                                          |  |  |
| 13            | F100MD_DP   | Output      | 100 MHz differential clock (+), small spread.                                                                               |  |  |
| 14            | F100MD_DN   | Output      | 100 MHz differential clock (-), small spread.                                                                               |  |  |
| 15            | F100MB_DN   | Output      | 100 MHz differential clock (-), small spread.                                                                               |  |  |
| 16            | F100MB_DP   | Output      | 100 MHz differential clock (+), small spread.                                                                               |  |  |
| 17            | VDD         | Power       | Connect to voltage supply +3.3 V                                                                                            |  |  |
| 18            | F100MA_DN   | Output      | 100 MHz differential clock (-), small spread.                                                                               |  |  |
| 19            | F100MA_DP   | Output      | 100 MHz differential clock (+), small spread.                                                                               |  |  |

| Pin    | Pin      | Pin    | Pin Description                                                               |  |  |
|--------|----------|--------|-------------------------------------------------------------------------------|--|--|
| Number | Name     | Туре   |                                                                               |  |  |
| 20     | RSET     | Input  | Current set for all Differential clock drivers, attach 475 $\Omega$ resistor. |  |  |
| 21     | GND      | Power  | Connect to ground.                                                            |  |  |
| 22     | VDD      | Power  | Connect to voltage supply +3.3 V.                                             |  |  |
| 23     | VDD      | Power  | Connect to voltage supply +3.3 V.                                             |  |  |
| 24     | F48M     | Output | 48 MHz reference clock output.                                                |  |  |
| 25     | GND      | Power  | Connect to ground.                                                            |  |  |
| 26     | SMB_DATA | Input  | SMBus data input.                                                             |  |  |
| 27     | SMB_CLK  | Input  | SMBus clock input.                                                            |  |  |
| 28     | F27M     | Output | 27 MHz reference clock output.                                                |  |  |

#### **Output Enable Control (Table 1)**

| OE100M/25M | F100Mx | F25Mx |
|------------|--------|-------|
| 0          | Hi-Z   | Low   |
| 1          | ON     | ON    |

## **General SMBus Serial Interface**

#### How to Write:

- · Controller (host) sends a start bit
- Controller (host) sends the write address D2(H)
- ICS clock will acknowledge
- Controller (host) sends the beginning byte location =N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X 1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

#### How to Read:

- · Controller (host) sends a start bit
- Controller (host) sends the write address D2(H)
- ICS clock will acknowledge
- Controller (host) sends the beginning byte location =N
- ICS clock will acknowledge •
- · Controller (host) will send a separate start bit
- Controller (host) sends the read address D3(H)
- ICS clock will acknowledge
- ٠ Controller (host) sends the data byte count = X
- ICS clock sends Byte N + X - 1
- ICS clock sends Byte 0 through byte X (if X<sub>(H)</sub> was written to byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

| Index Block Read Operation |                             |   |                     |  |
|----------------------------|-----------------------------|---|---------------------|--|
| Co                         | ntroller (Host)             |   | ICS(Slave/Receiver) |  |
| Т                          | starTbit                    |   |                     |  |
| Slav                       | e Address D2 <sub>(H)</sub> |   |                     |  |
| WR                         | WRite                       |   |                     |  |
|                            |                             |   | ACK                 |  |
| Beg                        | inning Byte = N             |   |                     |  |
|                            |                             |   | ACK                 |  |
| RT                         | Repeat starT                |   |                     |  |
| Slav                       | e Address D3 <sub>(H)</sub> |   |                     |  |
| RD ReaD                    |                             |   |                     |  |
|                            |                             |   | ACK                 |  |
|                            |                             |   |                     |  |
|                            |                             |   | Data Bye Count = X  |  |
|                            | ACK                         |   |                     |  |
|                            |                             |   | Beginning Byte N    |  |
|                            | ACK                         | v |                     |  |
|                            |                             | B | 0                   |  |
| 0                          |                             |   | 0                   |  |
| 0                          |                             |   | 0                   |  |
| 0                          |                             |   |                     |  |
|                            |                             |   | Byte N + X - 1      |  |
| Ν                          | Not acknowledge             |   |                     |  |
| Р                          | stoP bit                    |   |                     |  |

| mack block white operation |                         |                     |     |  |
|----------------------------|-------------------------|---------------------|-----|--|
| Contro                     | ller (Host)             | ICS(Slave/Receiver) |     |  |
| Т                          | starTbit                |                     |     |  |
| Slave Ad                   | dress D2 <sub>(H)</sub> |                     |     |  |
| WR                         | WRite                   |                     |     |  |
|                            |                         | ACK                 |     |  |
| Beginnir                   | ng Byte = N             |                     |     |  |
|                            |                         |                     | ACK |  |
| Data Byte                  | e Count = X             |                     |     |  |
|                            |                         | ACK                 |     |  |
| Beginnir                   | ng Byte = N             |                     |     |  |
|                            |                         | ACK                 |     |  |
|                            | 0                       | A                   |     |  |
|                            | 0                       | Ý                   | 0   |  |
| 0                          |                         |                     | 0   |  |
|                            |                         | 0                   |     |  |
| Byte N + X - 1             |                         |                     |     |  |
|                            |                         |                     | ACK |  |
| Р                          | stoP bit                |                     |     |  |
|                            |                         |                     |     |  |

Index Block Write Operation

SSCG

#### **SMBus Address**

The MK1493-14 is a slave-only device that supports block read and block write protocol using a single 7 bit address and read/write bit. A block write (D2h) or block read (D3h) is made up of seven (7) bits and one (1) read/write bit.

| <b>A</b> 6 | <b>A</b> 5 | <b>A</b> 4 | <b>A</b> 3 | A2 | A1 | <b>A</b> 0 | R/W# |
|------------|------------|------------|------------|----|----|------------|------|
| 1          | 1          | 0          | 1          | 0  | 1  | 0          | Х    |

In applications where the indexed block write and block read are used, the dummy byte (bit 11-18) functions as a register-offset (8 bits) pointer.

#### **Byte 0: Control Register**

| Bit | Description                                 | Туре | Power Up<br>Condition | Output(s) Affected     | Notes                                          |
|-----|---------------------------------------------|------|-----------------------|------------------------|------------------------------------------------|
| 7   | F100MD Current Multiplier<br>Control Bit S3 | RW   | 1                     | F100MD_DP<br>F100MD_DN |                                                |
| 6   | F100MD Current Multiplier<br>Control Bit S2 | RW   | 0                     | F100MD_DP<br>F100MD_DN | S3:S0=Multiplier<br>0011=4xIREF<br>0111=5xIREF |
| 5   | F100MD Current Multiplier<br>Control Bit S1 | RW   | 1                     | F100MD_DP<br>F100MD_DN | 1011=6xIREF<br>1111=7xIREF                     |
| 4   | F100MD Current Multiplier<br>Control Bit S0 | RW   | 1                     | F100MD_DP<br>F100MD_DN |                                                |
| 3   | F100MC Current Multiplier<br>Control Bit S3 | RW   | 1                     | F100MC_DP<br>F100MC_DN | S2:S0-Multiplior                               |
| 2   | F100MC Current Multiplier<br>Control Bit S2 | RW   | 0                     | F100MC_DP<br>F100MC_DN | 0011=4xIREF<br>0111=5xIREF                     |
| 1   | F100MC Current Multiplier<br>Control Bit S1 | RW   | 1                     | F100MC_DP<br>F100MC_DN | 1011=6xIREF<br>1111=7xIREF                     |
| 0   | F100MC Current Multiplier<br>Control Bit S0 | RW   | 1                     | F100MC_DP<br>F100MC_DN |                                                |

## Byte 1: Control Register

| Bit | Description                                 | Туре | Power Up<br>Condition | Output(s) Affected     | Notes                                          |
|-----|---------------------------------------------|------|-----------------------|------------------------|------------------------------------------------|
| 7   | F100MB Current Multiplier<br>Control Bit S3 | RW   | 1                     | F100MB_DP<br>F100MB_DN | CuCo Multiplier                                |
| 6   | F100MB Current Multiplier<br>Control Bit S2 | RW   | 0                     | F100MB_DP<br>F100MB_DN | S3:S0=Multiplier<br>0011=4xIREF<br>0111=5xIREF |
| 5   | F100MB Current Multiplier<br>Control Bit S1 | RW   | 1                     | F100MB_DP<br>F100MB_DN | 1011=6xIREF<br>1111=7xIREF                     |
| 4   | F100MB Current Multiplier<br>Control Bit S0 | RW   | 1                     | F100MB_DP<br>F100MB_DN |                                                |
| 3   | F100MA Current Multiplier<br>Control Bit S3 | RW   | 1                     | F100MA_DP<br>F100MA_DN | CuCo Multiplier                                |
| 2   | F100MA Current Multiplier<br>Control Bit S2 | RW   | 0                     | F100MA_DP<br>F100MA_DN | 0011=4xIREF<br>0111=5xIREF                     |
| 1   | F100MA Current Multiplier<br>Control Bit S1 | RW   | 1                     | F100MA_DP<br>F100MA_DN | 1011=6xIREF<br>1111=7xIREF                     |
| 0   | F100MA Current Multiplier<br>Control Bit S0 | RW   | 1                     | F100MA_DP<br>F100MA_DN |                                                |

## **Byte 2: Control Register**

| Bit | Description                        | Туре | Power Up<br>Condition | Output(s) Affected     | Notes                                    |
|-----|------------------------------------|------|-----------------------|------------------------|------------------------------------------|
| 7   | Spread Select for F100Mx<br>clocks | RW   | 0                     | F100Mx_DP<br>F100Mx_DN | 0=spread off<br>1 = -0.5% down<br>spread |
| 6   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 5   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 4   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 3   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 2   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 1   | Reserved                           | R    | Undefined             | Not applicable         |                                          |
| 0   | Reserved                           | R    | Undefined             | Not applicable         |                                          |

## Byte 3 through 5: Control

| Bit    | Description | Туре | Power Up<br>Condition | Output(s) Affected | Notes |
|--------|-------------|------|-----------------------|--------------------|-------|
| 7 to 0 | Reserved    | R    | Undefined             | Not applicable     |       |

## **Byte 6: Control Register**

| Bit | Description       | Туре | Power Up<br>Condition | Output(s) Affected | Notes |
|-----|-------------------|------|-----------------------|--------------------|-------|
| 7   | Revision ID bit 3 | R    | 0                     | Not applicable     |       |
| 6   | Revision ID bit 2 | R    | 0                     | Not applicable     |       |
| 5   | Revision ID bit 1 | R    | 0                     | Not applicable     |       |
| 4   | Revision ID bit 0 | R    | 0                     | Not applicable     |       |
| 3   | Vendor ID bit 3   | R    | 0                     | Not applicable     |       |
| 2   | Vendor ID bit 2   | R    | 0                     | Not applicable     |       |
| 1   | Vendor ID bit 1   | R    | 0                     | Not applicable     |       |
| 0   | Vendor ID bit 0   | R    | 1                     | Not applicable     |       |

#### **External Components**

A minimum number of external components are required for proper operation. Decoupling capacitors of 0.01  $\mu$ F should be connected between VDD and GND pairs. The capacitors should be placed between pins VDD and GND pins as close to the device as possible. A 33 $\Omega$  series terminating resistor should be used on each clock output if the trace is longer than 1 inch.

#### **Crystal Information**

The crystal used should be a fundamental mode, parallel resonant crystal. Do not use third overtone. Crystal capacitors should be connected from pins X1 to ground and from X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation:

Crystal caps (pF) = ( $C_L$  - 6) x 2

In the equation,  $C_L$  is the crystal load capacitance. So for a crystal with 18 pF load capacitance, two 24 pF [(18-6) x 2] capacitors should be used.

#### **Absolute Maximum Ratings**

Stresses above the ratings listed below can cause permanent damage to the MK1493-14. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| Item                          | Rating              |
|-------------------------------|---------------------|
| Supply Voltage, VDD           | 7 V                 |
| All Inputs and Outputs        | -0.5 V to VDD+0.5 V |
| Ambient Operating Temperature | 0 to +70°C          |
| Storage Temperature           | -65 to +150°C       |
| Junction Temperature          | 125°C               |
| Soldering Temperature         | 260°C               |

#### **Recommended Operation Conditions**

| Parameter                                         | Min. | Тур. | Max. | Units |
|---------------------------------------------------|------|------|------|-------|
| Ambient Operating Temperature                     | 0    |      | +70  | °C    |
| Power Supply Voltage (measured in respect to GND) | +3.0 |      | +3.6 | V     |

## **DC Electrical Characteristics**

| Unless otherwise specified | VDD=3.3 V +10% An | bient Temperature 0 to +70°C |
|----------------------------|-------------------|------------------------------|
|                            |                   |                              |

| Parameter                          | Symbol          | Conditions                                 | Min. | Тур. | Max. | Units |
|------------------------------------|-----------------|--------------------------------------------|------|------|------|-------|
| DC Operating Voltage               | VDD             |                                            | 3.0  |      | 3.6  | V     |
| Input High Voltage                 | V <sub>IH</sub> | ICLK, SMB_CLK,<br>SMB_DATA,<br>OE100M/25M, | 2    |      |      | V     |
| Input Low Voltage                  | V <sub>IL</sub> | ICLK, SMB_CLK,<br>SMB_DATA,<br>OE100M/25M  |      |      | 0.8  | V     |
| Operating Supply Current           | IDD             |                                            |      | 165  | 210  | mA    |
| IDD at Output Disable<br>Condition |                 | No load,<br>OE100M/25M=0                   |      | 90   |      | mA    |
| Short Circuit Current              | I <sub>OS</sub> | Single-ended clocks                        |      | ±35  |      | mA    |
| Internal Pull-down Resistor        | R <sub>PD</sub> | OE100M/25M/F25MX                           |      | 110  |      | kΩ    |
| Input Capacitance                  | C <sub>IN</sub> | All input pins                             |      | 6    |      | pF    |

Note: 1. Nominal switching threshold is VDD/2.

#### **AC Electrical Characteristics F27M**

VDD = 3.3 V ±10%, C<sub>L</sub>=15 pF Ambient Temperature 0 to +70° C

| Parameter                                 | Symbol          | Conditions                    | Min. | Тур. | Max. | Units |
|-------------------------------------------|-----------------|-------------------------------|------|------|------|-------|
| Clock Frequency                           |                 |                               |      | 27   |      | MHz   |
| Output Rise Time                          | t <sub>OR</sub> | 0.4 V to 2.4 V,<br>15 pF load | 1    |      | 3    | ns    |
| Output Fall Time                          | t <sub>OF</sub> | 2.4 V to 0.4 V,<br>15 pF load | 1    |      | 3    | ns    |
| Output Clock Duty Cycle                   |                 | At VDD/2                      | 45   | 50   | 55   | %     |
| High-Level Output Voltage                 | V <sub>OH</sub> | I <sub>OH</sub> = -1 mA       | 2.4  |      |      | V     |
| Low-Level Output Voltage                  | V <sub>OL</sub> | I <sub>OL</sub> = 1 mA        |      |      | 0.4  | V     |
| High-Level Output Current                 | I <sub>OH</sub> | Vout = 1.0 V                  | -29  |      |      |       |
| High-Level Output Current                 | I <sub>ОН</sub> | Vout = 3.135 V                |      |      | -23  |       |
| Low-Level Output Current                  | I <sub>OL</sub> | Vout = 1.95 V                 | 29   |      |      |       |
| Low-Level Output Current                  | I <sub>OL</sub> | Vout = 0.4 V                  |      |      | 27   |       |
| Period jitter                             |                 | Variation from mean           |      | ±200 |      | ps    |
| Cycle-to-cycle Jitter                     |                 |                               |      | ±200 |      | ps    |
| Long-term Jitter                          |                 | Measured at 10 µs             |      | ±400 |      | ps    |
| Clock Stabilization Time from<br>Power Up |                 |                               |      |      | 2    | ms    |

9

#### **AC Electrical Characteristics F25Mx**

| VDD = 3.3 V ±10%, C <sub>L</sub> =15 pF | Ambient Temperature 0 to +70° C |
|-----------------------------------------|---------------------------------|
|-----------------------------------------|---------------------------------|

| Parameter                                 | Symbol          | Conditions               | Min. | Тур. | Max. | Units |
|-------------------------------------------|-----------------|--------------------------|------|------|------|-------|
| Clock Frequency                           |                 |                          |      | 25   |      | MHz   |
| Output Rise Time                          | t <sub>OR</sub> | 0.4V to 2.4V, 15 pF load | 1    |      | 3    | ns    |
| Output Fall Time                          | t <sub>OF</sub> | 2.4V to 0.4V, 15 pF load | 1    |      | 3    | ns    |
| Output Clock Duty Cycle                   |                 | At VDD/2                 | 45   | 50   | 55   | %     |
| High-Level Output Voltage                 | V <sub>OH</sub> | I <sub>OH</sub> = -1 mA  | 2.4  |      |      | V     |
| Low-Level Output Voltage                  | V <sub>OL</sub> | I <sub>OL</sub> = 1 mA   |      |      | 0.4  | V     |
| High-Level Output Current                 | I <sub>OH</sub> | Vout = 1.0 V             | -29  |      |      | mA    |
| High-Level Output Current                 | I <sub>ОН</sub> | Vout = 3.135 V           |      |      | -23  | mA    |
| Low-Level Output Current                  | I <sub>OL</sub> | Vout = 1.95 V            | 29   |      |      | mA    |
| Low-Level Output Current                  | I <sub>OL</sub> | Vout = 0.4 V             |      |      | 27   | mA    |
| Period Jitter                             |                 | Variation from mean      |      | ±200 |      | ps    |
| Cycle-to-Cycle Jitter                     |                 |                          |      | ±200 |      | ps    |
| Long-term Jitter                          |                 | Measured at 10 µs        |      | ±400 |      | ps    |
| Clock Stabilization Time from<br>Power Up |                 |                          |      |      | 2    | ms    |

#### **AC Electrical Characteristics F48M**

| VDD = 3.3 V ±10%, C <sub>l</sub> : | =15 pF Ambient Temperature | 0 to +70° C |
|------------------------------------|----------------------------|-------------|
|------------------------------------|----------------------------|-------------|

| Parameter                 | Symbol          | Conditions                    | Min. | Тур. | Max. | Units |
|---------------------------|-----------------|-------------------------------|------|------|------|-------|
| Clock Frequency           |                 |                               |      | 48   |      | MHz   |
| Output Rise Time          | t <sub>OR</sub> | 0.4 V to 2.4 V,<br>15 pF load | 1    |      | 2    | ns    |
| Output Fall Time          | t <sub>OF</sub> | 2.4 V to 0.4 V,<br>15 pF load | 1    |      | 2    | ns    |
| Output Clock Duty Cycle   |                 | At VDD/2                      | 45   | 50   | 55   | %     |
| High-Level Output Voltage | V <sub>OH</sub> | I <sub>OH</sub> = -1 mA       | 2.4  |      |      | V     |
| Low-Level Output Voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 1 mA        |      |      | 0.4  | V     |
| High-Level Output Current | I <sub>OH</sub> | Vout = 1.0 V                  | -29  |      |      | mA    |
| High-Level Output Current | I <sub>ОН</sub> | Vout = 3.135 V                |      |      | -23  | mA    |
| Low-Level Output Current  | I <sub>OL</sub> | Vout = 1.95 V                 | 29   |      |      | mA    |
| Low-Level Output Current  | I <sub>OL</sub> | Vout = 0.4 V                  |      |      | 27   | mA    |
| Period Jitter             |                 | Variation from mean           |      | ±200 |      | ps    |

| Parameter                                 | Symbol | Conditions        | Min. | Тур. | Max. | Units |
|-------------------------------------------|--------|-------------------|------|------|------|-------|
| Cycle-to-Cycle Jitter                     |        |                   |      | ±200 |      | ps    |
| Long-term Jitter                          |        | Measured at 10 µs |      | ±400 |      | ps    |
| Clock Stabilization Time from<br>Power Up |        |                   |      |      | 2    | ms    |

# AC Electrical Characteristics F100M/F100MA/F100MB/F100MC Clock, 0.7V Current Mode Differential Pairs

Unless stated otherwise, VDD = 3.3 V ±10%, Ambient Temperature 0 to +70°C

| Parameter                                            | Symbol                                                              | Conditions                                                                                                                                                                            | Min.                     | Тур.   | Max.                   | Units |
|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|------------------------|-------|
| Clock Frequency                                      |                                                                     |                                                                                                                                                                                       |                          | 100    |                        | MHz   |
| Jitter, Cycle to Cycle                               |                                                                     |                                                                                                                                                                                       |                          | ±85    |                        | ps    |
| Period Jitter                                        |                                                                     |                                                                                                                                                                                       |                          | ±85    |                        | ps    |
| Long-Term Jitter                                     |                                                                     | Note 2, Measured at 10µs                                                                                                                                                              |                          | ±500   |                        | ps    |
| Spread Range                                         |                                                                     | Note 3                                                                                                                                                                                | -0.5                     |        | 0                      | %     |
| Spread Rate                                          |                                                                     | Note 3                                                                                                                                                                                |                          | 31     |                        | KHz   |
| Clock Period                                         | T <sub>Period</sub>                                                 | Note 4, 5, 6<br>without spread and without jitter<br>with 0.0, -0.5% spread and jitter                                                                                                | 10<br>9.915              | 10.025 | 10.136                 | ns    |
| Duty Cycle                                           | T <sub>DC</sub>                                                     | Measurement from differential wave forms                                                                                                                                              | 45                       | 50     | 55                     | %     |
| Clock Stabilization from<br>Power-up                 |                                                                     |                                                                                                                                                                                       |                          |        | 2                      | ms    |
| Rise Time                                            | T <sub>R</sub>                                                      | Note 7, V <sub>OL</sub> = 0.175 V, V <sub>OH</sub> = 0.525 V                                                                                                                          | 175                      |        | 700                    | ps    |
| Fall Time                                            | Τ <sub>F</sub>                                                      | Note 7, $V_{OL}$ = 0.175 V, $V_{OH}$ = 0.525 V                                                                                                                                        | 175                      |        | 700                    | ps    |
| Rise/Fall Matching                                   |                                                                     | Note 7, 8                                                                                                                                                                             |                          |        | 20%                    | —     |
| Output Skew                                          | T <sub>OSKEW</sub>                                                  | $V_{T} = 50\%$ (measurement threshold)                                                                                                                                                |                          |        | 50                     | ps    |
| Transmission Line<br>Characteristic<br>Impedance(Zo) | Z <sub>O</sub>                                                      |                                                                                                                                                                                       |                          | 50     |                        | Ω     |
| Driver Output Current<br>Impedance, Single-ended     |                                                                     |                                                                                                                                                                                       |                          | 3000   |                        | Ω     |
| High-Level Output<br>Voltage                         | V <sub>OH</sub>                                                     | Output single-ended voltage, Note 9,                                                                                                                                                  | 0.65                     | 0.71   | 0.85                   | V     |
| Low-Level Output Voltage                             | V <sub>OL</sub>                                                     | $(R_{S}=33\ \Omega,R_{T}=50\Omega)$                                                                                                                                                   | -0.20                    | 0      | 0.05                   | V     |
| I <sub>OH</sub> @6*I <sub>R</sub>                    | I <sub>OH</sub>                                                     |                                                                                                                                                                                       | -13                      | -14.2  | -17                    | mA    |
| Output Common Mode<br>Voltage                        | [V <sub>OCM</sub> ]<br>V <sub>OCM(DC)</sub><br>V <sub>OCM(AC)</sub> | Note 10, 11, $R_{LOAD}$ =100 $\Omega$ between<br>outputs). Peak Change in Output<br>Common mode voltage when driving logic<br>0 and when driving logic1 under DC and<br>AC conditions | 0.25<br>-0.015<br>-0.050 |        | 0.55<br>0.015<br>0.050 | V     |
| Output Enable Time                                   |                                                                     | OE going high to valid differential outputs                                                                                                                                           |                          |        | 180                    | ns    |
| Output Disable Time                                  |                                                                     | OE going low to differential outputs becoming invalid (tri-state)                                                                                                                     |                          |        | 180                    | ns    |

#### IREF

If board target trace impedance (Z) is 50 $\Omega$ , then RSET = 475 $\Omega$  (1%), providing IREF of 2.32 mA, output current (I<sub>OH</sub>) is equal to 6\*IREF.

#### Notes

1) The typical frequency is not specified since this is a spread clock.

- 2) Measured at 10 µs.
- 3) This spread range and rate result in a cycle-to-cycle jitter 0f 0.1 ps.
- 4) Longest period including jitter and spread minus shortest period including jitter and spread equals 301 ps.
- 5) longest period including jitter and spread minus shortest period including jitter and spread equals 352 ps.
- 6) Longest period including jitter and spread shortest period including jitter and spread equals 403.

7) When the output is transitioning between logic 0 and logic 1 or logic 1 and logic 0, the outputs shall monotonically transition between  $V_{OL}$  and  $V_{OH}$ ,  $V_{OH}$  and  $V_{OL}$  respectively.

- 8) Calculated as  $2^{(T_R-T_F)/(T_R+T_F)}$ .
- 9) Measured across  $R_T(R_T \text{ is termination}, 50 \text{ ohm load})$ .
- 10) Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under DC conditions.
- 11) Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under AC conditions.

## **Clock Details and Topology**

The topology of each 100 MHz circuit is shown for reference in Fig 1.



Fig 1: Clock chip Outputs current and translation to voltage is done on the motherboard for destination chip.

#### **Topology Details**

L1= 0.5"

L2, L3 =0.25"

L4=8"

 $R_{S1}$ , $R_{S2}$  = 33  $\Omega$  ±5%

 $R_{T1}, R_{T2} = 49.9 \Omega \pm 1\%$ 

Receiver has no internal termination.

Length of L3 should be minimized to improve signal integrity.

L4 will have two to a maximum of four vias.

#### **Thermal Characteristics (28-pin TSSOP)**

| Parameter                           | Symbol          | Conditions     | Min. | Тур. | Max. | Units |
|-------------------------------------|-----------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to      | $\theta_{JA}$   | Still air      |      | 83   |      | °C/W  |
| Ambient                             | $\theta_{JA}$   | 1 m/s air flow |      | 75   |      | °C/W  |
|                                     | $\theta_{JA}$   | 2 m/s air flow |      | 61   |      | °C/W  |
| Thermal Resistance Junction to Case | θ <sub>JC</sub> |                |      | 60   |      | °C/W  |

#### **Marking Diagram**



#### Notes:

- 1. ###### is the lot code.
- 2. YYWW is the last two digits of the year, and the week number that the part was assembled.
- 3. "LF" denotes Pb free package.
- 4. Bottom marking: (origin). Origin = country of origin if not USA.

#### Package Outline and Package Dimensions (28-pin TSSOP, 173 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95, MO-153



|        | Millim     | Inc        | he         |     |
|--------|------------|------------|------------|-----|
| Symbol | Min        | Мах        | Min        | Γ   |
| А      |            | 1.20       |            |     |
| A1     | 0.05       | 0.15       | 0.002      |     |
| A2     | 0.80       | 1.05       | 0.032      |     |
| b      | 0.19       | 0.30       | 0.007      |     |
| С      | 0.09       | 0.20       | 0.0035     |     |
| D      | 9.60       | 9.80       | 0.378      |     |
| E      | 6.40 E     | BASIC      | 0.252      | B₽  |
| E1     | 4.30       | 4.50       | 0.169      |     |
| е      | 0.65       | Basic      | 0.0256     | 6 E |
| L      | 0.45       | 0.75       | 0.018      |     |
| α      | <b>0</b> ° | <b>8</b> ° | <b>0</b> ° |     |
| aaa    |            | 0.10       |            |     |



#### **Ordering Information**

| Part / Order Number | Marking     | Shipping Packaging | Package      | Temperature |
|---------------------|-------------|--------------------|--------------|-------------|
| MK1493-14GLF        | see page 14 | Tubes              | 28-pin TSSOP | 0 to +70° C |
| MK1493-14GLFT       |             | Tape and Reel      | 28-pin TSSOP | 0 to +70° C |

#### Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

#### **Revision History**

| Rev. | Originator  | Date     | Description of Change                           |
|------|-------------|----------|-------------------------------------------------|
| А    | P. Griffith | 08/22/05 | Released from custom to general purpose device. |

#### Innovate with IDT and accelerate your future networks. Contact:

## www.IDT.com

#### For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

#### For Tech Support

<product line email> <product line phone>

#### **Corporate Headquarters**

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

#### Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

#### Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339



© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA