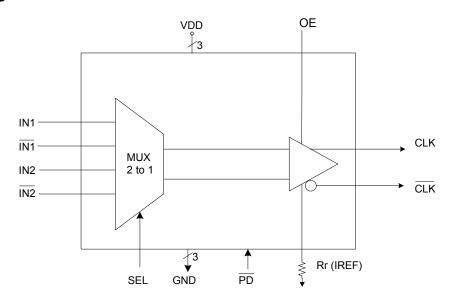
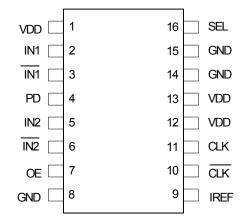


# 2:1 MULTIPLEXER CHIP FOR PCI-E


# **Description**

The ICS557-07 is a 2:1 HCSL multiplexer chip that allows the user to select one of the two input pairs of HCSL (Host Clock Signal Level) or LVDS inputs and fans out to one pair of differential HCSL outputs. This chip is suited especially for PCI-Express applications, where there is a need to select the PCI-Express clock locally from the PCI-E card or from the motherboard.

#### **Features**


- Packaged in 16-pin TSSOP
- · Available in Pb (lead) free package
- Operating voltage of 3.3 V
- Low power consumption
- Input differential clock of up to 200 MHz (can accept LVDS, HCSL)
- Output, one pair (HCSL, 0.7 V Current mode differential pair)
- Jitter 60 ps (peak-to-peak)
- Operating frequency of 80 MHz to 200 MHz

## **Block Diagram**





# **Pin Assignment**



# Select Table

| SEL | Input Pair<br>selected |
|-----|------------------------|
| 0   | IN2/ IN2               |
| 1   | IN1/ IN1               |

16-pin (173 mil) TSSOP

# **Pin Descriptions**

| Pin | Pin<br>Name | Pin<br>Type | Pin Description                                                                                               |  |
|-----|-------------|-------------|---------------------------------------------------------------------------------------------------------------|--|
| 1   | VDD         | Power       | Connect to +3.3 V. Supply voltage for Input clocks.                                                           |  |
| 2   | IN1         | Input       | HCSL/LVDS true input signal 1.                                                                                |  |
| 3   | ĪN1         | Input       | HCSL/LVDS complimentary input signal 1.                                                                       |  |
| 4   | PD          | Input       | Powers down the chip and tri-states outputs when low. Internal pull-up resistor.                              |  |
| 5   | IN2         | Input       | HCSL/LVDS true input signal 2.                                                                                |  |
| 6   | ĪN2         | Input       | HCSL/LVDS complimentary input signal 2.                                                                       |  |
| 7   | OE          | Input       | Provides fast output on, tri-states output (High = enable outputs; Low = disable). Internal pull-up resistor. |  |
| 8   | GND         | Power       | Connect to ground.                                                                                            |  |
| 9   | Rr(IREF)    | Output      | Precision resistor attached to this pin is connected to the internal current reference.                       |  |
| 10  | CLK         | Output      | HCSL differential complimentary clock .                                                                       |  |
| 11  | CLK         | Output      | HCSL True clock.                                                                                              |  |
| 12  | VDD         | Power       | Connect to +3.3 V. Supply Voltage for output clocks.                                                          |  |
| 13  | VDD         | Power       | Connect to +3.3 V. Supply Voltage for output clocks.                                                          |  |
| 14  | GND         | Power       | Connect to ground.                                                                                            |  |
| 15  | GND         | Power       | Connect to ground.                                                                                            |  |
| 16  | SEL         | Input       | SEL=1 selects IN1/IN1. SEL =0 selects IN2/ IN2. Internal pull-up resistor.                                    |  |



### **Applications Information**

### **External Components**

A minimum number of external components are required for proper operation.

#### **Decoupling Capacitors**

Decoupling capacitors of 0.01  $\mu$ F should be connected between VDD and the ground plane (pin 4) as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into ICS pin.

#### Crystal

A 25 MHz fundamental mode parallel resonant crystal with  $C_L$  = 16 pF should be used. This crystal must have less than 300 ppm of error across temperature in order for the ICS557-07 to meet PCI Express specifications.

### **Crystal Capacitors**

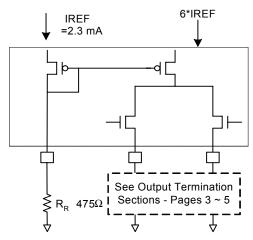
Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.

C<sub>I</sub> = Crystal's load capacitance in pF

Crystal Capacitors (pF) =  $(C_1 - 8) * 2$ 

For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF. (16-8)\*2=16.

#### Current Source (Iref) Reference Resistor - R<sub>R</sub>


If board target trace impedance (Z) is  $50\Omega$  then R<sub>R</sub> =  $475\Omega$  (1%), providing IREF of 2.32 mA. The output current (I<sub>OH</sub>) is equal to 6\*IREF.

#### **Output Termination**

The PCI-Express differential clock outputs of the ICS557-07 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the **PCI-Express Layout Guidelines** section.

The ICS557-07can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section

### **Output Structures**



### **General PCB Layout Recommendations**

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1. Each 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
- 2. No vias should be used between decoupling capacitor and VDD pin.
- 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the ICS557-07. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.



# **Absolute Maximum Ratings**

Stresses above the ratings listed below can cause permanent damage to the ICS557-07. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| Item                          | Rating              |
|-------------------------------|---------------------|
| Supply Voltage, VDD           | 5.5 V               |
| All Inputs and Outputs        | -0.5 V to VDD+0.5 V |
| Ambient Operating Temperature | 0 to +70° C         |
| Storage Temperature           | -65 to +150° C      |
| Junction Temperature          | 125° C              |
| Soldering Temperature         | 260° C              |
| ESD Protection (Input)        | 2000 V min. (HBM)   |

### **DC Electrical Characteristics**

Unless stated otherwise, **VDD = 3.3 V ±5%**, Ambient Temperature 0 to +70° C

| Parameter                          | Symbol            | Conditions             | Min.    | Тур. | Max.     | Units |
|------------------------------------|-------------------|------------------------|---------|------|----------|-------|
| Supply Voltage                     | V                 |                        | 3.135   |      | 3.465    |       |
| Input High Voltage <sup>1</sup>    | V <sub>IH</sub>   | OE, SEL, PD            | 2.0     |      | VDD +0.3 | V     |
| Input Low Voltage <sup>1</sup>     | V <sub>IL</sub>   | OE, SEL, PD            | VDD-0.3 |      | 0.8      | V     |
| Input Leakage Current <sup>2</sup> | I <sub>IL</sub>   | 0 < Vin < VDD          | -5      |      | 5        | μΑ    |
| Operating Supply Current           | I <sub>DD</sub>   | 50Ω 2 pF               |         |      | 40       | mA    |
|                                    | I <sub>DDOE</sub> | OE =Low                |         |      | 20       | mA    |
|                                    | I <sub>DDPD</sub> | No load, PD =Low       |         |      | 400      | μΑ    |
| Input Capacitance                  | C <sub>IN</sub>   | Input pin capacitance  |         |      | 7        | pF    |
| Output Capacitance                 | C <sub>OUT</sub>  | Output pin capacitance |         |      | 6        | pF    |
| Pin Inductance                     | L <sub>PIN</sub>  |                        |         |      | 5        | nΗ    |
| Output Resistance                  | R <sub>OUT</sub>  | CLK, each output       | 3.0     |      |          | kΩ    |
| Pull-up Resistor                   | R <sub>PU</sub>   |                        | 110     |      |          | kΩ    |

<sup>&</sup>lt;sup>1</sup> Single edge is monotonic when transitioning through region. <sup>2</sup> Inputs with pull-ups/-downs are not included.



### AC Electrical Characteristics - CLKOUTA/CLKOUTB

Unless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature 0 to +70° C

| Parameter                                  | Symbol              | Conditions                  | Min.  | Тур. | Max.  | Units |
|--------------------------------------------|---------------------|-----------------------------|-------|------|-------|-------|
| Input Frequency                            |                     |                             | 80    |      | 200   | MHz   |
| Output Frequency                           |                     |                             | 80    |      | 200   | MHz   |
| Input High Voltage <sup>1,2</sup>          | V <sub>IH</sub>     | HCSL                        | 660   | 700  | 850   | mV    |
| Input Low Voltage <sup>1,2</sup>           | V <sub>IL</sub>     | HCSL                        | -150  | 0    |       | mV    |
| Differential Input<br>Voltages             | (V <sub>ID</sub> )  | LVDS                        | 250   | 350  | 450   | mV    |
| Input Offset Voltage                       | (V <sub>IS</sub> )  | LVDS                        | 1.125 | 1.25 | 1.375 | V     |
| Output High Voltage <sup>1,2</sup>         | V <sub>OH</sub>     | HCSL                        | 660   | 700  | 850   | mV    |
| Output Low Voltage <sup>1,2</sup>          | V <sub>OL</sub>     | HCSL                        | -150  | 0    |       | mV    |
| Crossing Point Voltage <sup>1,2</sup>      |                     | Absolute                    | 250   | 350  | 550   | mV    |
| Crossing Point Voltage <sup>1,2,4</sup>    |                     | Variation over all edges    |       |      | 140   | mV    |
| Jitter, Cycle-to-Cycle <sup>1,3</sup>      |                     |                             |       | 60   |       | ps    |
| Rise Time <sup>1,2</sup>                   | t <sub>OR</sub>     | From 0.175 V to 0.525 V     | 175   | 332  | 700   | ps    |
| Fall Time <sup>1,2</sup>                   | t <sub>OF</sub>     | From 0.525 V to 0.175 V     | 175   | 344  | 700   | ps    |
| Rise/Fall Time<br>Variation <sup>1,2</sup> |                     |                             |       |      | 125   | ps    |
| Duty Cycle <sup>1,3</sup>                  |                     |                             | 45    |      | 55    | %     |
| Output Enable Time <sup>5</sup>            |                     | All outputs                 |       | 10   |       | μs    |
| Output Disable Time <sup>5</sup>           |                     | All outputs                 |       | 10   |       | μs    |
| Stabilization Time                         | t <sub>STABLE</sub> | From power-up VDD=3.3 V     |       | 3.0  |       | ms    |
| Input to Output Delay                      |                     | Measured at crossing points |       | 4    |       | ns    |

<sup>&</sup>lt;sup>1</sup> Test setup is  $R_L$ =50 ohms with 2 pF,  $Rr = 475\Omega(1\%)$ .

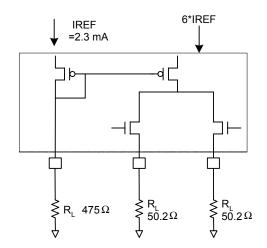
### **Thermal Characteristics**

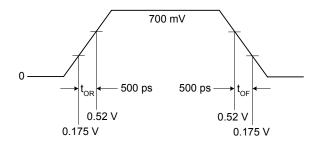
| Parameter                           | Symbol        | Conditions     | Min. | Тур. | Max. | Units |
|-------------------------------------|---------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to      | $\theta_{JA}$ | Still air      |      | 93   |      | ° C/W |
| Ambient                             | $\theta_{JA}$ | 1 m/s air flow |      | 78   |      | ° C/W |
|                                     | $\theta_{JA}$ | 3 m/s air flow |      | 65   |      | ° C/W |
| Thermal Resistance Junction to Case | $\theta_{JC}$ |                |      | 20   |      | ° C/W |

MDS 557-07 B 5 Revision 041405

Integrated Circuit Systems • 525 Race Street, San Jose, CA 95126 • tel (408) 297-1201 • www.icst.com

<sup>&</sup>lt;sup>2</sup> Measurement taken from a single-ended waveform.

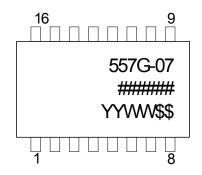

<sup>&</sup>lt;sup>3</sup> Measurement taken from a differential waveform.

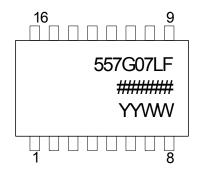

<sup>&</sup>lt;sup>4</sup> Measured at the crossing point where instantaneous voltages of both CLKOUT and CLKOUT are equal.

<sup>&</sup>lt;sup>5</sup> <u>CLK</u> and <u>CLK</u> pins are tri-stated when OE is Low. CLK and <u>CLK</u> are driven differential when OE is High unless its <u>PD</u> = low.



# **HCSL Output Loads**



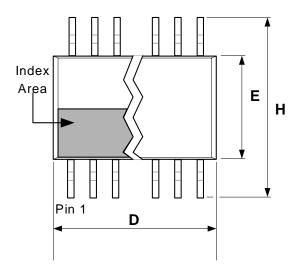



# **Marking Diagram**

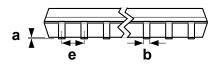
# Marking Diagram (Pb free)






#### Notes:

- 1. ##### is the lot code.
- 2. YYWW is the last two digits of the year, and the week number that the part was assembled.
- 3. "LF" denotes Pb free package.
- 4. Bottom marking: (origin). Origin = country of origin if not USA.




### Package Outline and Package Dimensions (16-pin TSSOP, 173 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95



|        | Millimeters |       | Inc         | hes   |
|--------|-------------|-------|-------------|-------|
| Symbol | Min Max     |       | Min         | Max   |
| Α      |             | 1.20  |             | 0.047 |
| а      | 0.05        | 0.15  | 0.002       | 0.006 |
| b      | 0.19        | 0.30  | 0.007       | 0.012 |
| С      | 0.09        | 0.20  | 0.0035      | 0.008 |
| D      | 4.90        | 5.10  | 0.193       | 0.201 |
| E      | 4.30        | 4.50  | 0.169       | 0.177 |
| е      | 0.65        | Basic | 0.0256      | Basic |
| Н      | 6.40 Basic  |       | 0.252       | Basic |
| L      | 0.45        | 0.75  | 0.018 0.030 |       |





# **Ordering Information**

| Part / Order Number | Marking    | Shipping Packaging | Package      | Temperature |
|---------------------|------------|--------------------|--------------|-------------|
| 557G-07             |            | Tubes              | 16-pin TSSOP | 0 to +70° C |
| 557G-07T            | See Page 4 | Tape and Reel      | 16-pin TSSOP | 0 to +70° C |
| 557G-07LF           |            | Tubes              | 16-pin TSSOP | 0 to +70° C |
| 557G-07LFT          |            | Tape and Reel      | 16-pin TSSOP | 0 to +70° C |

### Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

MDS 557-07 B 8 Revision 041405