

Product Description

Sirenza Microdevices' SGA-8543Z is a high performance Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) designed for operation from 50 MHz to 3.5 GHz. The SGA-8543Z is optimized for 3.3V operation but can be biased at 2.7V for low-voltage battery operated systems. The device provides low NF and excellent linearity at a low cost. It can be operated over a wide range of currents depending on the power and linearity requirements.

The matte tin finish on Sirenza's lead-free "Z" package is applied using a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. The package body is manufactured with green molding compounds that contain no antimony trioxide or halogenated fire retardants.

Preliminary

SGA-8543Z

High IP3, Medium Power Discrete SiGe Transistor

Product Features

- .05-3.5 GHz Operation
- Lead Free, RoHS Compliant & Green Package
- 1.5 dB NF_{MIN} @ 2.44 GHz
- 15.6 dB Gmax @ 2.44 GHz
- P_{1dB} = +20.6 dBm @ 2.44 GHz
- OIP₂ = +34.6 dBm @ 2.44 GHz
- Low Cost, High Performance, Versatility

Applications

- **Analog and Digital Wireless Systems**
- 3G, Cellular, PCS, RFID
- **Fixed Wireless, Pager Systems**
- PA stage for Medium Power Applications
- AN-079 contains detailed application circuits

Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.
G _{MAX}	Maximun Available Gain	dB	880 MHz		22.9	
GMAX	$Z_S = Z_S^*, Z_L = Z_L^*$	uБ	2440 MHz		15	
S ₂₁	Insertion Gain [1]	dB	880 MHz		18	
G	Power Gain [2]	dB	880 MHz		19	
G	$Z_S = Z_{SOPT}, Z_L = Z_{LOPT}$	uБ	2440 MHz		14	
P_{1dB}	Output Power at 1dB Compression [2]	dBm	880 MHz		20	
¹ 1dB	$Z_S = Z_{SOPT}, Z_L = Z_{LOPT}$	dbiii	2440 MHz		20.6	
OIP ₃	Output Third Order Intercept Point [2]	dBm	880 MHz		33.4	
On 3	$Z_S = Z_{SOPT}, Z_L = Z_{LOPT}$	dbiii	2440 MHz		34.6	
NF	Noise Figure [2]	dB	880 MHz		3.1	
141	$Z_S = Z_{SOPT}, Z_L = Z_{LOPT}$		2440 MHz		2.4	
NFmin	Minimum Noise Figure with I _{CE} = 25mA	dB	880 MHz		1.0	
INI IIIIII	$Z_S = \Gamma_{OPT}, Z_L = Z_L^*$	uБ	2440 MHz		1.5	
h _{FE}	DC Current Gain			120	180	300
BV _{CEO}	Collector - Emitter Breakdown Voltage	V		5.7	6	
Rth, j-l	Thermal Resistance (Junction - lead)	°C/W			151	
V_{CE}	Device Operating Voltage (collector- emitter)	V				3.8
I _{CE}	Device Operating Current (collector - emitter)	mA				95

Test Conditions: $V_{CF} = 3.3V$, $I_{CF} = 86mA$ Typ. (unless noted otherwise), $T_{L} = 25$ °C OIP₃ Tone Spacing = 1MHz, Pout per tone = 5 dBm [1] 100% production tested using 50 ohm contact board (no matching circuitry) [2] Data with Application Circuit

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2005 Sirenza Microdevices, Inc.. All worldwide rights

303 S. Technology Ct. Broomfield, CO 80021 Phone: (800) SMI-MMIC 1

http://www.sirenza.com

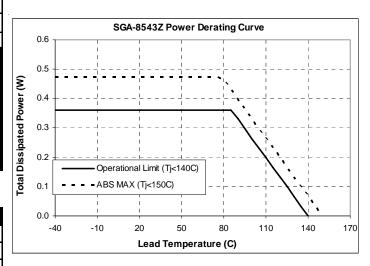
Absolute Maximum Ratings

Parameter	Absolute Limit		
Max Device Current (I _{CE})	105 mA		
Max Device Voltage (V _{CE})	4.5 V		
Max. RF Input Power* (See Note)	+18 dBm		
Max. Junction Temp. (T_J)	+150°C		
Operating Temp. Range (T _L)	See Graph		
Max. Storage Temp.	+150°C		

*Note: Load condition 1, $Z_L = 50$ Ohms Load condition 2, ZL = 10:1 VSWR

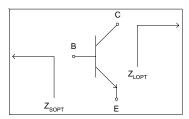
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH}$, j-I $T_L = T_{LEAD}$


Reliability & Qualification Information	n			
Parameter	Rating			
ESD Rating - Human Body Model (HBM)	Class 1B			
Moisture Sensitivity Level	MSL 1			
This product qualification report can be downloaded at				

This product qualification report can be downloaded at www.sirenza.com

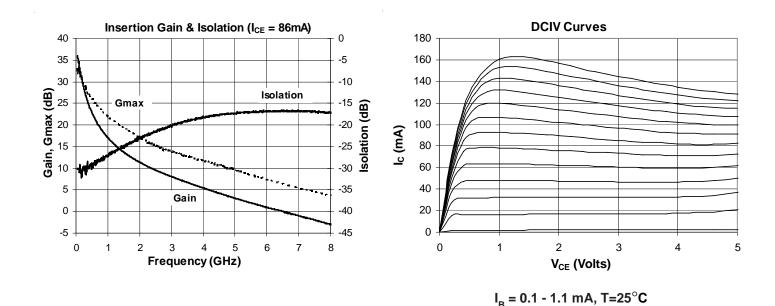
Caution: ESD sensitive


Appropriate precautions in handling, packaging and testing devices must be observed.

Typical performance - Engineering Application Circuits (See AN-079)

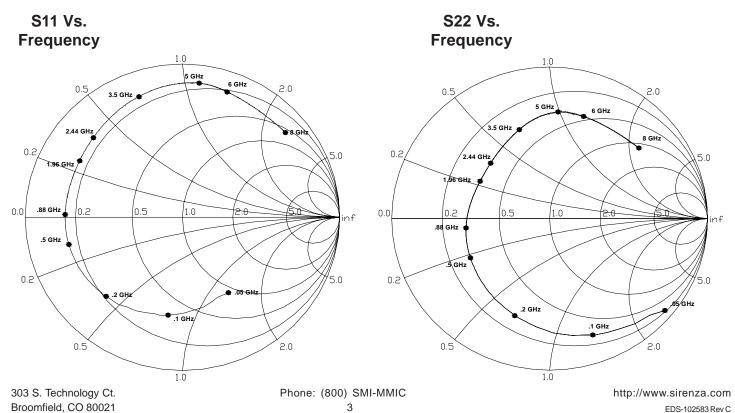
Freq	\mathbf{V}_{CE}	I_{CE}	P_{1dB}	OIP ₃	Gain	S11	S22	NF	Z_{SOPT}	\mathbf{Z}_{LOPT}
(MHz)	(V)	(mA)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)	(Ω)	(Ω)
880	3.3	86	20.0	33.4	19.0	-15.0	-11.0	3.1	22.9 - j2.5	29.4 + j0.9
2440	3.3	86	20.6	34.6	14.0	-16.0	-22.0	2.4	9.3 - j9.9	33.6 - j4.7
Test Conditi	ons: V _S =	5V	I _S = 96mA Typ).	OIP ₃ Ton	e Spacing = 1	MHz, Pout pe	r tone = 5 dBn	TL = 25° C	

Data above represents typical performance of the application circuits noted in Application Note AN-079. Refer to the application note for additional RF data, PCB layouts, and BOMs for each application circuit. The application note also includes biasing instructions and other key issues to be considered. For the latest application notes please visit our site at www.sirenza.com or call your local sales representative.


303 S. Technology Ct. Broomfield, CO 80021

Phone: (800) SMI-MMIC 2

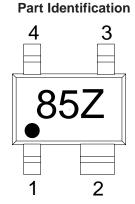
4

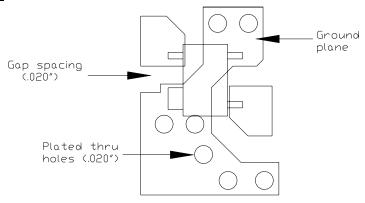

http://www.sirenza.com EDS-102583 Rev C

Typical Performance - De-embedded S-parameters

Note: S-parameters are de-embedded to the device leads with $Z_s = Z_L = 50\Omega$. The device was mounted on Sirenza's recommended evaluation board. De-embedded S-parameters can be downloaded from our website (www.sirenza.com)

SGA-8543Z Medium Power SiGe Discrete Transistor

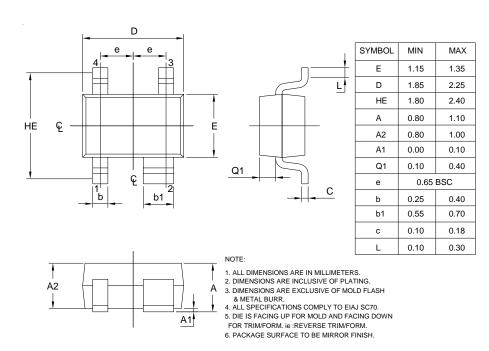

Pin Description


Pin #	Function	Description
1	RF IN	RF input / Base Bias. External DC blocking capacitor required
2	GND	Connection to ground. Use via holes to reduce lead inductance. Place via holes as close to lead as possible
3	RF OUT	RF Out / Collector bias. External DC blocking capacitor required
4	GND	Same as pin 2

Part Number Ordering Information

Part Number	Reel Size	Devices / Reel
SGA-8543Z	7"	3000

Suggested Pad Layout



Board Thickness 0.031" Copper Cladding 1oz. both sides

Use multiple plated-through vias holes located close to the package pins to ensure a good RF ground connection to a continuous groundplane on the backside of the board.

Package Dimension

303 S. Technology Ct. Broomfield, CO 80021

Phone: (800) SMI-MMIC 4 http://www.sirenza.com EDS-102583 Rev C